王逍遙,王天澤,周云鵬,肖洋,劉雅新,李云開(kāi)*
微納米氣泡水滴灌對(duì)設(shè)施甜瓜產(chǎn)量、品質(zhì)及灌溉水利用效率的影響
王逍遙1, 2,王天澤2,周云鵬2,肖洋2,劉雅新2,李云開(kāi)1, 2*
(1.石河子大學(xué) 水利建筑工程學(xué)院,新疆 石河子 832000;2.中國(guó)農(nóng)業(yè)大學(xué) 水利與土木工程學(xué)院,北京 100083)
【】提出適合設(shè)施甜瓜栽培的微納米氣泡水(Micro-nano Bubble Water,MNBW)滴灌模式。以設(shè)施甜瓜為供試對(duì)象,采用地下滴灌系統(tǒng)進(jìn)行MNBW灌溉,研究了MNBW和傳統(tǒng)地下水(Conventional Groundwater,CGW)4種水源、2種施肥水平(100%和80%滴灌施肥水平)、3種滴灌頻率(1/3、1/7、1/15 次/d)等因素耦合對(duì)甜瓜產(chǎn)量、品質(zhì)和灌溉水利用效率(Irrigation Water Use Efficiency,)的影響。使用MNBW滴灌可以實(shí)現(xiàn)肥料減施,削減20%傳統(tǒng)滴灌施肥量可以大幅提高甜瓜的產(chǎn)量(增幅最高可達(dá)56.4%)和(增幅最高可達(dá)67.7%),可溶性糖量、維生素C量、可溶性固形物量也提升顯著;灌溉頻率也會(huì)影響MNBW滴灌的應(yīng)用效果1/3次/d的高頻滴灌下甜瓜的品質(zhì)提升最為顯著,與滴灌頻率為1/15 次/d相比,甜瓜的可溶性固形物量提高21.5%~28.0%、維生素C量提高11.6%~14.8%、莖粗提高8.5%~14.2%。如果未恰當(dāng)采用未腐熟牛糞作為底肥,MNBW滴灌反而會(huì)大幅降低甜瓜的產(chǎn)量、品質(zhì)與。推薦滴灌頻率為1/3 次/d的MNBW滴灌結(jié)合80%滴灌施肥水平作為設(shè)施甜瓜微納米氣泡水滴灌模式。
微納米氣泡水;地下滴灌;設(shè)施甜瓜;產(chǎn)量品質(zhì);灌溉水利用效率
【研究意義】近年來(lái),中國(guó)設(shè)施農(nóng)業(yè)快速發(fā)展,總面積達(dá)370萬(wàn)hm2,穩(wěn)居世界第一[1-2]。然而連續(xù)高強(qiáng)度的種植以及過(guò)量的化肥施用導(dǎo)致設(shè)施農(nóng)業(yè)土壤嚴(yán)重退化[3],造成土壤板結(jié)、土壤通氣性差等問(wèn)題,致使植物根區(qū)缺氧[4]、作物的產(chǎn)量和品質(zhì)降低[5]。加氣灌溉利用滴灌系統(tǒng)將作物生長(zhǎng)所需的氧氣輸送到作物根部區(qū)域[6],有效地改善了土壤通氣性,增強(qiáng)了作物根系的有氧呼吸[7],進(jìn)而促進(jìn)了作物對(duì)水分和養(yǎng)分的吸收[6-9],從而提高作物的產(chǎn)量和水分利用效率[6]。目前主要通過(guò)文丘里注射器、空氣壓縮機(jī)及向灌溉水中加入H2O2等方式進(jìn)行加氣灌溉[8],但這些方式產(chǎn)生的氣泡直徑大、與作物根系的接觸時(shí)間短[10]、氣體易從根區(qū)土壤逸出[8],導(dǎo)致加氣效率普遍偏低。提高加氣灌溉的效率已成為目前急需解決的問(wèn)題之一。因此,研究一種高效的加氣灌溉方式對(duì)于提高作物產(chǎn)量、改善作物品質(zhì),協(xié)同提高灌溉水利用效率及農(nóng)業(yè)生產(chǎn)具有重要的意義。
【研究進(jìn)展】通過(guò)地下滴灌全管道化系統(tǒng)進(jìn)行微納米氣泡水(Micro-nano Bubble Water,MNBW)灌溉,可以有效提高加氣灌溉效率[10]。微納米氣泡的直徑介于微米氣泡和納米氣泡之間,因氣泡粒徑小、比表面積大、上升速度慢、表面帶電的特性,使其具有儲(chǔ)存時(shí)間長(zhǎng)、傳質(zhì)效率高、吸附能力強(qiáng)等優(yōu)點(diǎn)[12-14]。使用MNBW滴灌可以顯著提升作物的產(chǎn)量與品質(zhì)。Liu等[8]將MNBW滴灌應(yīng)用于設(shè)施番茄、黃瓜等作物的種植,番茄產(chǎn)量、維生素C和可溶性糖量分別提高了16.9%、17.7%和39.2%,黃瓜分別提高了22.1%、16.7%和19.4%;Zhou等[10]發(fā)現(xiàn)MNBW滴灌使玉米產(chǎn)量提高11.7%,同時(shí)提高了玉米中淀粉和維生素C量。【切入點(diǎn)】雖然MNBW滴灌的應(yīng)用效果已得到初步證實(shí),然而對(duì)于如何進(jìn)一步提高M(jìn)NBW滴灌的應(yīng)用效果仍有待于深入研究?!緮M解決的關(guān)鍵問(wèn)題】以設(shè)施甜瓜為供試對(duì)象,研究了2種滴灌水源(MNBW和CGW(Conventional Groundwater,CGW))、3種滴灌頻率(1/3、1/7、1/15次/d)、2種施肥水平(100%滴灌施肥水平、80%滴灌施肥水平)等因素耦合對(duì)甜瓜生長(zhǎng)、產(chǎn)量和品質(zhì)的影響,提出適合設(shè)施甜瓜栽培的MNBW滴灌模式。
