• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Highly efficient tandem Z-scheme heterojunctions for visible light-based photocatalytic oxygen evolution reaction

    2021-01-25 14:43:18YiLuXingkiCuiChengxioZhoXiofeiYng
    Water Science and Engineering 2020年4期

    Yi Lu ,Xing-ki Cui ,Cheng-xio Zho ,Xio-fei Yng ,,*

    a College of Science,Nanjing Forestry University,Nanjing 210037,China

    b School of Materials Science and Engineering,Jiangsu University,Zhenjiang 212013,China

    Received 3 September 2020;accepted 12 November 2020

    Available online 10 December 2020

    Abstract Oxygen is important in maintaining a clean and reliable water environment.Designing heterojunction photocatalysts that can evolve oxygen from water splitting through an artificial Z-scheme pathway is a promising strategy for solving environmental problems.In this study,flower-like MoS2 nanostructures were fabricated via a simple hydrothermal process,and the electrostatic-based assembly ion-exchange method was used to construct a tandem Ag3PO4/MoS2/g-C3N4(AMC)heterojunction.The as-synthesized photocatalyst exhibited significant improvements in harvesting visible light and transporting charge carriers.Moreover,the catalyst that was similar to the Z-scheme with intimate interface contact exhibited a strong oxygen evolution performance.The oxygen evolution activity of the optimal AMC-10 catalyst was approximately 11 times that of the pristine Ag3PO4.The results indicated that addition of a small amount of the flower-like MoS2 could significantly enhance the efficiency of oxygen evolution by the heterojunction.The findings in this study provide an alternative pathway for rationally designing efficient oxygen-evolving photocatalysts in order to improve the quality of water and rehabilitate the water environment.? 2020 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Z-scheme;Graphitic carbon nitride;MoS2;Ag3PO4;Oxygen evolution reaction;Water splitting

    1.Introduction

    Water does not contain much oxygen,particularly warm water.Water bodies receive oxygen from the atmosphere and form aquatic plants.Dissolved oxygen concentrations usually have a significant effect ondecomposition rates of plant litter,and thus,they are considered important aquatic ecosystem health indicators.During the treatment of wastewater,onsite generation of oxygen may increase productivity and reduce the operating costs,thereby providing an incentive to seek for efficient oxygenevolving materials that can produce oxygen in situ in order to improve the quality of water.Employing semiconductor-based photocatalysts to realize visible light-based oxygen evolution is a promising approach to solving the issues of severe environmental contamination and energy crisis(Wang et al.,2018a,2018b;Lin et al.,2019;Mishra et al.,2019).However,a singlecomponent semiconductor is unable to meet all the criteria in terms of band structure,visible light utilization,and redox potential.Thus,to realize high-performance solar-based water splitting,rationally designing and managing the synthesis of visible-light-responsive composite photocatalysts with a hybridization technique is necessary.Generally,heterojunction photocatalysts can be designed by combining different semiconductors in a manner similar to conventional type-II heterojunctions with specific Z-scheme configuration(Di et al.,2019;Fajrina and Tahir,2019;Faraji et al.,2019;Hisatomi and Domen,2019;Yi et al.,2019;Zhang et al.,2019).Inspired by the photosynthesis process in green plants,there has been increased interest in developing artificial Z-scheme heterostructured photocatalysts in recent decades,in particular solar-based mediator-free Z-scheme photocatalytic systems(Miseki and Sayama,2019;Ren et al.,2019;Yang et al.,2019).

    Notably,photocatalytic water splitting depends on various fundamental processes,including photon absorption,exciton separation,and carrier diffusionand transport,and italsodepends on catalytic efficiency.Compared with conventional type-II heterojunctions and mediated Z-scheme photocatalysts,the advantages of a direct Z-scheme photocatalytic system are as follows:(a)the path for electron-hole separation and charge-carrier migration is shortened by the unique tandem architecture,and thus more efficient charge transport and higher redox capability can be achieved;(b)the band energy required for redox reactions is reduced to the utmost extent;and(c)undesirable backward reactions can be avoided without an electron mediator(Huang et al.,2019;Wang et al.,2019b;Xue et al.,2020;Yi et al.,2020;Zhao et al.,2020).In recent years,silver orthophosphate(Ag3PO4)has been considered a promising visible-light oxygenevolving photocatalyst candidate because of its suitable band gap(2.45 eV)and valence band potential(2.9 eV),which are higher than the thermodynamic water oxidation potential(1.23 eV versus normal hydrogen electrode(NHE))(Tang et al.,2020).However,it suffers from severe photocorrosion and fast recombination of photoexcited charge carriers under light illumination.The fabrication of Ag3PO4-based Z-scheme heterojunction photocatalysts has proven effective in accelerating the charge separation,enhancing the photo stability,and boosting water oxidation efficiency.

