• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effects of long non-coding RNA myocardial infarctionassociated transcript on retinal neovascularization in a newborn mouse model of oxygen-induced retinopathy

    2021-01-24 11:40:06YuDiYueWangXueWangQingZhuNie

    Yu Di, Yue Wang, Xue Wang, Qing-Zhu Nie

    Abstract Whether long non-coding RNA myocardial infarction-associated transcript is involved in oxygen-induced retinopathy remains poorly understood. To validate this hypothesis, we established a newborn mouse model of oxygen-induced retinopathy by feeding in an oxygen concentration of 75 ± 2% from postnatal day 8 to postnatal day 12, followed by in normal air. On postnatal day 11, the mice were injected with the myocardial infarction-associated transcript siRNA plasmid via the vitreous cavity to knockdown long non-coding RNA myocardial infarction-associated transcript. Myocardial infarction-associated transcript siRNA transcription significantly inhibited myocardial infarctionassociated transcript mRNA expression, reduced the phosphatidylinosital-3-kinase, phosphorylated Akt and vascular endothelial growth factor immunopositivities, protein and mRNA expression, and alleviated the pathological damage to the retina of oxygen-induced retinopathy mouse models. These findings suggest that myocardial infarction-associated transcript is likely involved in the retinal neovascularization in retinopathy of prematurity and that inhibition of myocardial infarction-associated transcript can downregulate phosphatidylinosital-3-kinase,phosphorylated Akt and vascular endothelial growth factor expression levels and inhibit neovascularization. This study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    Key Words: long non-coding RNA; myocardial infarction-associated transcript; neovascularization; neurovascular; prematurity; retinopathy;vascular development; vascular endothelial growth factor

    Introduction

    The mammalian genome contains numerous long noncoding RNA (lncRNA) genes. lncRNAs play biological functions through gene imprinting, cell cycle regulation and splicing regulation. They are also associated with the development of several human diseases (Kumar et al., 2016; Arslan et al.,2017; Raut and Khullar, 2018; Ding et al., 2020). Increasing evidence indicates that lncRNAs are related with the development of nervous and neovascular diseases (Xu et al.,2014; Chen et al., 2017; Wang et al., 2020c). The physiological function of the nervous system is closely related to that of the vascular system, and both systems may share pathological mechanisms. Quaegebeur et al. (2011) previously reported the interaction between these two systems.

    Vascular endothelial cells promote the proliferation of neural precursor cells, microglia, and monocytes. Furthermore,they are involved in retinal vascular diseases, and microglia activation has been shown to prevent retinal degeneration(Alves et al., 2020; Cao et al., 2020; Chumsakul et al., 2020;Yu et al., 2020a). Myocardial infarction-associated transcript(MIAT), also known as retina noncoding RNA 2, is expressed in mitotic progenitor cells and post-mitotic retinal precursor cells, including human and mouse retinal pigment cells, in the outer and inner nuclear layers and the retinal nerve cell layer (Almnaseer and Mourtada-Maarabouni, 2018; Yu et al., 2020b). MIAT is of great significance in the treatment of neurovascular diseases, and it can effectively reduce the development of neovascularization (Eichmann and Thomas,2013; Jiang et al., 2016; Yu et al., 2020b). These findings suggest that MIAT may play an important role in angiogenesis and pathogenesis of the nervous and retinal system. However,its role and mechanism in retinopathy of prematurity(ROP) remain unclear. The present study investigated the effect of MIAT small interfering RNA (siRNA) on retinal neovascularization (RNV) in oxygen-induced retinopathy (OIR).

    Materials and Methods

    Animals

    Twenty C57BL/6J timed-pregnant mice were purchased from Shenyang Changsheng Biological Technology Co., Ltd.[Shenyang, China; license No. SCXK (Liao) 2015-0001]. The study was approved by the Animal Ethics Committee of Shengjing Hospital of China Medical University, China (approval No. 2016PS074K) on February 25, 2016.

    OIR induction and intravitreal injection in mice

    The 7-day-old mice were fed in the oxygen concentration of 75 ± 2% until P12, then returned to normal air (21 ± 2%oxygen), as previously described (Smith et al., 1994). The mice were randomly assigned into the hyperoxia control siRNA and hyperoxia MIAT siRNA groups (n= 90/group). On P11, the mice were injected with the empty vector plasmid (1 μL, 20 μM) or malat1 siRNA plasmid (1 μL, 20 μM) designed by GenePharma(Shanghai, China) with lipofectamine (ThermoFisher, Waltham,MA, USA) or the polarization beam splitter into the vitreous cavity (1 μL). On P17, the eyes were removed after anesthesia by isoflurane.

    Preparation of MIAT siRNA

    MIAT siRNA and scrambled MIAT siRNA sequences were designed by GenePharma (Shanghai, China). The sequences were as follows: MIAT siRNA forward, 5′-GGU GUU AAG ACU UGG UUU CUU-3′ and reverse, 5′-ACA UAC UCA UAA AGG CCA CUU-3′; and scrambled MIAT siRNA forward, 5′-UUC UCC GAA CGU GUG UCA CGU UU-3′ and reverse, 5′-ACG UGA CAC GUU CGG AGA AUU-3′.