2017年3―10月在中國(guó)農(nóng)業(yè)大學(xué)北京通州實(shí)驗(yàn)站(N39°36′—40°02′,E116°32′—116°56′)春秋大棚內(nèi)進(jìn)行。試驗(yàn)地屬于暖溫帶大陸半濕潤(rùn)季風(fēng)氣候區(qū)。試驗(yàn)開(kāi)始前,對(duì)0~20 cm土壤理化指標(biāo)進(jìn)行測(cè)試,土壤為黏壤土,土壤體積質(zhì)量為1.35 g/cm3,田間持水率為25.90%,pH值為7.82,全氮量為3.10 g/kg,全磷量為1.10 g/kg,全鉀量為12.90 g/kg,有效氮量為0.70 g/kg,有效磷量為0.14 g/kg,有效鉀量為1.00 g/kg,有機(jī)質(zhì)量為3.10 g/kg。
試驗(yàn)種植春、秋2茬,春茬于3月21日定植,7月12日收獲;秋茬于7月21日定植,10月24日收獲。供試甜瓜品種為北京地區(qū)常見(jiàn)的品種“羊角蜜”。
試驗(yàn)設(shè)置2種滴灌水源(MNBW處理,微納米氣泡水處理;CGW處理,傳統(tǒng)地下水處理)、2個(gè)施肥水平(F100處理:100%滴灌施肥水平,F(xiàn)80處理:80%滴灌施肥水平)、3個(gè)滴灌頻率(P3處理:1/3次/d;P7處理:1/7 次/d;P15處理:1/15 次/d)。傳統(tǒng)滴灌施肥方案為尿素(N≥46.4%)102 kg/hm2、硫酸鉀(K2O≥52.0%)70.5 kg/hm2和磷酸二氫鉀(P2O5≥52.0%,K2O≥34.0%)81 kg/hm2[15]。春茬栽培采用未腐熟牛糞做底肥,秋茬栽培采用腐熟牛糞做底肥,用量均為4.5×103kg/hm2。每次灌水前測(cè)定土壤含水率,灌水上限為田間持水率的90%。試驗(yàn)共設(shè)置12個(gè)處理,詳見(jiàn)表1。
表1 試驗(yàn)設(shè)計(jì)
試驗(yàn)采用隨機(jī)區(qū)組設(shè)計(jì),每個(gè)小區(qū)面積為1.55 m×6 m,相鄰小區(qū)間距1.0 m。甜瓜種植模式及滴灌帶布置形式如圖1所示。采用寬(95 cm)窄行(60 cm)的種植模式,相鄰株距50 cm。灌溉方式為地下滴灌,選擇流量為2.8 L/h的內(nèi)鑲貼片式滴灌帶,滴頭間距30 cm,每行鋪1條滴灌帶,滴灌帶距植株定植點(diǎn)5 cm左右,滴灌帶埋深為10 cm。溫室甜瓜采用單蔓吊蔓栽培,主蔓第5、8、25片葉的子蔓上的第1、2葉留瓜,每條子蔓只留1個(gè),每株留6個(gè)瓜。
試驗(yàn)裝置將儲(chǔ)水桶、微納米氣泡發(fā)生器、自吸泵等、文丘里施肥器等進(jìn)行集成。制備MNBW時(shí),將微納米氣泡發(fā)生器循環(huán)運(yùn)行60 min,得到飽和MNBW用于灌溉。MNBW通過(guò)中國(guó)農(nóng)業(yè)大學(xué)自主研發(fā)的微納米氣泡發(fā)生器產(chǎn)生,發(fā)生器運(yùn)行時(shí),吸入氣體的流量為3~4 L/min,得到的MNBW溶解氧質(zhì)量濃度為7.8 mg/L。經(jīng)NanoSight300納米顆粒跟蹤分析儀測(cè)試,氣泡平均粒徑為(136.2±12.1)nm,氣泡量為6.2×108個(gè)/mL。
1.4.1 土壤含水率測(cè)定與灌水定額
每次灌溉前用FieldScout TDR200(Spectrum,USA)測(cè)定土壤含水率。每個(gè)處理隨機(jī)選取5個(gè)距離甜瓜根部5 cm的測(cè)量點(diǎn)進(jìn)行測(cè)量,測(cè)量深度為計(jì)劃濕潤(rùn)層深度,營(yíng)養(yǎng)生長(zhǎng)期為0.2 m,生殖生長(zhǎng)期為0.3 m,取5個(gè)點(diǎn)測(cè)得的平均值作為該處理的土壤含水率[16]。灌水定額計(jì)算式[17]為:
=0.1(max-min)/, (1)
式中:為單次灌水量(mm);為土壤體積質(zhì)量(g/cm3);為計(jì)劃土壤濕潤(rùn)層深度(m);為灌溉土壤濕潤(rùn)比,取50%;?max為按質(zhì)量比計(jì)算的適宜土壤含水率上限(%),取田間持水率的90%;min按質(zhì)量比計(jì)算的適宜土壤含水率下限(%),取測(cè)得的土壤質(zhì)量含水率;為灌溉水利用系數(shù),取0.9。
圖1 設(shè)施甜瓜MNBW滴灌種植模式及布置形式