    Our previous work has demonstrated that the photocatalytic oxygen-evolving efficiency of the Ag3PO4-based nanohybrids under light illumination could be significantly increased via a specific Z-scheme pathway for charge transfer(Cui et al.,2018;Tian et al.,2019;Zhao et al.,2019).The critical roles of different electron mediators such as silver,graphene,and indirect Z-scheme configuration in regulating the solar-based photocatalytic oxygen evolution have been revealed.As a representative graphene-like lamellar two-dimensional(2D)material,a single or few-layered molybdenum disulfide(MoS2),with its unique electronic and chemical properties,is of particular interest to researchers.In recent years,there have been intensive investigations into the use of MoS2as a cocatalyst for photo-and electro-catalytic hydrogen evolution reaction(HER).However,exploring the 2D MoS2material as a real catalyst rather than a co-catalyst or conductive substrate in Z-scheme heterojunction water splitting systems in experiments remains a challenge.In addition to our previously published work on Ag3PO4-based Z-scheme oxygen-evolving photocatalysts,in this study we used the coupling of the 2D MoS2nanosheets with a suitable band structure into the indirect Z-scheme Ag3PO4/g-C3N4heterojunctions to obtain dual Z-scheme Ag3PO4/MoS2/g-C3N4(AMC)heterostructures.Notably,the MoS2-bridged tandem Z-scheme heterostructure can facilitate the directional transport of photogenerated charge carriers,remove the electrons from the conduction band(CB),and keep oxidative holes on the valence band of the Ag3PO4for highly improved visible lightbased water splitting.

    2.Experimental section

    2.1.Synthesis of modified g-C3N4 and MoS2

    All chemical reagents were of analytical grade,and they were used without further purification.Modified g-C3N4nanosheets were prepared according to previous studies(Peng et al.,2018;Tian et al.,2018;Yang et al.,2019).To synthesize the flower-like MoS2nanosheets,(NH4)Mo7O24.4H2O(2.47 g)and CH4N2S(3.8 g)were dissolved in deionized water(60 mL)and stirred for 0.5 h.The mixture was then transferred into a Teflon-lined autoclave(100 mL)and subsequently heated at 180°C for 24 h in a muffle furnace.After cooling naturally,the samples were subjected to high-speed centrifugation.The precipitates were collected and then washed with deionized water and ethanol repeatedly.Finally,black powders were obtained through vacuum drying at 60°C for 12 h.

    2.2.Synthesis of AMC composites

    In a typical synthesis,the modified g-C3N4powder(200 mg)was dispersed into deionized water(100 mL)to obtain an exfoliated g-C3N4nanosheet dispersion via sonication for 30 min.AgNO3(9 mmol)was ultrasonically dissolved in deionized water(20 mL)and then added to the g-C3N4nanosheet dispersion and gently stirred overnight.Subsequently,the flower-like MoS2was dispersed and ultrasonicated in deionized water(20 mL)for 2 h,and then was mixed with the Ag+/g-C3N4dispersion and continuously stirred for 12 h.Finally,a Na3PO4.12H2O aqueous solution(9 mmol)was added,leading to a color change from black to dark green.The samples were subjected to high-speed centrifugation,and the precipitates were collected and washed with deionized water and ethanol three times,then dried in a vacuum at 60°C overnight.The samples obtained through hybridizing with MoS2with amounts of 10 mg,20 mg,50 mg,100 mg,and 200 mg were denoted as AMC-10,AMC-20,AMC-50,AMC-100,and AMC-200,respectively.In addition,the Ag3PO4,Ag3PO4/modified g-C3N4,and Ag3PO4/MoS2samples were synthesized for comparisons.

    2.3.Photocatalytic oxygen evolution experiments

    The oxygen-evolving performances of the as-synthesized photocatalysts were monitored using an O2sensor(PreSens GmbH,Fibox 3)in a sealed flask connected to a water-cooling system.Before light illumination,the O2sensor was calibrated using oxygen-free water and pure water as a standard correction of oxygen sensor.Under light-emitting diode(LED)irradiation,the temperature of the system was kept constant by recycling cold water.In a typical procedure,a mixture of the photocatalyst(0.3 g)and AgNO3(1.0 g)was ultrasonically dispersed in deionized water(100 mL)for 30 min to obtain strong dispersity.Thereafter,the mixture was illuminated under an LED light(30 W).The photocatalytic oxygenproducing efficiencies of different nanohybrids were determined by measuring the amount of oxygen evolved from water at regular time intervals.

    3.Results and discussion

    3.1.Morphology characterizations

    Field emission scanning electron microscopy(FE-SEM)was conducted to analyze the morphology of the catalyst.Fig.1(a)shows that the pristine g-C3N4was porous,and it consisted of curved layered nanosheets with a thickness of approximately 10 nm.Moreover,the porous flakes were observed to originate from partial interconnection and overlapping of the curved nanosheets.For the pure Ag3PO4,the pellet structure looked like the inconsistent crystal sugar,but the surface was smooth(Fig.1(b)).The MoS2exhibited a micro flower-like morphology(Fig.1(c)).Notably,as shown in Fig.1(d),the AMC-10 composite prepared with the selfassembled hydrothermal method exhibited a distinct morphology.The Ag3PO4surfaces were randomly deposited by the g-C3N4nanosheets with crumpled-shell nanostructures,and they were embedded with the flower-like MoS2,leading to the appearance of a rough surface.The elemental mapping results reveal the well-defined spatial distribution of silver(Ag),oxygen(O),phosphorus(P),carbon(C),nitrogen(N),molybdenum(Mo),and sulphur(S)in the heterojunction(Fig.1(e)),confirming the successful preparation of the AMC hybrid photocatalyst.