    Quantitative reverse transcription polymerase chain reaction

    On P12, total RNA was extracted from mouse retina by Trizol(Takara, Tokyo, Japan) and subsequently transcribed into complementary DNA. The sequences were as follows: MIAT,forward: 5′-TGG AAC AAG TCA CGC TCG ATT-3′ and reverse:5′-GGT ATC CCA AGG AAT GAA GTC TGT-3′; phosphoinositide 3-kinase (PI3K), forward: 5′-GGC TTG GAC CGA ATG CT-3′ and reverse: 5′-TTG TTG AAG GCT GTG GC-3′; AKT, forward: 5′-AGC AAA CAG GCT CAC AGG TT-3′ and reverse: 5′-TAA GTC CTC CCC ATC TCC CT-3′; vascular endothelial growth factor (VEGF),forward: 5′-CCC GAC AGG GAA GAC AAT-3′ and reverse: 5′-TCT GGA AGT GAG CCA ACG-3′; and β-actin, forward: 5′-CCT CCT CCT GAG CGC AAG TA-3′ and reverse: 5′-GAT GGA GGG GCC GGA CT-3′. The thermocycling conditions were as follows: preheating at 95°C for 30 seconds, and the two-step method consisting of 95°C 5 seconds and 60°C 31 seconds, for 50 cycles. Electrophoresis was performed on a 1.5% agarose gel, and the results of electrophoresis were observed under ultraviolet light. The 2-ΔΔCTvalue was used for result analysis(Livak and Schmittgen, 2001).

    Fluorescein isothiocyanate staining

    On P17, 15 mice from each group were anesthetized and fluorescein isothiocyanate-dextran (2 × 106Da, 50 mg/mL,500 μL; Sigma, San Francisco, CA, USA) was circulated through the body for 3 minutes. The retinas were dissected after the eyeball was removed and each retina was divided into four equal sections. The clock hour scores of neovascularization and non-perfusion area were counted by Photoshop CS6(Adobe, San Francisco, CA, USA) as previously described(Chikaraishi et al., 2007).

    Hematoxylin-eosin staining

    On postnatal day 17 (P17), 15 mice from each group were anesthetized. The eyes were fixed and serial sections (6-μm in thickness) were prepared. Ten pieces of each eyeball were selected for hematoxylin-eosin staining (Mitchell et al.,2018). After conventional dewaxing, the slices were stained with hematoxylin for 3 minutes, then stained with eosin for 2 minutes, dehydrated by conventional machine, and sealed with neutral resin. The vascular cell nuclei getting into the vitreous humor were counted under a light microscope (Eclipse, NI,Nikon, Tokyo, Japan) (Park et al., 2009; Arachchi et al., 2018).

    Immunohistochemistry

    Immunohistochemistry was performed using a Streptavidin Biotin Complex immunohistochemistry kit (Boster Bioengineering Co., Wuhan, China). The paraffin sections were dewaxed and antigen was repaired and sealed with goat serum. Then the sections were incubated overnight at 4°C with primary antibodies [phospho-PI3K (p-PI3K; 1:2000;mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc., Santa Cruz, CA, USA), phospho-Akt 1/2/3 (1:2000; mouse; Cat#sc-101629; Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578;Santa Cruz Biotechnology Inc.)], followed by incubation at 37°C for 30 minutes with horseradish peroxidase-labeled goat anti-mouse IgG(H+L) (1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co. Ltd., Beijing, China) on the next day.After 3,3’-diaminobenzidine staining and hematoxylin staining,photographs were taken under the light microscope.

    Western blot analysis

    Total protein from each sample from retinas was extracted using radioimmunoprecipitation assay (RIPA) buffer (Solarbio Science, Beijing, China). The bicinchoninic acid (BCA)method was used to determine the protein concentrations(ThermoFisher). A total of 50 μg of each sample was electrophoresed (80 V) and subsequently transferred (at 4°C, 350 mA) to polyvinylidene difluoride membranes. The membranes were incubated with primary antibodies [p-PI3K(1:2000; mouse; Cat# sc-12929; Santa Cruz Biotechnology Inc.), phospho-Akt 1/2/3 (1:2000; mouse; Cat# sc-101629;Santa Cruz Biotechnology Inc.), and vascular endothelial growth factor (1:2000; mouse; Cat# sc-365578; Santa Cruz Biotechnology Inc.)] for 16 hours at 4°C after blocking with 5% non-fat milk. The membranes were then incubated with horseradish peroxidase-labeled goat anti-mouse IgG(H+L)(1:2000; Cat# ZB-5305; Zhongshan Jinqiao Biotechnology Co.Ltd.) for 1 hour at room temperature. Chemiluminescence reagents (Millipore, Waltham, MA, USA) and an imaging system (GE AI680, Boston, MA, USA) were used to visualize the bands. ImageJ (National Institutes of Health, Bethesda,MD, USA) was used to calculate gray value.

    Statistical analysis

    Data are expressed as the mean ± standard deviation (SD), and were analyzed by Mann-WhitneyUtest using SPSS 17.0 (SPSS Inc., Chicago, IL, USA).P< 0.05 was considered to indicate a statistically significant difference.

    Results

    MIAT expression is decreased in hyperoxia MIAT siRNA mouse retinas

    Quantitative reverse transcription polymerase chain reaction results showed that the expression level of MIAT in the retinas of the hyperoxia MIAT siRNA group was reduced to 67.52% of that in hyperoxia control siRNA group at 1 day after transfection (P< 0.05;Figure 1).