1.4.2 株高、莖粗、根系
每個(gè)處理隨機(jī)選取甜瓜5株,掛牌作為標(biāo)記,試驗(yàn)在緩苗后10 d后開(kāi)始,分別在甜瓜的幼苗期、伸蔓期、開(kāi)花坐果期和果實(shí)膨大期測(cè)定甜瓜的株高與莖粗,整個(gè)生育期共測(cè)試4次。測(cè)量時(shí)間為08:00—10:00,采用卷尺測(cè)量從莖基至植株最高生長(zhǎng)點(diǎn)的垂直高度,單位精確到小數(shù)點(diǎn)后1位,重復(fù)5次;使用顯游標(biāo)卡尺十字交叉法于莖基測(cè)定莖粗,單位精確到小數(shù)點(diǎn)后3位,重復(fù)5次。
在甜瓜成熟后,每個(gè)處理隨機(jī)選取5株甜瓜,用鐵鍬小心挖取甜瓜根系,取得完整甜瓜根系并用去離子水沖洗干凈,采用根系掃描儀(Epson Expression)對(duì)甜瓜根系進(jìn)行掃描并保存圖片,采用WinRHIZO根系分析軟件(Regent Instruments,Canada)分析圖像,得到根系總長(zhǎng)度、根系總表面積和根尖數(shù)等數(shù)據(jù)。在掃描完根系圖片后,將根系分別收集起來(lái)應(yīng)用于根系干質(zhì)量的測(cè)試,將洗凈的根系擦去水分后使用105 ℃殺青15 min,并用70 ℃烘干至恒質(zhì)量后稱干質(zhì)量[18]。
1.4.3 產(chǎn)量與灌溉水利用效率
甜瓜成熟后分區(qū)采摘,單果質(zhì)量用電子秤(精度為0.01 g稱量,各處理單株產(chǎn)量的總和記為該處理的產(chǎn)量,并換算為單位面積產(chǎn)量。灌溉水利用效率(Irrigation Water Use Efficiency,)計(jì)算式[10]為:
, (2)
式中:為灌溉水利用效率(kg/m3);為作物的產(chǎn)量(kg/hm2);為作物的灌水量(m3/hm2),將各處理每次的灌水量進(jìn)行記錄,試驗(yàn)結(jié)束后累加得到該處理甜瓜全生育期的灌水量。
1.4.4 果實(shí)品質(zhì)指標(biāo)
甜瓜成熟后,在每個(gè)小區(qū)隨機(jī)選擇10個(gè)果實(shí)測(cè)定果實(shí)品質(zhì);采用2,6―二氯靛酚滴定法測(cè)定甜瓜果實(shí)維生素C量;采用手持式糖度計(jì)測(cè)定可溶性固形物量;使用蒽酮試劑法和氫氧化鈉滴定法測(cè)定甜瓜可溶性糖量與有機(jī)酸量;甜瓜果實(shí)品質(zhì)具體測(cè)試方法如高俊鳳[19]所述。
1.4.5 土壤本底值測(cè)定
土壤采樣均采用網(wǎng)格法,試驗(yàn)結(jié)束后,分別采集MNBW灌溉區(qū)與CGW灌溉區(qū)耕作層(0~20 cm)土壤樣品,每個(gè)采樣點(diǎn)采集15~20個(gè)點(diǎn)的土樣,均勻混合,按四分法制成0.5 kg左右混合土樣。將土壤除去植物殘?bào)w、根系和大塊石礫后烘干、過(guò)篩后測(cè)定土壤化學(xué)性質(zhì)[20]:土壤電導(dǎo)率由電導(dǎo)率儀測(cè)定;有效磷采用NaHCO3浸提-鉬銻抗比色法測(cè)定;全氮采用半微量凱氏定氮法測(cè)定;速效鉀采用醋酸銨浸提-火焰光度法測(cè)定;pH值采用電位法測(cè)定;全磷量采用NaOH熔融鉬銻抗比色法測(cè)定;堿解氮量采用堿解擴(kuò)散法測(cè)定;有機(jī)質(zhì)量采用重鉻酸鉀氧化-外加熱容量法測(cè)定;全鹽量采用電導(dǎo)法測(cè)定;土壤理化性質(zhì)的具體測(cè)試方法如鮑士旦所述[21]。
1.4.6 數(shù)據(jù)處理與分析方法
采用Excel 2013軟件對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)與繪圖;采用SPSS 22.0進(jìn)行統(tǒng)計(jì)分析;采用Duncan法進(jìn)行方差分析(=0.05)。
MNBW滴灌處理下甜瓜株高與莖粗如表2所示。由表2可知,MNBW滴灌條件下,削減20%滴灌施肥量不僅不會(huì)降低甜瓜株高,反而增加了1.2%~24.6%(<0.05),同時(shí)對(duì)甜瓜莖粗未產(chǎn)生顯著影響。隨著MNBW滴灌頻率的提高,甜瓜株高有增加的趨勢(shì),其中P3處理比P7、P15處理增加2.7%~10.1%、5.5%~7.4%,莖粗分別提高2.9%~9.6%、8.5%~14.2%。未恰當(dāng)?shù)夭捎梦锤炫<S做底肥時(shí),MNBW滴灌處理使甜瓜的株高和莖粗降低,與CGW滴灌處理相比,降幅為1.0%~21.7%、5.9%~19.2%。
表2 MNBW滴灌處理下甜瓜株高與莖粗
注 *表示在<0.05時(shí)存在顯著性差異;**表示在<0.01時(shí)存在顯著性差異;同列不同小寫字母分別表示5%和1%水平顯著性差異;FA為滴灌施肥量;W為滴灌水源;IF為滴灌頻率;下同。