    Fig.1.SEM micrographs.

    3.2.Characterizations of phases and spectral properties

    X-ray photoelectron spectroscopy(XPS)was performed to study the chemical compositions and elemental states of the optimal sample.From Fig.2,it is evident that C,N,O,P,Ag,S,and Moweredetectedinthe AMC-10 composite.Asshowninthe high-resolution XPS spectrum of C 1s(Fig.2(b)),the peaks fitted at 284.8 eV,286.6 eV,and 288.2 eV could be ascribed to the adsorbed carbon species,C-C bond,and C=C bond,respectively.The high-resolution XPS spectrum of N 1s for the composite is shown in Fig.2(c).The asymmetrical N 1s XPS signal can be fitted into three peaks located at 398.6 eV,399.7 eV,and 401.6 eV,which represent the C=N-C bond,N-(C)3bond,and C-N-H bond in the g-C3N4,respectively(Fageria et al.,2017;Lu et al.,2018).For the high-resolution XPS spectrum of O 1s,there are two peaks at 530.5 eVand 532.5 eV(Fig.2(d)),which represent the oxygen in the Ag3PO4and the C-O bond,respectively.In addition,the peak at 133.6 eV represents P 2p in Fig.2(e).In Fig.2(f),the peaks at 368.4 eV and 374.3 eV are ascribed to Ag 3d5/2and Ag 3d3/2for Ag+in Ag3PO4,respectively(Shao et al.,2019;Li et al.,2020).The S 2p spectrum in Fig.2(g)shows doublet peaks located at 168.5 eVand 162.4 eV,corresponding to the S 2p1/2and S 2p3/2in MoS2,respectively.Moreover,the peaks at 234.1 eVand 236.7 eVare ascribed to the Mo6+in MoO3and Mo4+in MoS2,respectively.

    Furthermore,light-harvesting properties of the photocatalysts were evaluated via UV-visible diffuse reflectance spectroscopy(UV-Vis DRS)(Fig.3(a)).The pure g-C3N4and Ag3PO4exhibited absorption edges at approximately 450 nm and 550 nm,respectively.The Ag3PO4/g-C3N4hybrids exhibited increased absorption intensity at a wavelength(λ)ranging from 400 nm to 800 nm.This is attributed to the quantum confinement and light scattering effects of the nanosheet structure.Fig.3(b)shows the UV-Vis DRS spectra of the composite doped with different contents of MoS2.The absorption intensity of the composite at a wavelength above 500 nm increased with increasing loading amounts of MoS2.The results imply that addition of MoS2can increase the intensity of the UV-Vis absorption of the composite.Therefore,the hybrid heterojunction can absorb and utilize more light to produce sufficient photo-induced charge carriers,thus improving the photocatalytic activity.

    3.3.Oxygen evolution performance

    Fig.4(a)shows the time-dependent photocatalytic oxygen evolution for the pure Ag3PO4,Ag3PO4/MoS2,Ag3PO4/g-C3N4,and AMC-10 under LED visible-light irradiation.The oxygen evolution efficiency of the pure Ag3PO4was significantly attenuated after 5 min of irradiation,reaching 6.48μmol/L.The Ag3PO4/g-C3N4and Ag3PO4/MoS2exhibited oxygen evolution efficiencies of 36.1μmol/L and 33.9μmol/L,respectively.Notably,the AMC-10 composite exhibited the highest oxygen evolution efficiency of 69.6μmol/L within the initial 40 min of irradiation,which may be attributed to the excellent visible-light response.Fig.4(c)shows the calculated oxygen evolution rates of these catalysts.It is evident that the oxygen evolution performance of the AMC-10 composite was better compared to those of the pure Ag3PO4,Ag3PO4/MoS2,and Ag3PO4/g-C3N4.Additionally,Fig.4(b)and(c)shows the oxygen evolution performance of the Ag3PO4/g-C3N4doped with MoS2.The oxygen evolution performance gradually decreased with the increasing MoS2content,which is consistent with the fact that MoS2is a superior electronic transmission medium,and can be used as such instead of serving as a half-redox reaction solid-state Z-scheme catalyst.

    Fig.2.XPS survey spectra and high-resolution XPS spectra of all elements in AMC-10 composite(blue,green,and purple lines represent fitting peaks at different binding energies).

    Fig.3.UV-Vis DRS spectra of all synthesized nanohybrids.