    Figure 1|Quantitative reverse transcription polymerase chain reaction determination of MIAT mRNA expression in the retinas of mice at 1 day after transfection.Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Effect of lncRNA on the RNV of OIR mice

    Results of fluorescein isothiocyanate staining showed that in the hyperoxia control siRNA group, the retina showed obvious vascular leakage and a large area of no perfusion area (Figure2A). The pathological changes were alleviated in hyperoxia MIAT siRNA group compared with the hyperoxia control siRNA group (P< 0.05;Figure 2BandC).

    Hematoxylin-eosin staining showed that the number of neovascular nuclei breaking through the inner limiting membrane was calculated to quantify the RNV (Figure 3). The number of preretinal neovascular cells in the hyperoxia MIAT siRNA group was lower than that in hyperoxia control siRNA group (Z= -4.427,P< 0.05). This result suggested that MIAT siRNA exhibited anti-neovascularizative effects in the retina.

    Effect of lncRNA on the immunopositivities of p-PI3K, p-AKT,and VEGF in the OIR model mice

    Immunohistochemical staining of retinal sections revealed that p-PI3K, p-AKT, and VEGF were highly expressed in the ganglion cell layer, inner plexiform layer, inner nuclear layer, and outer plexiform layer (Figure 4). However, their immunopositivities were lower in the hyperoxia MIAT siRNA group than those in hyperoxia control siRNA group (P< 0.05).

    Effect of lncRNA on the PI3K/AKT/VEGF signaling pathway in the OIR model mice

    Western blot analysis and quantitative reverse transcription polymerase chain reaction were performed to detect the expression levels of PI3K, AKT, and VEGF. Western blot results showed that the p-PI3K, p-AKT, and VEGF protein levels in the hyperoxia MIAT siRNA group were decreased by 40.94 ± 3.94%,49.28 ± 4.16%, and 40.63 ± 4.03%, respectively (P< 0.05,vs.hyperoxia control siRNA group;Figure 5AandB). Quantitative reverse transcription polymerase chain reaction revealed that the p-PI3K, p-AKT, and VEGF mRNA levels in the hyperoxia MIAT siRNA group were decreased by 48.73 ± 3.98%, 46.79 ±3.87%, and 55.09 ± 4.26%, respectively (P< 0.05,vs. hyperoxia control siRNA group;Figure 5C). These results demonstrated that MIAT is involved in the process of RNV in ROP, and inhibition of MIAT may effectively inhibit RNV through the PI3K/AKT/VEGF signaling pathway.

    Discussion

    LncRNAs are transcription products, 200-100,000 nucleotides in length, which structurally resemble mRNA and have little to no protein-coding potential (Li et al., 2020; Liu et al., 2020;Wang et al., 2020b). A number of studies have reported that lncRNAs play important roles in several biological processes,including stem cell maintenance and cellular phenotype differentiation (Ding et al., 2018; Sarropoulos et al., 2019;Yang et al., 2019; Qi et al., 2020). Furthermore, lncRNA MIAT has been implicated in the development of many diseases,including neurodegenerative diseases (Fanale et al., 2016),tumors (Li et al., 2017; Bai et al., 2019; Lin et al., 2019), and common eye diseases such as corneal neovascularization and diabetic retinopathy (Hutchinson et al., 2007; Yan et al.,2015; Zhang et al., 2017; Li et al., 2018). RNV is a hallmark of ROP, retinal vascular occlusion, and diabetic retinopathy. Anti-VEGF drugs have been used to decrease this RNV; however,their repeated injection may be problematic and current research is focused on overcoming this challenge (Satari et al., 2019; Sun et al., 2019b; Nagaraj et al., 2020). Retinal nerve cells are involved in the regulation of inflammation during neovascularization (Wang et al., 2020a). Microglia and macrophages play an important role in this process and transforming growth factor-β signaling and the retinoic acid receptor-related orphan receptor γ/interleukin17A axis may inhibit RNV through retinal microglia (Talia et al., 2016; Ma et al., 2019).

    Several lncRNAs, including metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), maternally expressed 3 (MEG3), MIAT, MANTIS, and PUNISHER, are involved in the regulation of angiogenesis and vascular disease (Shen et al., 2017; Lu et al., 2018; Yu and Wang, 2018). Research has shown that high glucose concentrations may significantly upregulate the expression of the lncRNA MIAT (Hanrahan et al., 2010).In vivoexperiments have shown that the downregulation of MIAT may reduce RNV, vascular leakage,and the inflammatory response in diabetes (Meydan et al.,2020). In addition, downregulation of MIAT may reduce the proliferation, migration, and tube formation capacity of retinal vascular endothelial cellsin vitro(Deng et al., 2020).MIAT may serve as a competing endogenous RNA during VEGF regulation and thus participate in RNV associated with diabetic retinopathy (Toraih et al., 2019). Additionally, MIAT knockdown inhibits the upregulation of tumor necrosis factor α and intercellular cell adhesion molecule-1, thereby reducing inflammation and vascular leakage (Roy et al., 2011).