MNBW滴灌處理下秋茬甜瓜的根系如表3所示。由表3可知,在MNBW滴灌條件下,削減20%的滴灌施肥量不僅不會(huì)降低甜瓜的總根長(zhǎng),反而增加了5.0%~30.7%,對(duì)根干質(zhì)量、總根表面積和根尖數(shù)無(wú)顯著影響。隨著MNBW滴灌頻率的提高,甜瓜的總根長(zhǎng)有增加的趨勢(shì),P3處理比P7、P15處理增加20.5%~23.6%、46.5%~66.2%,總表面積增加20.9%~22.7%、44.7%~64.8%,根尖數(shù)增加了21.2%-22.7%、28.2%~76.0%(<0.05),對(duì)根干質(zhì)量無(wú)顯著影響。MNBW滴灌處理顯著提高了甜瓜總根表面積、根尖數(shù)、總根長(zhǎng)和根干質(zhì)量(<0.05),與CGW滴灌處理相比,提升幅度分別為1.2%~33.1%、0.8%~22.1%、5.0%~30.7%、13.5%~57.1%。
MNBW滴灌處理下甜瓜的單果質(zhì)量、產(chǎn)量與如表4所示。由表4可知,MNBW滴灌處理能提升甜瓜的單果質(zhì)量,除F100P15_CGW處理與F80P15_CGW處理基本不變外,與CGW處理相比,增幅為2.0%~23.4%。MNBW滴灌條件下,削減20%滴灌施肥量不僅不會(huì)降低甜瓜的產(chǎn)量和,反而提高了0.4%~56.4%和0.4%~67.7%。通常情況下(使用腐熟牛糞做底肥時(shí)),隨著MNBW滴灌頻率的提高,甜瓜的產(chǎn)量與單果質(zhì)量有增加的趨勢(shì),其中P3處理比P15處理分別提高5.5%~9.4%、3.6%~22.0%。未恰當(dāng)?shù)夭捎梦锤炫<S做底肥時(shí),除F80P15_MNBW處理的產(chǎn)量與F80P7_MNBW處理的外,MNBW滴灌處理使甜瓜產(chǎn)量、降低,與CGW滴灌處理相比幅度為10.6%~87.1%和7.4%~90.9%。
表3 MNBW滴灌處理下秋茬甜瓜的根系
表4 MNBW滴灌處理下甜瓜單果質(zhì)量、產(chǎn)量與IWUE
MNBW滴灌處理下甜瓜的口感指標(biāo)如表5所示。由表5可知,在MNBW滴灌條件下,削減20%滴灌施肥量不僅不會(huì)降低甜瓜的可溶糖量,反而增加了7.4%~45.8%(<0.05)。隨著MNBW滴灌頻率的提高,甜瓜可溶性糖量有增加的趨勢(shì),其中P3處理比P7、P15處理分別提高16.1%~38.3%、24.0%~69.0%(<0.05),有機(jī)酸量未見(jiàn)一致性規(guī)律;未恰當(dāng)?shù)夭捎梦锤炫<S做底肥時(shí),MNBW滴灌處理影響了甜瓜的口感指標(biāo),與CGW滴灌處理相比,除F80P7_MNBW處理與F80P15_MNBW處理外,有機(jī)酸量降低了5.6%~21.1%。
MNBW滴灌處理下甜瓜的營(yíng)養(yǎng)指標(biāo)如表5所示。由表5可知,在MNBW滴灌條件下,削減20%滴灌施肥量不僅不會(huì)降低甜瓜的維生素C量,反而提高了12.4%~18.1%(<0.05);隨著MNBW滴灌頻率的提高,維生素C量增加,P3處理比P7、P15處理分別提高5.0%~10.3%、11.6%~14.8%,可溶性固形物量分別增加12.0%~32.6%、21.5%~28.0%。未恰當(dāng)?shù)夭捎梦锤炫<S做底肥,MNBW滴灌處理使甜瓜的可溶性固形物量降低,與CGW滴灌處理相比,降幅為8.3%~25.6%。
使用未腐熟牛糞做底肥時(shí),2種滴灌水源處理下土壤的理化指標(biāo)見(jiàn)表6。由表6可知,MNBW滴灌處理大大增加了土壤中速效鉀、全氮、有機(jī)質(zhì)與全鹽量,比正常生產(chǎn)時(shí)的土壤臨界閾值增加了156.7%、58.3%、142.7%、100.0%,比CGW灌溉處理增加了124.0%、18.8%、2.0%、33.3%;同時(shí),MNBW滴灌處理中土壤有效磷與電導(dǎo)率較CGW處理分別提高了212.5%與50.0%,但均未超過(guò)土壤臨界閾值。
表5 MNBW滴灌處理下甜瓜口感與營(yíng)養(yǎng)指標(biāo)
表6 未腐熟牛糞作為底肥時(shí)土壤理化指標(biāo)