    Theoretically,the photoluminescence(PL)intensity indicates theamountof effective carriers participatingin thephotoelectron recombination in the photocatalytic process.Fig.5(a)shows the PL intensities of the g-C3N4,Ag3PO4/g-C3N4,and AMC-10 catalysts.The high PL intensity of g-C3N4demonstrates effective recombination of charge carriers.However,the low PL intensity of the Ag3PO4/g-C3N4composite suggests that the formation of the nano-heterostructure would weaken the photoelectron recombination.Furthermore,the AMC-10 catalyst exhibits a relatively lower PL intensity than that of the Ag3PO4/g-C3N4.The decrease in PL intensity is ascribed to the formation of an effective Z-scheme pathway,which facilitates the charge transport between g-C3N4and Ag3PO4,thus suppressing fast recombination of photoelectrons.Moreover,in principle,the restrained charge carrier recombination could be verified by the time-dependent PL decay of the samples.The transient photocurrents of the g-C3N4,Ag3PO4/g-C3N4,and AMC-10 catalysts at 0.75 V were recorded during various ON/OFF cycles(Fig.5(b)).All samples exhibited prompt and reproducible photocurrent responses.The transient photocurrent density of AMC-10 was above 1.85μA,which was higher than that of the pure g-C3N4(below 0.2μA)and Ag3PO4/g-C3N4(below0.4μA).AsshowninFig.5(c),theaveragePLlifetimefor the AMC-10 and g-C3N4catalysts were 0.884 and 0.975 ns,respectively.Notably,the significant shortening of the PL lifetime is attributed to the efficient exciton dissociation in the heterostructured photocatalyst that facilitates the transfer and yield of hot charge carriers.Additionally,as shown in Fig.5(d),electrochemical impedance spectroscopy(EIS)was conducted to evaluate the photocatalyst electronic performance.Z′andZ′′were real and imaginary parts of the impedance,respectively.The resistance of AMC-10 was lower compared to those of g-C3N4and the Ag3PO4/g-C3N4composite,which can be attributed to the specific geometric structure of the nanosheet that enables a larger contact area and a shorter diffusion distance to reaction sites of the photogenerated charges.These results demonstrate that the flower-like MoS2served as the electron transport medium to reduce the resistance of the electron-hole separation,providing a vital channel for the persistent and effective photolysis of the catalysts.

    Fig.4.Photocatalytic oxygen evolution performance under LED irradiation.

    Fig.5.Photoelectrochemical measurements of g-C3N4,Ag3PO4/g-C3N4,and AMC-10 samples.

    Electron spin resonance(ESR)spectroscopy is considered a powerful tool for identifying and quantifying the different types of short-lived free radicals.This tool can be employed to directly detect the photo-generated electron,holes,and other active species(Li et al.,2019;Wang et al.,2019a;Zhou et al.,2019).In this study,2,2,2,6-tetramethylpiperidine-1-oxyl(TEMPO)with unpaired electrons was used as a trapping agent for capturing the photo-induced electron/holes.As shown in Fig.6(a)and(b),the Ag3PO4,Ag3PO4/g-C3N4,and AMC-10 catalysts exhibit significantly decreased ESR signals after being illuminated for 10 min,indicating the generation of various photogenerated electrons/holes.The weak ESR signal of the TEMPO observed in the AMC-10 catalyst suggests that the photo-induced electron/holes are generated on the surface of AMC-10.Additionally,5,5-dimethyl-1-pyrroline-Noxide(DMPO)was used to verify the generation of hydroxyl radicals(.OH-)and superoxide(.O-2)in the dispersions via the ESR signals of the adducts formed between DMPO and.OH/.OOH.As shown in Fig.6(c)and(d),the significant ESR signals associated with DMPO-.OH/.OOH were observed,confirming the formation of.OH/.O-2in all the systems under simulated light illumination.An apparent signal detected in the AMC-10 catalyst suggests the easy formation of.OH/.O-2.Moreover,the increasing amplitude of the DMPO-.OH signal was more evident than that of the DMPO-.OOH signal in the AMC-10 suspension,implying that.OH species are more easily formed.To further reveal the redox potentials of these composites,the CB and valence band(VB)positions of MoS2and g-C3N4were determined using VB XPS spectra and Mott-Schottky plots,respectively.Fig.7(a)and(b)shows that the VB potentials of the pure MoS2and g-C3N4are located at 1.79 and 1.56 eV,respectively.In Fig.7(c)and(d),whereCis the interfacial capacitance,the CB potentials of MoS2and g-C3N4(versus NHE)are located at-0.26 and-1.17 V,respectively.

    Fig.6.ESR spectra of radical adducts trapped by DMPO and TEMPO for Ag3PO4,Ag3PO4/g-C3N4,and AMC-10.

    Fig.7.VB XPS spectra and Mott-Schottky plots of MoS2 and g-C3N4.

    4.Conclusions

    In this study,the artificial heterogeneous structures of the AMC composite were successfully constructed with g-C3N4and flower-like MoS2anchoring on the surface of the Ag3PO4microspheres.Additionally,their phase,structural,and photocatalytic properties were studied.The AMC-10 composite exhibited a significantly high oxygen evolution rate of 232.1μmol.L-1.g-1.h-1,which was higher compared to that of the pure Ag3PO4,indicating that an all-solid-state Z-scheme photocatalytic system had formed.Moreover,the MoS2deposited on the surface of the Ag3PO4microspheres in the AMC-10 composite played an important role as an electron transport medium,contributing to the enhancement of oxygen precipitation activity and durability of the catalyst.Therefore,the AMC composite,with a strong oxygen evolution performance,could be employed as an in situ oxygen evolution material to purify and replenish water resources and help manage the water ecosystem.