    The OIR mice in the hyperoxia MIAT siRNA group were administered MIAT siRNA via intravitreal injection on P11.One day after transfection, quantitative reverse transcription polymerase chain reaction confirmed that the relative expression of MIAT mRNA in mice in the hyperoxia MIAT siRNA group was significantly decreased, which confirmed the effectiveness of the transfection method used in this study. PI3K, AKT, and VEGF levels were markedly decreased in the hyperoxia MIAT siRNA mice compared with those in the hyperoxia control siRNA group. We have previously demonstrated that cellular communication network factor 1 and LY294002 can regulate RNV through the PI3K/Akt/VEGF signaling pathway (Di et al., 2015; Di and Chen, 2018). MIAT siRNA reduced the expression of VEGF at the protein and mRNA levels, which decreased the aberrant neovascularization in the OIR mouse model. These results indicated that MIAT plays an essential role in RNV, and that MIAT siRNA decreases RNV by inhibiting the PI3K/AKT/VEGF signaling pathway. Consistent with our results, previous studies have demonstrated that MIAT participates in angiogenesis through the PI3K/AKT pathway (Liu et al., 2018; Chen et al., 2019; Sun et al., 2019a).

    The results of this study showed that although MIAT siRNA decreased the expression levels of PI3K, AKT, and VEGF at the peak of RNV on P17, their expression was not completely inhibited. Furthermore, MIAT siRNA could not completely inhibit the development of RNV from morphological and pathological aspects. We conclude that RNV is regulated by many factors. Additionally, the transfection efficiency of MIAT siRNA in the retina, and the dose and number of injections,may have important effects that require further observation and research.

    Figure 2|Effect of long non-coding RNA on the retina morphology of oxygen-induced retinopathy mice detected by fluorescein isothiocyanate staining.(A) Retina morphology on postnatal day 17. The blue arrows indicate neovascularization, the number of the neovascularization was lower in the hyperoxia MIAT siRNA group than hyperoxia control siRNA group. Scale bars: 100 μm. (B, C) Quantitative results of neovascularization clock hour scores (B) and percentage area of non-perfusion area (C). Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; siRNA: small interfering RNA.

    Figure 3|Effect of long non-coding RNA on the preretinal neovascular cells of oxygen-induced retinopathy mice detected by hematoxylin-eosin staining.(A) The retina morphology of P17 mice (original magnification 400×, scale bars: 50 μm). The red arrows indicate preretinal neovascular cells. The nucleus of neovascularization broke through the inner limiting membrane in hyperoxia group was more than the hyperoxia MIAT siRNA group. (B) Quantitative results of number of preretinal neovascular cells. Data are expressed as the mean ± SD. *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; P17: postnatal day 17; siRNA: small interfering RNA.

    Figure 4|Effect of long non-coding RNA on the immunopositivities of p-PI3K, p-AKT, and VEGF in the oxygen-induced retinopathy model mice as determined by immunohistochemistry.(A) The images of immunohistochemical staining (magnification, 400×, scale bars: 50 μm). The arrows indicate the positive cells. (B) Quantitative results of p-PI3K,p-AKT, and VEGF immunopositivities. Data are expressed as the mean ± SD (n = 15). *P < 0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT:Myocardial infarction-associated transcript; p-AKT: phospho-Akt 1/2/3; p-PI3K: phospho-phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF:vascular endothelial growth factor.

    Figure 5|Effect of long non-coding RNA on the protein and mRNA expression in the PI3K/AKT/VEGF signaling pathway in the oxygen-induced retinopathy mouse model.(A) Bands of p-PI3K, p-AKT, and VEGF detected by western blot assay. (B) Quantification of p-PI3K, p-AKT, and VEGF protein levels. (C) Quantification of p-PI3K,p-AKT, and VEGF mRNA levels detected by quantitative reverse transcription polymerase chain reaction. Data are expressed as the mean ± SD (n = 15). *P <0.05, vs. hyperoxia control siRNA group (Mann-Whitney U test). MIAT: Myocardial infarction-associated transcript; PI3K: phosphatidylinositol 3-kinase; p-AKT:phospho-Akt 1/2/3; p-PI3K: phosphatidylinositol 3-kinase; siRNA: small interfering RNA; VEGF: vascular endothelial growth factor.

    In summary, we hypothesize that the relatively hypoxic environment to which OIR mice were exposed stimulated endothelial cells to upregulate MIAT, which regulates the PI3K/AKT/VEGF signaling pathway, thereby promoting RNV.Silencing MIAT may effectively inhibit RNV in ROP.

    Author contributions:Study design: QZN; exрeriment imрlementation: YD,YW; data collection and analysis: XW; manuscriрt drafting: YD. All authors aррroved the final version of the manuscriрt.

    Conflicts of interest:The authors declare that they have no comрeting interests.

    Financial support:This study was suррorted by the National Natural Science Foundation of China, No. 81600747 (to YD) and the Start-Uр Foundation for Doctors of Liaoning Province, China, No. 201501020 (to YD). The funding sources had no role in study conceрtion and design, data analysis or interрretation, рaрer writing or deciding to submit this рaрer for рublication.

    Institutional review board statement:This study was aррroved by the Animal Ethics Committee of Shengjing Hosрital of China Medical University, China(aррroval No. 2016PS074K) on February 25, 2016.

    Copyright license agreement:The Coрyright License Agreement has been signed by all authors before рublication.

    Data sharing statement:Datasets analyzed during the current study are available from the corresрonding author on reasonable request.

    Plagiarism check:Checked twice by iThenticate.

    Peer review:Externally рeer reviewed.