隨著MNBW滴灌頻率的增加,甜瓜的口感指標(biāo)、營(yíng)養(yǎng)指標(biāo)均有提升。首先,這可能是因?yàn)楦哳lMNBW滴灌處理最適宜甜瓜根系的生長(zhǎng)。1/3 次/d的MNBW滴灌處理甜瓜根系的總表面積、總根長(zhǎng)最大,根尖數(shù)最多,甜瓜根系生長(zhǎng)茂盛,這促進(jìn)了甜瓜對(duì)養(yǎng)分的吸收和利用。其次,1/3 次/d的MNBW滴灌處理的氣體利用效率高于1/7、1/15 次/d處理,由于1/7、1/15 次/d的MNBW滴灌處理灌水周期間隔長(zhǎng),導(dǎo)致灌溉前土壤含水率較低;另外,在本研究中所有處理均是按照田間持水率的90%為灌水上限進(jìn)行灌水處理的,1/7、1/15 次/d的MNBW滴灌處理單次灌水量偏大。1/7、1/15 次/d的MNBW滴灌處理單次灌水量過(guò)大,MNBW滲透到甜瓜根系以外的深層土壤中[22],降低了植物可利用的氣體量,而1/3次/d的MNBW滴灌處理滿足甜瓜根系對(duì)水、肥、氧的吸收需求,有助于提高甜瓜的產(chǎn)量和果實(shí)品質(zhì)。此外,高頻加氣滴灌也可能通過(guò)提高了土壤酶活性,促進(jìn)土壤養(yǎng)分循環(huán),從而提高了甜瓜的產(chǎn)量和品質(zhì)[23]。MNBW滴灌條件下,削減20%滴灌施肥量不僅不會(huì)降低甜瓜產(chǎn)量,反而使甜瓜的產(chǎn)量、營(yíng)養(yǎng)指標(biāo)和口感指標(biāo)有所促進(jìn)。這可能是因?yàn)槿苎趿亢偷氐膮f(xié)同作用會(huì)影響作物根系生長(zhǎng)和氮素利用效率,適當(dāng)?shù)娜钡cMNBW滴灌相結(jié)合,可以有效地提高氮利用效率和甜瓜根系生長(zhǎng)[24-30];其次,MNBW灌溉條件下削減氮肥施用量反而有利于作物對(duì)磷、鉀等養(yǎng)分的吸收及累積[31],而適當(dāng)?shù)販p施磷肥、鉀肥對(duì)作物產(chǎn)量無(wú)顯著影響[30,32]。加氣滴灌時(shí)削減20%氮肥施用量還可以顯著提高細(xì)菌、放線菌等土壤微生物豐度[24],改善土壤環(huán)境,促進(jìn)作物生長(zhǎng)和養(yǎng)分吸收[24,27]。綜上所述,MNBW滴灌在滴灌頻率為1/3次/d,削減20%滴灌施肥量時(shí)能改善土壤質(zhì)量、促進(jìn)作物生長(zhǎng)與根系發(fā)育,提高肥料利用率,提升了作物的產(chǎn)量和品質(zhì)。
當(dāng)未恰當(dāng)?shù)夭捎梦锤炫<S做底肥時(shí),MNBW滴灌處理反而降低了甜瓜的產(chǎn)量、口感與營(yíng)養(yǎng)指標(biāo),其中產(chǎn)量降幅最高達(dá)87.1%。為此,對(duì)試驗(yàn)區(qū)土壤的理化性質(zhì)進(jìn)行了測(cè)試(表6),結(jié)果發(fā)現(xiàn)使用未腐熟牛糞做底肥時(shí),MNBW滴灌處理區(qū)土壤中全氮、有效磷和速效鉀的量遠(yuǎn)高于CGW滴灌處理區(qū),其中全氮與速效鉀量超過(guò)土壤閾值水平。這是因?yàn)镸NBW滴灌處理能增加土壤氧量[8]、根際土壤酶量[33]與好氧微生物的豐度[34],加速未腐熟牛糞的分解與鹽分富集,使土壤中速效鉀[35]、氮素與全鹽量[27,34]高于土壤閾值和傳統(tǒng)地下水滴灌區(qū)。此外,鉀素過(guò)量會(huì)降低作物光合效率,減少作物對(duì)氮、磷元素的吸收[36],抑制作物根系的發(fā)育[37],阻礙作物的生長(zhǎng)發(fā)育[36]。而土壤中全鹽量過(guò)高會(huì)引發(fā)植物缺水,抑制植物對(duì)養(yǎng)分的吸收,導(dǎo)致作物發(fā)育不良、減產(chǎn)或死亡[38]。因此,未腐熟牛糞做底肥時(shí),土壤中養(yǎng)分與全鹽量的過(guò)量積累可能是MNBW滴灌處理降低甜瓜的產(chǎn)量與品質(zhì)的主要因素。
1)正常情況下(采用腐熟牛糞做底肥時(shí)),使用MNBW滴灌提升了甜瓜的產(chǎn)量,可溶性糖量、維生素C量和可溶性固形物量,增幅分別為3.6%~20.7%、7.4%~26.0%、1.6%~17.7%、4.2%~19.1%。
2)采用MNBW滴灌時(shí),即使削減20%的傳統(tǒng)滴灌施肥量,甜瓜的營(yíng)養(yǎng)品質(zhì)指標(biāo)、口感指標(biāo)與依然有所提升;在施肥水平相同的情況下,1/3 次/d的MNBW滴灌處理能提高甜瓜的產(chǎn)量與品質(zhì);對(duì)甜瓜未恰當(dāng)?shù)夭捎梦锤炫<S做底肥時(shí),MNBW滴灌處理反而會(huì)抑制甜瓜的生長(zhǎng),降低甜瓜的產(chǎn)量與品質(zhì)。
3)綜合考慮作物產(chǎn)量與果實(shí)品質(zhì),推薦使用1/3次/d的MNBW滴灌結(jié)合80%滴灌施肥水平作為設(shè)施甜瓜適宜的MNBW滴灌模式。
[1] 農(nóng)業(yè)農(nóng)村部規(guī)劃設(shè)計(jì)研究院設(shè)施農(nóng)業(yè)研究所. 我國(guó)設(shè)施農(nóng)業(yè)的發(fā)展現(xiàn)狀[N]. 中國(guó)農(nóng)機(jī)化導(dǎo)報(bào), 2019-04-22(6).
Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs of the People’s Republic of China. Development status of facility agriculture in China[N]. China Agricultural Mechanization Herald, 2019-04-22(6).
[2] 彭澎, 梁龍, 李海龍, 等. 我國(guó)設(shè)施農(nóng)業(yè)現(xiàn)狀、問(wèn)題與發(fā)展建議[J]. 北方園藝, 2019(5): 161-168.
PENG Peng, LIANG Long, LI Hailong, et al. Status, deficiency and development suggestions of protected agriculture in China[J]. Northern Horticulture, 2019(5): 161-168.
[3] YANG Lanqin, HUANG Biao, MAO Mingcui, et al. Sustainability assessment of greenhouse vegetable farming practices from environmental, economic, and socio-institutional perspectives in China[J]. Environmental Science and Pollution Research, 2016, 23(17): 17 287-17 297.
[4] BHATTARAI Surya P, PENDERGAST Lance, MIDMORE David J. Root aeration improves yield and water use efficiency of tomato in heavy clay and saline soils[J]. Scientia Horticulturae, 2006, 108(3): 278-288.
[5] BATEY T. Soil compaction and soil management – a review[J]. Soil Use and Management, 2009, 25(4): 335-345.
[6] DU Yadan, NIU Wenquan, GU Xiaobo, et al. Crop yield and water use efficiency under aerated irrigation: A meta-analysis[J]. Agricultural Water Management, 2018, 210: 158-164.
[7] NIU Wenquan, GUO Chao, SHAO Hongbo, et al. Effects of different rhizosphere ventilation treatment on water and nutrients absorption of maize[J]. African Journal of Biotechnology, 2011, 10(6): 949-958.
[8] LIU Yaxin, ZHOU Yunpeng, WANG Tianze, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835-843.
[9] 趙策, 田軍倉(cāng), 歐陽(yáng)贊, 等. 土壤水肥氣熱耦合對(duì)溫室辣椒光合作用和產(chǎn)量的影響[J]. 灌溉排水學(xué)報(bào), 2019, 38(5): 31-37.
ZHAO Ce, TIAN Juncang, OUYANG Zan, et al. Impact of water-fertilizer-air-heat coupling on photosynthetic and yield of pepper in greenhouse[J]. Journal of Irrigation and Drainage, 2019, 38(5): 31-37.
[10] ZHOU Yunpeng, LI Yunkai, LIU Xiujuan, et al. Synergistic improvement in spring maize yield and quality with micro/nanobubbles water oxygation[J]. Scientific Reports, 2019, 9(1): 5 226.
[11] 付學(xué)港. 微納米氣泡對(duì)黃菖蒲與苦草的促長(zhǎng)作用研究[D]. 開(kāi)封: 河南大學(xué), 2017.
FU Xuegang. Study on the effect of micro-nano bubbles on promoting growth of iris pseudacorus L. and vallisneria[D]. Kaifeng: Henan University, 2017.
[12] TAKAHASHI Masayoshi, CHIBA Kaneo, LI Pan. Free-radical generation from collapsing microbubbles in the absence of a dynamic stimulus[J]. Journal of Physical Chemistry B, 2007, 111(6): 1 343-1 347.
[13] TAKAHASHI Masayoshi,KAWAMURA Taro, YAMAMOTOYoshitaka, et al. Effect of shrinking microbubble on gas hydrate formation[J]. Journal of Physical Chemistry B, 2003, 107(10): 2 171-2 173.
[14] 熊永磊, 楊小麗, 宋海亮. 微納米氣泡在水處理中的應(yīng)用及其發(fā)生裝置研究[J]. 環(huán)境工程, 2016, 34(6): 23-27.
XIONG Yonglei, YANG Xiaoli, SONG Hailiang. Review on application of micro-nano bubble in water treatment and its generator[J]. Environmental Engineering, 2016, 34(6): 23-27.
[15] 張洪昌, 李星林, 王順利. 蔬菜灌溉施肥技術(shù)手冊(cè)[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2014.
ZHANG Hongchang, LI Xinglin, WANG Shunli. Technical manual for vegetable irrigation and fertilization[M]. Beijing: China Agriculture Press, 2014.
[16] 陳修凡, 原保忠, 別之龍. 虧缺灌溉對(duì)自根與嫁接甜瓜生長(zhǎng)發(fā)育及產(chǎn)量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào), 2016, 32(21): 133-140.
CHEN Xiufan, YUAN Baozhong, BIE Zhilong. Effects of deficit irrigation on growth and yield of self-rooted and grafted muskmelon[J]. Transactions of the Chinese Society Agricultural Engineering, 2016, 32(21): 133-140.
[17] 中華人民共和國(guó)住房和城鄉(xiāng)建設(shè)部. 微灌工程技術(shù)規(guī)范: GB/T 50485—2009[S].北京: 中國(guó)計(jì)劃出版社, 2009.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical code for microirrigation engineering: GB/T 50485—2009[S]. Beijing: China Planning Press, 2009.
[18] 張翠梅, 師尚禮, 吳芳. 干旱脅迫對(duì)不同抗旱性苜蓿品種根系生長(zhǎng)及生理特性影響[J]. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(5): 868-882.
ZHANG Cuimei, SHI Shangli, WU Fang. Effects of drought stress on root and physiological responses of different drought-tolerant alfalfa varieties[J]. Scientia Agricultura Sinica, 2018, 51(5): 868-882.
[19] 高俊鳳. 植物生理學(xué)實(shí)驗(yàn)指導(dǎo)[M]. 北京: 高等教育出版社, 2006. GAO Junfeng. Experimental guidance for plant physiology[M]. Beijing: Higher Education Press, 2006.