    Declaration of competing interest

    The authors declare no conflicts of interest.

    av在线老鸭窝| 国产精品人妻久久久久久| 久久婷婷青草| 久久久精品免费免费高清| 亚洲精品久久成人aⅴ小说 | 欧美国产精品一级二级三级| 一级毛片我不卡| 欧美3d第一页| 亚洲性久久影院| 国产免费一级a男人的天堂| 草草在线视频免费看| 久久综合国产亚洲精品| 国语对白做爰xxxⅹ性视频网站| 欧美3d第一页| 亚洲国产精品999| 男女免费视频国产| 中文精品一卡2卡3卡4更新| 性色avwww在线观看| 亚洲国产成人一精品久久久| 色5月婷婷丁香| 亚洲av欧美aⅴ国产| 日本黄大片高清| 日韩中字成人| 日日爽夜夜爽网站| av线在线观看网站| 老司机影院毛片| 欧美bdsm另类| 国产成人a∨麻豆精品| 久热久热在线精品观看| 国产精品.久久久| 如日韩欧美国产精品一区二区三区 | 久久国产亚洲av麻豆专区| 99热这里只有是精品在线观看| 欧美一级a爱片免费观看看| 亚洲av二区三区四区| 欧美日韩视频精品一区| 久久精品久久精品一区二区三区| 青春草国产在线视频| 欧美一级a爱片免费观看看| 在线天堂最新版资源| 少妇人妻 视频| 久久精品久久精品一区二区三区| 久久精品国产鲁丝片午夜精品| 久久鲁丝午夜福利片| 成人手机av| 多毛熟女@视频| 日韩亚洲欧美综合| 热99久久久久精品小说推荐| 亚洲一区二区三区欧美精品| 99九九线精品视频在线观看视频| 婷婷色av中文字幕| 国产男女超爽视频在线观看| 色婷婷av一区二区三区视频| 中文字幕精品免费在线观看视频 | 国产熟女欧美一区二区| 精品午夜福利在线看| 插阴视频在线观看视频| 精品久久久噜噜| 亚洲第一区二区三区不卡| 日本vs欧美在线观看视频| 日日爽夜夜爽网站| 少妇精品久久久久久久| 成人毛片60女人毛片免费| av又黄又爽大尺度在线免费看| 一本一本综合久久| 国产淫语在线视频| 2022亚洲国产成人精品| 狂野欧美激情性xxxx在线观看| 久久久久国产精品人妻一区二区| 伦精品一区二区三区| 蜜臀久久99精品久久宅男| a级毛片免费高清观看在线播放| 亚洲欧美日韩另类电影网站| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 欧美一级a爱片免费观看看| 免费观看在线日韩| 久久久久视频综合| 2021少妇久久久久久久久久久| 亚洲少妇的诱惑av| 亚洲欧美精品自产自拍| 国产精品人妻久久久影院| 婷婷色综合www| av黄色大香蕉| 黑丝袜美女国产一区| 人人妻人人澡人人看| 国产免费视频播放在线视频| 在线观看一区二区三区激情| 久久免费观看电影| 黑人欧美特级aaaaaa片| 国产欧美日韩一区二区三区在线 | 国产片特级美女逼逼视频| 日本欧美视频一区| 婷婷色麻豆天堂久久| 国产亚洲最大av| 欧美日韩av久久| 日韩一区二区视频免费看| 91久久精品电影网| 男女国产视频网站| 99热全是精品| 国产在线免费精品| 97超视频在线观看视频| 欧美 亚洲 国产 日韩一| 老女人水多毛片| 最近中文字幕2019免费版| 国产成人免费观看mmmm| a 毛片基地| 久久久精品免费免费高清| 午夜日本视频在线| 久久精品久久精品一区二区三区| 乱码一卡2卡4卡精品| 男女免费视频国产| 国产精品女同一区二区软件| 国产在线一区二区三区精| 全区人妻精品视频| 激情五月婷婷亚洲| 晚上一个人看的免费电影| 久久久久久久久久久免费av| 亚洲精品色激情综合| 一本一本综合久久| 国产日韩欧美在线精品| 久久久久久久久久成人| 黄色一级大片看看| 欧美精品一区二区大全| 99热网站在线观看| 亚洲av男天堂| 精品久久久久久久久av| 成人影院久久| 亚洲精品国产色婷婷电影| 黄色毛片三级朝国网站| 九色亚洲精品在线播放| 国产深夜福利视频在线观看| 国产成人一区二区在线| 制服丝袜香蕉在线| 精品国产一区二区久久| 精品国产一区二区久久| 一区二区三区四区激情视频| 亚洲五月色婷婷综合| av在线app专区| 在线精品无人区一区二区三| 在线看a的网站| av福利片在线| 激情五月婷婷亚洲| 亚洲国产精品成人久久小说| 亚洲少妇的诱惑av| 欧美日本中文国产一区发布| 少妇人妻久久综合中文| 国内精品宾馆在线| 国产伦理片在线播放av一区| 