    Open access statement:This is an oрen access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak,and build uрon the work non-commercially, as long as aррroрriate credit is given and the new creations are licensed under the identical terms.

    Open peer reviewer:Michel Desjarlais, Hoрital Maisonneuve-Rosemont,Canada.

    Additional file:Oрen рeer review reрort 1.

    国产片内射在线| 中亚洲国语对白在线视频| av视频免费观看在线观看| 女同久久另类99精品国产91| 两个人看的免费小视频| 久9热在线精品视频| 亚洲精华国产精华精| 五月开心婷婷网| 国产精品久久久av美女十八| 日韩制服丝袜自拍偷拍| 大型黄色视频在线免费观看| 美女视频免费永久观看网站| 五月天丁香电影| 黑人操中国人逼视频| 久久午夜综合久久蜜桃| 女警被强在线播放| 国产黄频视频在线观看| 日本wwww免费看| 成人18禁在线播放| 国产成人av激情在线播放| 亚洲av片天天在线观看| 亚洲精品成人av观看孕妇| 亚洲欧美激情在线| 亚洲专区中文字幕在线| 男人舔女人的私密视频| 亚洲第一av免费看| 欧美午夜高清在线| 一边摸一边抽搐一进一小说 | 久久国产精品男人的天堂亚洲| 久久亚洲精品不卡| 欧美黑人欧美精品刺激| 叶爱在线成人免费视频播放| 电影成人av| 一进一出抽搐动态| 国产熟女午夜一区二区三区| 菩萨蛮人人尽说江南好唐韦庄| 精品国产一区二区久久| 日本撒尿小便嘘嘘汇集6| 亚洲国产av影院在线观看| 老司机午夜十八禁免费视频| 交换朋友夫妻互换小说| 国产日韩欧美亚洲二区| 一个人免费看片子| 国产不卡一卡二| 在线观看免费视频网站a站| 国产日韩欧美在线精品| 国产主播在线观看一区二区| 日本黄色视频三级网站网址 | 香蕉久久夜色| 波多野结衣一区麻豆| 人成视频在线观看免费观看| 国产91精品成人一区二区三区 | 久久久久视频综合| 首页视频小说图片口味搜索| 大码成人一级视频| 久久人人爽av亚洲精品天堂| 国产男女内射视频| svipshipincom国产片| 国产精品久久电影中文字幕 | 波多野结衣一区麻豆| 桃红色精品国产亚洲av| 水蜜桃什么品种好| av不卡在线播放| 久久久久精品国产欧美久久久| av又黄又爽大尺度在线免费看| 国产高清videossex| 黄色a级毛片大全视频| 欧美日韩一级在线毛片| 欧美日韩成人在线一区二区| 啪啪无遮挡十八禁网站| 日韩欧美免费精品| 丝袜美腿诱惑在线| 国产一区二区三区在线臀色熟女 | 久久人妻av系列| xxxhd国产人妻xxx| 亚洲精品久久午夜乱码| 国产免费视频播放在线视频| 久久精品国产综合久久久| 99久久99久久久精品蜜桃| 欧美乱码精品一区二区三区| 国产xxxxx性猛交| 91麻豆精品激情在线观看国产 | 自拍欧美九色日韩亚洲蝌蚪91| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久视频综合| aaaaa片日本免费| 国产一区二区在线观看av| 亚洲国产av影院在线观看| 亚洲情色 制服丝袜| 91大片在线观看| 91大片在线观看| 制服人妻中文乱码| 久久国产精品人妻蜜桃| 国产精品一区二区在线不卡| www.精华液| 一级片'在线观看视频| 欧美成人免费av一区二区三区 | 欧美日本中文国产一区发布| 国产免费av片在线观看野外av| 国产精品香港三级国产av潘金莲| videos熟女内射| 天天影视国产精品| 精品一品国产午夜福利视频| 俄罗斯特黄特色一大片| 国产精品二区激情视频| 大香蕉久久网| 捣出白浆h1v1| 亚洲av成人不卡在线观看播放网| 建设人人有责人人尽责人人享有的| 999精品在线视频| 国产在线一区二区三区精| 免费黄频网站在线观看国产| 国产日韩欧美在线精品| 日韩欧美一区视频在线观看| 久久久久精品人妻al黑| 色精品久久人妻99蜜桃| 男女边摸边吃奶| 欧美成狂野欧美在线观看| 99精品久久久久人妻精品| bbb黄色大片| 精品久久蜜臀av无| 国产成人啪精品午夜网站| 久久99热这里只频精品6学生| www.精华液| 黄片播放在线免费| www.