[20] 孫鳳霞, 王鑫瑤, 唐鵬, 等. 不同沼液灌溉量下橡膠幼苗生長(zhǎng)及土壤肥力特征[J]. 熱帶作物學(xué)報(bào), 2020, 41(9):1 918-1 927.
SUN Fengxia, WANG Xinyao, TANG Peng, et al. Growth and soil fertility characteristics of rubber seedlings in different biogas slurry irrigation[J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1918-1 927.
[21] 鮑士旦. 土壤農(nóng)化分析[M]. 北京: 中國(guó)農(nóng)業(yè)出版社, 2000.
BAO Shidan. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000.
[22] WAN Jiamin, VEERAPANENI Srinivas, GADELLE Fred, et al. Generation of stable microbubbles and their transport through porous media[J]. Water Resources Research, 2001, 37(5): 1 173-1 182.
[23] LI Yuan, NIU Wenquan, WANG Jingwei, et al. Effects of artificial soil aeration volume and frequency on soil enzyme activity and microbial abundance when cultivating greenhouse tomato[J]. Soil Science Society of America Journal, 2016, 80(5): 1 208-1 221.
[24] DU Yadan, NIU Wenquan, ZHANG Qian, et al. Effects of nitrogen on soil microbial abundance, enzyme activity, and nitrogen use efficiency in greenhouse celery under aerated irrigation[J]. Soil Science Society of America Journal, 2018, 82(3): 606-613.
[25] DU Yadan, GU Xiaobo, WANG Jingwei, et al. Yield and gas exchange of greenhouse tomato at different nitrogen levels under aerated irrigation[J]. Science of the Total Environment, 2019, 668: 1 156-1 164.
[26] JAMPEETONG Arunothai, BRIX Hans. Oxygen stress in Salvinia natans: Interactive effects of oxygen availability and nitrogen source[J]. Environmental and Experimental Botany, 2009, 66(2): 153-159.
[27] ZHAO Feng, XU Chunmei, ZHANG Weijian, et al. Effects of rhizosphere dissolved oxygen content and nitrogen form on root traits and nitrogen accumulation in rice[J]. Rice Science, 2011, 18(4): 304-310.
[28] 金夢(mèng)燦, 張舒予, 郜紅建, 等. 麥稈還田下鉀肥減量對(duì)水稻產(chǎn)量及鉀肥利用率的影響[J]. 中國(guó)生態(tài)農(nóng)業(yè)學(xué)報(bào), 2017, 25(11): 1 653-1 660. JIN Mengcan, ZHANG Shuyu, GAO Hongjian, et al. Effects of reducing potassium fertilizer on rice yield and potassium use efficiency under wheat straw return condition[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1 653-1 660.
[29] 楊成翠, 徐照麗, 史普酉, 等. 氮肥運(yùn)籌對(duì)烤煙養(yǎng)分積累和產(chǎn)質(zhì)量的影響[J]. 中國(guó)農(nóng)業(yè)科技導(dǎo)報(bào), 2020,22(6): 182-191.
YANG Chengcui, XU Zhaoli, SHI Puyou, et al. Effects of nitrogen fertilizer application on nutrient accumulation, yield and quality of flue-cured tobacco[J]. Journal of Agricultural Science and Technology, 2020,22(6): 182-191.
[30] 周加森, 馬陽(yáng), 吳敏, 等. 不同水肥措施下的冬小麥水氮利用和生物效應(yīng)研究[J]. 灌溉排水學(xué)報(bào), 2019, 38(9): 36-41.
ZHOU Jiasen, MA Yang, WU Min, et al. Water and nitrogen utilization and biological effects of winter wheat under different water and fertilizer measures[J]. Journal of Irrigation and Drainage, 2019, 38(9): 36-41.
[31] 雷宏軍, 王露陽(yáng), 潘紅衛(wèi), 等. 紫茄生長(zhǎng)及養(yǎng)分利用對(duì)增氧地下滴灌的響應(yīng)研究[J]. 灌溉排水學(xué)報(bào), 2019, 38(3): 8-14.
LEI Hongjun, WANG Luyang, PAN Hongwei, et al. The efficacy of oxygenation in improving growth and nutrients use efficiency of greenhouse purple eggplant[J]. Journal of Irrigation and Drainage, 2019, 38(3): 8-14.
[32] 郭智, 劉紅江, 張?jiān)婪? 等. 氮磷減施對(duì)水稻劍葉光合特性、產(chǎn)量及氮素利用率的影響[J]. 西南農(nóng)業(yè)學(xué)報(bào), 2017, 30(10): 2 263-2 269. GUO Zhi, LIU Hongjiang, ZHANG Yuefang, et al. Effects of reducing nitrogen and phosphorus application on photosynthetic characteristics of flag leaves, grain yield, and nitrogen use efficiency of rice (Oryza sativa L.) cultivar Nanjing 9108[J]. Southwest China Journal of Agricultural Sciences, 2017, 30(10): 2 263-2 269.
[33] ZHOU Yunpeng, ZHOU Bo, XU Feipeng, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713.
[34] 張立成, 胡德勇, 肖衛(wèi)華, 等. 增氧和施有機(jī)肥對(duì)土壤肥效及水稻生長(zhǎng)的影響[J]. 湖南農(nóng)業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2018, 44(1): 12-16.
ZHANG Licheng, HU Deyong, XIAO Weihua, et al. Effects of oxygen aeration and organic fertilizers on the efficiency of soil fertilizer and rice growth[J]. Journal of Hunan Agricultural University (Natural Sciences), 2018, 44(1): 12-16.