亚洲精品日韩av片在线观看| av在线播放精品| av在线app专区| 国产成人精品无人区| 国产高清国产精品国产三级| 亚洲av在线观看美女高潮| 制服丝袜香蕉在线| 狂野欧美激情性xxxx在线观看| 天堂俺去俺来也www色官网| 看免费成人av毛片| 亚洲综合色惰| 精品人妻熟女av久视频| 看免费成人av毛片| 日韩av免费高清视频| 久久99热6这里只有精品| 国产在线免费精品| 爱豆传媒免费全集在线观看| 建设人人有责人人尽责人人享有的| www.av在线官网国产| 七月丁香在线播放| a级毛色黄片| 女人久久www免费人成看片| 精品一区二区免费观看| 国产日韩欧美视频二区| 国产男女超爽视频在线观看| 制服人妻中文乱码| 精品99又大又爽又粗少妇毛片| 欧美日韩一区二区视频在线观看视频在线| 久久综合国产亚洲精品| 午夜影院在线不卡| av福利片在线| 最近2019中文字幕mv第一页| 黑丝袜美女国产一区| 九色成人免费人妻av| 另类精品久久| 亚洲欧美精品自产自拍| 欧美日韩视频高清一区二区三区二| 亚洲不卡免费看| 日本黄大片高清| 成人18禁高潮啪啪吃奶动态图 | 久久热精品热| 久久午夜福利片| 久热这里只有精品99| 日本午夜av视频| 国语对白做爰xxxⅹ性视频网站| 热99久久久久精品小说推荐| 色吧在线观看| 亚洲av综合色区一区| 免费高清在线观看日韩| 国产精品女同一区二区软件| 老女人水多毛片| 国产黄色免费在线视频| 热99国产精品久久久久久7| 亚洲精品一二三| 99热国产这里只有精品6| 99久国产av精品国产电影| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 中文字幕免费在线视频6| 边亲边吃奶的免费视频| 久久ye,这里只有精品| 另类精品久久| 男女免费视频国产| 色视频在线一区二区三区| 丝袜喷水一区| 69精品国产乱码久久久| 少妇人妻精品综合一区二区| 熟女电影av网| 男男h啪啪无遮挡| 国产淫语在线视频| 久久久久久久久大av| 99热这里只有是精品在线观看| 成人亚洲欧美一区二区av| 一级片'在线观看视频| 免费黄色在线免费观看| h视频一区二区三区| 免费av不卡在线播放| 少妇被粗大猛烈的视频| 精品少妇久久久久久888优播| 国产日韩欧美视频二区| 国产精品不卡视频一区二区| 精品人妻偷拍中文字幕| 欧美精品国产亚洲| av女优亚洲男人天堂| 精品99又大又爽又粗少妇毛片| 国产成人一区二区在线| 久久久午夜欧美精品| 久久ye,这里只有精品| 韩国高清视频一区二区三区| 91精品一卡2卡3卡4卡| 男女边摸边吃奶| 伦理电影免费视频| 下体分泌物呈黄色| h视频一区二区三区| 成人毛片60女人毛片免费| 一级a做视频免费观看| 精品人妻熟女av久视频| 精品人妻在线不人妻| 一级,二级,三级黄色视频| 精品一区在线观看国产| 青春草国产在线视频| 国产成人freesex在线| 欧美日韩在线观看h| 青青草视频在线视频观看| 蜜桃国产av成人99| 伦精品一区二区三区| 看非洲黑人一级黄片| av在线播放精品| 18禁观看日本| 国产av精品麻豆| 国产精品国产三级国产av玫瑰| 一本一本综合久久| 又黄又爽又刺激的免费视频.| 午夜福利在线观看免费完整高清在| 亚洲综合色惰| 亚洲国产精品成人久久小说| 国产午夜精品一二区理论片| 777米奇影视久久| 特大巨黑吊av在线直播| 精品人妻熟女毛片av久久网站| 欧美人与性动交α欧美精品济南到 | 亚洲第一av免费看| 国产精品秋霞免费鲁丝片| 99热全是精品| 母亲3免费完整高清在线观看 | 国产一区二区三区av在线| 中文字幕av电影在线播放| 自线自在国产av| 久久国产精品大桥未久av| 最近最新中文字幕免费大全7| 2021少妇久久久久久久久久久| 日韩电影二区| 美女大奶头黄色视频| 欧美国产精品一级二级三级| 亚洲国产欧美日韩在线播放| 国产不卡av网站在线观看| 午夜日本视频在线| 成人18禁高潮啪啪吃奶动态图 | 午夜福利,免费看| 欧美日韩精品成人综合77777| 一区二区三区四区激情视频| 亚洲人成网站在线观看播放| 成人毛片a级毛片在线播放| 免费av中文字幕在线| 国产精品国产三级国产专区5o| 国产毛片在线视频| 久久精品久久久久久噜噜老黄| 精品卡一卡二卡四卡免费| 国产日韩欧美在线精品| 久久久午夜欧美精品| 免费观看性生交大片5| av在线app专区| 国产av码专区亚洲av| 成人国语在线视频| a级毛片黄视频| 