熟女人妻精品国产| 国产在线精品亚洲第一网站| 正在播放国产对白刺激| 天堂8中文在线网| 午夜福利影视在线免费观看| 亚洲精品成人av观看孕妇| 欧美日韩黄片免| 999精品在线视频| 飞空精品影院首页| 日韩欧美国产一区二区入口| 美女午夜性视频免费| 热99久久久久精品小说推荐| 久久毛片免费看一区二区三区| 两个人免费观看高清视频| 99re6热这里在线精品视频| 51午夜福利影视在线观看| 国产精品自产拍在线观看55亚洲 | 亚洲一区二区三区欧美精品| 国产黄色免费在线视频| 香蕉国产在线看| 男人操女人黄网站| 久久精品国产99精品国产亚洲性色 | 精品久久久精品久久久| 人人妻,人人澡人人爽秒播| 欧美av亚洲av综合av国产av| 久久精品aⅴ一区二区三区四区| 国产一区有黄有色的免费视频| 日韩欧美一区视频在线观看| 国产av精品麻豆| 男人操女人黄网站| 国产精品一区二区在线不卡| 美女国产高潮福利片在线看| 亚洲美女黄片视频| 极品少妇高潮喷水抽搐| 国产野战对白在线观看| 国产精品麻豆人妻色哟哟久久| 日韩 欧美 亚洲 中文字幕| 另类亚洲欧美激情| 免费在线观看完整版高清| www.999成人在线观看| 国内毛片毛片毛片毛片毛片| 交换朋友夫妻互换小说| 色精品久久人妻99蜜桃| 久久九九热精品免费| 99香蕉大伊视频| 午夜老司机福利片| 久久久久久亚洲精品国产蜜桃av| 国产区一区二久久| 免费久久久久久久精品成人欧美视频| 淫妇啪啪啪对白视频| 午夜91福利影院| 亚洲自偷自拍图片 自拍| a级毛片黄视频| 丰满饥渴人妻一区二区三| 丰满饥渴人妻一区二区三| 99riav亚洲国产免费| 极品人妻少妇av视频| 国产激情久久老熟女| 男女高潮啪啪啪动态图| 国产av国产精品国产| 91精品国产国语对白视频| 精品卡一卡二卡四卡免费| 又黄又粗又硬又大视频| 亚洲五月色婷婷综合| 亚洲欧美精品综合一区二区三区| 成人av一区二区三区在线看| 国产一区有黄有色的免费视频| 日韩欧美一区二区三区在线观看 | 欧美大码av| 9191精品国产免费久久| 中文字幕精品免费在线观看视频| 老司机在亚洲福利影院| 黄色 视频免费看| 热99久久久久精品小说推荐| 成在线人永久免费视频| 免费在线观看黄色视频的| 精品高清国产在线一区| 丰满少妇做爰视频| 亚洲av成人一区二区三| 成人永久免费在线观看视频 | 天天添夜夜摸| 满18在线观看网站| 色精品久久人妻99蜜桃| 免费观看a级毛片全部| 狂野欧美激情性xxxx| 国产成人av激情在线播放| 午夜日韩欧美国产| 成年人午夜在线观看视频| 亚洲三区欧美一区| 嫩草影视91久久| 国产精品香港三级国产av潘金莲| 天堂动漫精品| 国产男女超爽视频在线观看| 后天国语完整版免费观看| 看免费av毛片| 久久久久久久国产电影| 在线观看一区二区三区激情| 亚洲一码二码三码区别大吗| 中文字幕最新亚洲高清| 亚洲专区中文字幕在线| 亚洲国产精品一区二区三区在线| 精品欧美一区二区三区在线| 欧美精品亚洲一区二区| 久久久国产欧美日韩av| 交换朋友夫妻互换小说| 国产精品免费大片| 麻豆乱淫一区二区| 捣出白浆h1v1| 国产97色在线日韩免费| www日本在线高清视频| 国产在线观看jvid| 两个人免费观看高清视频| 国产一区二区三区在线臀色熟女 | 久久久久久久大尺度免费视频| 成年人免费黄色播放视频| 最新的欧美精品一区二区| 亚洲成国产人片在线观看| 黄色成人免费大全| 国产一卡二卡三卡精品| 久久香蕉激情| 国产免费视频播放在线视频| 午夜视频精品福利| 女人久久www免费人成看片| 久9热在线精品视频| 国产高清videossex| 超碰成人久久| 老熟女久久久| 午夜福利,免费看| 十八禁人妻一区二区| 午夜激情久久久久久久| 午夜91福利影院| 巨乳人妻的诱惑在线观看| 亚洲国产欧美一区二区综合| 精品久久久久久电影网| 国产精品亚洲av一区麻豆| 久久久久精品国产欧美久久久| 一本大道久久a久久精品| 午夜视频精品福利| 18禁国产床啪视频网站| 亚洲欧美一区二区三区黑人| 久久九九热精品免费| 国产单亲对白刺激| 美女福利国产在线| 久热爱精品视频在线9| 十八禁高潮呻吟视频| 黄色视频不卡| 十八禁人妻一区二区| 99久久精品国产亚洲精品| 亚洲欧洲精品一区二区精品久久久| 欧美 亚洲 国产 日韩一| 乱人伦中国视频| 国产午夜精品久久久久久| 后天国语完整版免费观看| 高清在线国产一区| 欧美国产精品va在线观看不卡| 日本五十路高清| 国产午夜精品久久久久久| 成年人黄色毛片网站| 国产精品久久电影中文字幕 | 人成视频在线观看免费观看| 精品国产一区二区久久| 青青草视频在线视频观看| 757午夜福利合集在线观看| 亚洲一区中文字幕在线| 国产视频一区二区在线看| 