[35] 李亞星, 劉善江, 徐秋明, 等. 氮、磷營(yíng)養(yǎng)過(guò)量對(duì)土壤養(yǎng)分及黃瓜營(yíng)養(yǎng)吸收的影響初探[J]. 水土保持學(xué)報(bào), 2013, 27(1): 98-101.
LI Yaxing, LIU Shanjiang, XU Qiuming, et al. Preliminary study on the effects of excess soil N and P on soil nutrient elements and cucumber nutrient absorption[J]. Journal of Soil and Water Conservation, 2013, 27(1): 98-101.
[36] 譚杰, 孔凡磊, 曾暉, 等. 川中丘陵春玉米適宜鉀肥用量研究[J]. 植物營(yíng)養(yǎng)與肥料學(xué)報(bào), 2016, 22(3): 838-846.
TAN Jie, KONG Fanlei, ZENG Hui, et al. The suitable potassium fertilizer rate in spring maize in hilly area of central Sichuan Basin, China[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(3): 838-846.
[37] KINRAIDE Thomas B. Interactions among Ca2+, Na+and K+in salinity toxicity: quantitative resolution of multiple toxic and ameliorative effects[J]. Journal of Experimental Botany, 1999, 50(338): 1 495-1 505.
[38] 李建國(guó), 濮勵(lì)杰, 朱明, 等. 土壤鹽漬化研究現(xiàn)狀及未來(lái)研究熱點(diǎn)[J]. 地理學(xué)報(bào), 2012, 67(9): 1 233-1 245.
LI Jianguo, PU Lijie, ZHU Ming, et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67(9): 1 233-1 245.
Effects of Oxygation with Micro-nano Air Bubbles on Yield, Fruit Quality and Irrigation-water Use Efficiency of Muskmelon
WANG Xiaoyao1,2, WANG Tianze2, ZHOU Yunpeng2, XIAO Yang2, LIU Yaxin2, LI Yunkai1,2*
(1. College of Water and Architectural Engineering, Shihezi University, Shihezi 832000, China;2. College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China)
【】Intensive facility agriculture production could densify soil and create hypoxia, thereby toxifying roots and ultimately leading to yield reduction. Aerating subsurface drip irrigation can oxygenate subsoil and improve soil ventilation to ameliorate such detrimental impacts. However, traditional mechanically aerated subsurface irrigation and chemically aerated subsurface irrigation could produce large air bubbles in soils, which can escape the soil along pores adjacent to the roots, compromising oxygation efficiency as a result. Improving aerating irrigation efficiency is an issue remaining to be resolved, one way in which is to fertigate using water rich in micro-nano air bubbles. Its efficacy, however, is impacted by many factors.【】The purpose of this paper is to study the effects of fertigation frequency and fertilizer amount used in fertigation on yield and quality of muskmelon under surface-drip oxygation with micro-nano air bubbles (MNBW), from which we proposed a suitable MNBW for facility cultivation of muskmelon.【】The experiment consisted of two irrigations: one was MNBW and the other one was conventional irrigation with groundwater (CGW). Added to the MNBW were three irrigation frequencies: once every three days (P3), one every seven days (P7) and once every 15 days (P15), and two fertilizations: 100% (F100) and 80% (F80) of the fertilizers used by local farmers. In each treatment, we measured the fruit quality and irrigation-water use efficiency () of the muskmelon.【】The MNBM can reduce fertilizer application by 20% while in the meantime improving the yield byup to 54.6% and theby up to 67.6%. It also increased the content of soluble sugar, vitamin C and soluble solids in the fruits all at significant level. Irrigation frequency affected the efficacy of MNBW too, with the frequency P3 improving fruit quality.Compared to P15, P3increased soluble solid and vitamin C by 21.5%~28.0% and 11.6%~14.8%, and stem thickness by 8.6%~14.2%, respectively.【】The optimal MNBW for the muskmelon is irrigating after every three days coupled with a fertigation using 80% of the fertilizer applied in the conventional fertigation. It is worth pointing out that if incomplete composted manure is used as base fertilizer, MNBW could inhibit muskmelon growth and reduce its yield, quality andas a result. Our results have important implications for facility production of muskmelon.
Oxygation micro-nano air bubbles; subsurface drip irrigation; facility muskmelon production; fruit yield and quality; irrigation water use efficiency
S275.6
A
10.13522/j.cnki.ggps.2020073
1672 - 3317(2021)01 - 0038 - 09
2020-02-17
國(guó)家重點(diǎn)研發(fā)計(jì)劃項(xiàng)目(2017YFD0201504);國(guó)家自然科學(xué)基金項(xiàng)目(51979274)
王逍遙(1993-),女,湖北襄陽(yáng)人。碩士研究生,主要從事滴灌技術(shù)原理與技術(shù)研究。E-mail: wxy01234@yeah.net
李云開(kāi)(1975-),男,湖南芷江人。教授,博士生導(dǎo)師,主要從事節(jié)水灌溉理論與技術(shù)研究。E-mail: liyunkai@126.com
王逍遙, 王天澤, 周云鵬, 等. 微納米氣泡水滴灌對(duì)設(shè)施甜瓜產(chǎn)量、品質(zhì)及灌溉水利用效率的影響[J]. 灌溉排水學(xué)報(bào), 2021, 40(1): 38-46.
WANG Xiaoyao, WANG Tianze, ZHOU Yunpeng, et al. Effects of Oxygation with Micro-nano Air Bubbles on Yield, Fruit Quality and Irrigation-water Use Efficiency of Muskmelon[J]. Journal of Irrigation and Drainage, 2021, 40(1): 38-46.
責(zé)任編輯:陸紅飛