亚洲情色 制服丝袜| 午夜福利影视在线免费观看| 丁香六月天网| 中文天堂在线官网| 午夜激情久久久久久久| 51国产日韩欧美| 成年人免费黄色播放视频| 国产一区二区在线观看av| 一本久久精品| 亚洲丝袜综合中文字幕| 26uuu在线亚洲综合色| 人妻系列 视频| 91久久精品电影网| 美女cb高潮喷水在线观看| 国产白丝娇喘喷水9色精品| 青青草视频在线视频观看| 97超碰精品成人国产| 啦啦啦在线观看免费高清www| 九九爱精品视频在线观看| 国产精品成人在线| 999精品在线视频| 久久久午夜欧美精品| 欧美日韩av久久| 亚洲国产精品一区二区三区在线| 一本大道久久a久久精品| 国产白丝娇喘喷水9色精品| 日本av手机在线免费观看| 在线播放无遮挡| 2018国产大陆天天弄谢| 久久精品熟女亚洲av麻豆精品| 亚洲精品色激情综合| 亚洲少妇的诱惑av| 亚洲av.av天堂| 国产在线一区二区三区精| 看非洲黑人一级黄片| 免费看av在线观看网站| 成人黄色视频免费在线看| 少妇人妻精品综合一区二区| 美女大奶头黄色视频| 亚洲国产精品成人久久小说| 寂寞人妻少妇视频99o| 人妻人人澡人人爽人人| 天堂中文最新版在线下载| 精品卡一卡二卡四卡免费| 精品酒店卫生间| 亚洲,一卡二卡三卡| 欧美激情国产日韩精品一区| 天美传媒精品一区二区| 看免费成人av毛片| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 99久久综合免费| 成年人免费黄色播放视频| 国产高清有码在线观看视频| 国产成人freesex在线| 人人澡人人妻人| 伦精品一区二区三区| 久久久久人妻精品一区果冻| 久久亚洲国产成人精品v| 国产精品欧美亚洲77777| 久久狼人影院| 国产精品欧美亚洲77777| 久久精品熟女亚洲av麻豆精品| 久久久国产一区二区| 国产免费又黄又爽又色| 亚洲内射少妇av| h视频一区二区三区| 久久久国产一区二区| 一级毛片aaaaaa免费看小| 黑人高潮一二区| 国产色爽女视频免费观看| 色吧在线观看| 欧美一级a爱片免费观看看| 黑人高潮一二区| 亚洲第一av免费看| 精品久久久久久久久av| 亚洲精品一二三| av天堂久久9| 97超碰精品成人国产| 丰满迷人的少妇在线观看| 国产成人午夜福利电影在线观看| 中国国产av一级| 麻豆成人av视频| 99九九线精品视频在线观看视频| 国产成人freesex在线| 精品少妇久久久久久888优播| 99国产精品免费福利视频| 欧美日韩视频高清一区二区三区二| 国产成人一区二区在线| 久久97久久精品| 久久久国产精品麻豆| 99久久综合免费| 亚洲国产日韩一区二区| 午夜久久久在线观看| 亚洲精品一区蜜桃| 国产精品无大码| 最近的中文字幕免费完整| 国产免费福利视频在线观看| av卡一久久| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 国产亚洲精品久久久com| 欧美激情极品国产一区二区三区 | 91久久精品国产一区二区三区| 99久久人妻综合| 这个男人来自地球电影免费观看 | 另类精品久久| 亚洲国产精品一区二区三区在线| 亚洲精品久久午夜乱码| 青春草视频在线免费观看| 婷婷色综合大香蕉| 国产黄色视频一区二区在线观看| 色94色欧美一区二区| 一级二级三级毛片免费看| 成人综合一区亚洲| 视频区图区小说| 国产亚洲一区二区精品| 在线看a的网站| 精品少妇内射三级| 国产又色又爽无遮挡免| 日日撸夜夜添| 成年av动漫网址| 日产精品乱码卡一卡2卡三| 亚洲av免费高清在线观看| 人妻制服诱惑在线中文字幕| 亚洲欧洲精品一区二区精品久久久 | 王馨瑶露胸无遮挡在线观看| 日韩亚洲欧美综合| 国产欧美亚洲国产| 亚洲欧洲日产国产| 黑人巨大精品欧美一区二区蜜桃 | 波野结衣二区三区在线| 少妇的逼好多水| 久热这里只有精品99| 成人影院久久| 女性生殖器流出的白浆| 亚洲欧美清纯卡通| 亚洲一区二区三区欧美精品| 999精品在线视频| 69精品国产乱码久久久| 久久久国产欧美日韩av| √禁漫天堂资源中文www| 在线播放无遮挡| 最近中文字幕高清免费大全6| 国产白丝娇喘喷水9色精品| 春色校园在线视频观看| 母亲3免费完整高清在线观看 | 视频中文字幕在线观看| 亚洲经典国产精华液单| 午夜福利影视在线免费观看| 亚洲av中文av极速乱| 亚洲内射少妇av| 亚洲欧美成人精品一区二区| 午夜福利视频精品| 亚洲欧美精品自产自拍| 少妇熟女欧美另类| 视频区图区小说| 老女人水多毛片| 国国产精品蜜臀av免费| 欧美+日韩+精品| 午夜福利视频精品| 成人毛片60女人毛片免费| 午夜激情福利司机影院| 又大又黄又爽视频免费| 久久久国产欧美日韩av| 男女国产视频网站| 国产精品.