日韩中文字幕欧美一区二区| 亚洲精品在线观看二区| 国产亚洲欧美在线一区二区| 欧美精品一区二区免费开放| 久久午夜综合久久蜜桃| 激情视频va一区二区三区| kizo精华| 俄罗斯特黄特色一大片| 两人在一起打扑克的视频| 91精品国产国语对白视频| 999精品在线视频| 精品人妻熟女毛片av久久网站| 亚洲一卡2卡3卡4卡5卡精品中文| 热re99久久国产66热| 久久精品熟女亚洲av麻豆精品| 精品福利永久在线观看| av一本久久久久| 欧美 日韩 精品 国产| 国产在线免费精品| 国产欧美日韩综合在线一区二区| 欧美日韩黄片免| 国产欧美日韩一区二区三区在线| 国产在线视频一区二区| 国产成人一区二区三区免费视频网站| 丰满少妇做爰视频| 一个人免费看片子| 国产福利在线免费观看视频| 一级片'在线观看视频| 久久久久网色| 欧美精品高潮呻吟av久久| 夫妻午夜视频| 亚洲成人手机| 精品亚洲乱码少妇综合久久| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 啦啦啦视频在线资源免费观看| 久久久久久久国产电影| 亚洲精品国产精品久久久不卡| 狂野欧美激情性xxxx| 黄色视频在线播放观看不卡| 99re6热这里在线精品视频| 久久久国产成人免费| 一级毛片精品| 黑人巨大精品欧美一区二区mp4| 黄片小视频在线播放| 纵有疾风起免费观看全集完整版| 亚洲成国产人片在线观看| 久久久久网色| 亚洲,欧美精品.| 高清毛片免费观看视频网站 | 五月天丁香电影| 天天影视国产精品| 欧美精品一区二区大全| 日本av手机在线免费观看| 精品人妻1区二区| 一夜夜www| aaaaa片日本免费| 亚洲av片天天在线观看| 韩国精品一区二区三区| 国产三级黄色录像| 三级毛片av免费| 美女福利国产在线| 亚洲av欧美aⅴ国产| 国产精品自产拍在线观看55亚洲 | 一级片免费观看大全| 日本av手机在线免费观看| 欧美+亚洲+日韩+国产| 亚洲中文av在线| 91国产中文字幕| 国产一区二区三区综合在线观看| 亚洲欧美色中文字幕在线| 成年人免费黄色播放视频| 欧美人与性动交α欧美精品济南到| 亚洲色图综合在线观看| 大型黄色视频在线免费观看| 日本a在线网址| 日韩中文字幕视频在线看片| 搡老熟女国产l中国老女人| 国产男靠女视频免费网站| 国产一区二区激情短视频| 无人区码免费观看不卡 | 亚洲久久久国产精品| 成人国产av品久久久| 国产免费av片在线观看野外av| 国产av又大| 久久 成人 亚洲| 悠悠久久av| 亚洲九九香蕉| 日韩大片免费观看网站| 不卡av一区二区三区| 中文字幕人妻丝袜一区二区| 欧美黄色淫秽网站| 一本久久精品| 亚洲精品久久成人aⅴ小说| 午夜老司机福利片| 夜夜骑夜夜射夜夜干| 国产精品久久久人人做人人爽| 人人妻人人澡人人看| 国产日韩欧美视频二区| 久久中文字幕人妻熟女| svipshipincom国产片| 精品亚洲成国产av| 欧美乱妇无乱码| 九色亚洲精品在线播放| 女性生殖器流出的白浆| 少妇的丰满在线观看| 黄网站色视频无遮挡免费观看| 大香蕉久久网| 亚洲av成人不卡在线观看播放网| 99精国产麻豆久久婷婷| 欧美成人免费av一区二区三区 | 色综合欧美亚洲国产小说| 久久国产精品影院| 啦啦啦 在线观看视频| 国产区一区二久久| 天天躁日日躁夜夜躁夜夜| avwww免费| 国产黄频视频在线观看| 99国产精品99久久久久| 免费黄频网站在线观看国产| 国产精品久久久久久人妻精品电影 | 青青草视频在线视频观看| 天天躁夜夜躁狠狠躁躁| 性色av乱码一区二区三区2| 大码成人一级视频| 国产一区二区三区视频了| 国产欧美日韩一区二区三区在线| 高清黄色对白视频在线免费看| 黄色毛片三级朝国网站| 少妇粗大呻吟视频| 免费观看人在逋| svipshipincom国产片| 欧美亚洲日本最大视频资源| 岛国毛片在线播放| 久久久久视频综合| 久久国产精品影院| 国产午夜精品久久久久久| 亚洲成国产人片在线观看| av免费在线观看网站| 日韩三级视频一区二区三区| 亚洲人成伊人成综合网2020| av不卡在线播放| 国产91精品成人一区二区三区 | 久久影院123| 91字幕亚洲| 国产免费福利视频在线观看| 成人影院久久| 伊人久久大香线蕉亚洲五| 高清黄色对白视频在线免费看| 制服人妻中文乱码| 黑人巨大精品欧美一区二区蜜桃| 精品免费久久久久久久清纯 | 丰满人妻熟妇乱又伦精品不卡| 美女视频免费永久观看网站| 叶爱在线成人免费视频播放| 午夜成年电影在线免费观看| 老司机靠b影院| 亚洲精品在线观看二区| 90打野战视频偷拍视频| av网站在线播放免费| 免费在线观看影片大全网站| 夜夜爽天天搞| 热re99久久国产66热| 国产精品国产av在线观看| 日韩一卡2卡3卡4卡2021年| 侵犯人妻中文字幕一二三四区| 人人妻人人澡人人爽人人夜夜| 在线播放国产精品三级| 自线自在国产av| 男女边摸边吃奶| 在线观看舔阴道视频| 亚洲第一青青草原| 国产精品一区二区在线不卡| 成年动漫av网址| 欧美日韩亚洲国产一区二区在线观看 | 成年动漫av网址| 一本—道久久a久久精品蜜桃钙片| 在线观看人妻少妇| 首页视频小说图片口味搜索| 丁香欧美五月| 91麻豆av在线| 国产又爽黄色视频| 日韩中文字幕视频在线看片| 亚洲美女黄片视频| 久久久久视频综合| 极品少妇高潮喷水抽搐| 成人国语在线视频| 天天躁狠狠躁夜夜躁狠狠躁| 在线观看免费午夜福利视频| 韩国精品一区二区三区| 视频区图区小说| 悠悠久久av| 欧美日韩福利视频一区二区| 国产深夜福利视频在线观看| 最新在线观看一区二区三区| 色在线成人网| 2018国产大陆天天弄谢| 久久久精品免费免费高清| 久久午夜综合久久蜜桃| 国产精品二区激情视频| 99精品在免费线老司机午夜| 欧美日韩中文字幕国产精品一区二区三区 | 操美女的视频在线观看| 亚洲精品中文字幕在线视频| 久久午夜亚洲精品久久| 午夜视频精品福利| 午夜老司机福利片| tube8黄色片| e午夜精品久久久久久久| 在线观看人妻少妇| 欧美一级毛片孕妇| 人妻 亚洲 视频| www.精华液| 在线永久观看黄色视频| 久久ye,这里只有精品| 亚洲第一青青草原| 久久99热这里只频精品6学生| 日本黄色日本黄色录像| 免费一级毛片在线播放高清视频 | 久久亚洲真实| 男人操女人黄网站| 亚洲专区国产一区二区| 99国产精品一区二区蜜桃av | 男女边摸边吃奶| 无限看片的www在线观看| 久久人妻福利社区极品人妻图片| 色视频在线一区二区三区| 久热这里只有精品99| 精品久久蜜臀av无| 久久久国产欧美日韩av| 日韩有码中文字幕| 建设人人有责人人尽责人人享有的| 精品福利永久在线观看| 夜夜骑夜夜射夜夜干| 国产免费现黄频在线看| av国产精品久久久久影院| 国产免费av片在线观看野外av| 精品国产一区二区久久| 亚洲专区中文字幕在线| 热99re8久久精品国产| 亚洲精品在线美女| 国产精品 国内视频| 免费日韩欧美在线观看| 国产精品.久久久| 制服人妻中文乱码| 99re在线观看精品视频| 久久久久久亚洲精品国产蜜桃av| 韩国精品一区二区三区| 亚洲人成电影免费在线| 国产精品久久久久久精品古装| 中国美女看黄片| 老司机亚洲免费影院| 人妻一区二区av| 亚洲 欧美一区二区三区| 欧美日韩中文字幕国产精品一区二区三区 | 精品少妇黑人巨大在线播放| 久久ye,这里只有精品| 国产免费av片在线观看野外av| 午夜成年电影在线免费观看| 国产主播在线观看一区二区| aaaaa片日本免费| 午夜精品国产一区二区电影| 欧美成狂野欧美在线观看| 在线观看免费视频日本深夜| 国产亚洲精品久久久久5区| 夫妻午夜视频| 国产成人系列免费观看| 一进一出抽搐动态| 亚洲色图av天堂| 性高湖久久久久久久久免费观看| 国产成人av激情在线播放| 一本一本久久a久久精品综合妖精| 夫妻午夜视频| 久久精品国产亚洲av香蕉五月 | 精品久久蜜臀av无| 亚洲美女黄片视频| 欧美日韩一级在线毛片| 亚洲精品中文字幕在线视频| 制服诱惑二区| 欧美日韩黄片免| 欧美精品一区二区免费开放| 又紧又爽又黄一区二区| 久久免费观看电影| 欧美日韩av久久| 久久亚洲真实| 午夜激情av网站| 欧美精品人与动牲交sv欧美| 老司机在亚洲福利影院| 交换朋友夫妻互换小说| 欧美日韩精品网址| 亚洲国产欧美一区二区综合| 水蜜桃什么品种好| 亚洲精品自拍成人| 少妇 在线观看| 1024视频免费在线观看| 亚洲欧美日韩另类电影网站| 国产精品 国内视频| 侵犯人妻中文字幕一二三四区| 夜夜爽天天搞| 麻豆成人av在线观看| 一区二区三区精品91| 丰满饥渴人妻一区二区三| 国产色视频综合| 不卡一级毛片| 麻豆国产av国片精品| 妹子高潮喷水视频| 亚洲一卡2卡3卡4卡5卡精品中文| 飞空精品影院首页| 日韩有码中文字幕| 亚洲av成人不卡在线观看播放网| 性少妇av在线| tube8黄色片| 大片电影免费在线观看免费| 久久精品熟女亚洲av麻豆精品| 亚洲国产中文字幕在线视频| 久久精品国产亚洲av香蕉五月 | 18禁裸乳无遮挡动漫免费视频| 在线观看一区二区三区激情| 国产精品免费大片| 国产不卡av网站在线观看| 精品第一国产精品| 日本精品一区二区三区蜜桃| 国产精品电影一区二区三区 | 深夜精品福利| 亚洲 欧美一区二区三区|