久久久| 一级毛片我不卡| 22中文网久久字幕| 久久精品久久久久久久性| 国产欧美日韩综合在线一区二区| 久热这里只有精品99| 国国产精品蜜臀av免费| 欧美日本中文国产一区发布| 一本大道久久a久久精品| 亚洲国产精品一区二区三区在线| 国产精品国产三级国产专区5o| 少妇被粗大猛烈的视频| 久久久久久久亚洲中文字幕| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 大香蕉97超碰在线| 日产精品乱码卡一卡2卡三| 如何舔出高潮| 各种免费的搞黄视频| 国产精品国产av在线观看| 日本av手机在线免费观看| 国产高清不卡午夜福利| 久久久久精品性色| 欧美日韩成人在线一区二区| 国产乱人偷精品视频| 亚洲av福利一区| 国产淫语在线视频| 精品少妇久久久久久888优播| 大陆偷拍与自拍| 男人爽女人下面视频在线观看| 免费高清在线观看视频在线观看| 狠狠精品人妻久久久久久综合| 精品久久蜜臀av无| 亚洲人成网站在线观看播放| xxxhd国产人妻xxx| 大陆偷拍与自拍| 97精品久久久久久久久久精品| 69精品国产乱码久久久| 大又大粗又爽又黄少妇毛片口| 久久综合国产亚洲精品| 国产精品久久久久久久电影| 韩国av在线不卡| 精品一区二区免费观看| 国产成人午夜福利电影在线观看| 久久午夜福利片| 日韩av在线免费看完整版不卡| 亚洲精品国产av蜜桃| 精品午夜福利在线看| 久久久久久久久久成人| 最近手机中文字幕大全| 国产极品天堂在线| 高清在线视频一区二区三区| 激情五月婷婷亚洲| 久久国产精品大桥未久av| 水蜜桃什么品种好| 国产精品秋霞免费鲁丝片| 国产淫语在线视频| 国产av国产精品国产| 午夜福利网站1000一区二区三区| 欧美3d第一页| 亚洲av福利一区| 欧美激情国产日韩精品一区| 一本一本综合久久| 亚洲美女黄色视频免费看| 国产亚洲精品第一综合不卡 | 99热这里只有是精品在线观看| 日本色播在线视频| 丰满饥渴人妻一区二区三| av免费在线看不卡| 日韩精品免费视频一区二区三区 | 日韩强制内射视频| 女性生殖器流出的白浆| 午夜激情福利司机影院| 精品久久久久久电影网| 午夜免费男女啪啪视频观看| 少妇猛男粗大的猛烈进出视频| 久久热精品热| 内地一区二区视频在线| 男女边吃奶边做爰视频| 亚洲人成77777在线视频| 亚洲人与动物交配视频| 久久久久久伊人网av| 另类亚洲欧美激情| 成人无遮挡网站| 亚洲精品久久久久久婷婷小说| 久久久久久久久久久丰满| 一级毛片电影观看| 老司机影院毛片| 99热全是精品| 久久久久视频综合| 国产探花极品一区二区| 色婷婷久久久亚洲欧美| 五月伊人婷婷丁香| 人妻 亚洲 视频| 99久久综合免费| 亚洲精品日韩在线中文字幕| av黄色大香蕉| 免费大片18禁| 边亲边吃奶的免费视频| 中文字幕免费在线视频6| 男女高潮啪啪啪动态图| 老司机影院毛片| 国产精品国产三级国产专区5o| 免费不卡的大黄色大毛片视频在线观看| 国产毛片在线视频| 久久久久网色| 视频区图区小说| 少妇被粗大的猛进出69影院 | 午夜激情av网站| 国产伦精品一区二区三区视频9| 成年av动漫网址| 精品久久久久久久久亚洲| 久久婷婷青草| 嫩草影院入口| 黄片无遮挡物在线观看| 国产色爽女视频免费观看| 午夜免费鲁丝| 国产女主播在线喷水免费视频网站| 中文字幕制服av| 有码 亚洲区| videosex国产| 在线免费观看不下载黄p国产| 色婷婷av一区二区三区视频| 久久av网站| 日韩亚洲欧美综合| 久久久久精品久久久久真实原创| 少妇的逼水好多| 人妻人人澡人人爽人人| 午夜av观看不卡| 成年女人在线观看亚洲视频| 精品少妇内射三级| 一区二区三区精品91| 亚洲第一av免费看| 国产免费视频播放在线视频| 亚洲精品日韩在线中文字幕| 丝袜喷水一区| 亚洲精品av麻豆狂野| 男女边摸边吃奶| 新久久久久国产一级毛片| 国产片内射在线| 肉色欧美久久久久久久蜜桃| 晚上一个人看的免费电影| 免费av中文字幕在线| 熟女电影av网| 国产精品蜜桃在线观看| a级毛片免费高清观看在线播放| 在线天堂最新版资源|