• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A Nano-Micro Engineering Nanofiber for Electromagnetic Absorber, Green Shielding and Sensor

    2021-01-18 07:10:54MinZhangChenHanWenQiangCaoMaoShengCaoHuiJingYangJieYuan
    Nano-Micro Letters 2021年2期

    Min Zhang, Chen Han, Wen-Qiang Cao, Mao-Sheng Cao , Hui-Jing Yang , Jie Yuan

    ABSTRACT It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from - 52.72 to - 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.

    KEYWORDS Electromagnetic absorber; Electromagnetic shielding; NiCo2O4 nanofiber; Sensor

    1 Introduction

    Porous nanostructures, with great potential for supercapacitors, electromagnetic (EM) attenuation, catalysis, and biological medicine, are attracting growing interest [1—11]. A thorough comprehension of the growth mechanism significantly facilitates the tailoring of porous morphology and analysis of material properties. Especially for EM properties, the superiority of porous nanostructures including lightweight, high specific surface, and rich electron transmission channels exposes the significance in promoting the innovation of EM functional materials.

    EM functional materials have always been a hot spot in the information explosion era, and their applications in ultra-long-distance energy transmission, military stealth camouflage, and anti-interference of electrical equipment cannot be ignored [12—19]. Generally, the EM absorption mechanism fatefully depends on the impedance matching level, and incident EM wave is attenuated by dielectric or/and magnetic losses [20—28]. Many meritorious electromagnetic absorbing materials are emerging in recent decades, such as carbon materials, metal-based material, and polymers. [29—32]. Chen’s group conducted a series of studies to explore microwave absorbing materials [33—38]. Particularly, polyaniline and polypyrrole exhibit strong microwave absorption, while polyoxometalates and organic metal halide feature multi-band microwave absorption.

    Compared with EM absorbing materials, the performance of shielding materials is contributed not only by effective absorption but by reflection [39—43]. The robust reflection caused by remarkable electrical property enables them to be integrated into contact lenses and clothing to protect life from EM radiation [44, 45]. However, the strong secondary reflection adds extra insecurity to the environment. Thus, “green” shielding materials emerge by tailoring the nanostructure to raise effective absorption but reflection [46]. It is unattainable for the EM absorption material to have the EM interference (EMI) shielding performance concurrently due to the feature that reflection and absorption are opposites, and conductivity (σ) simultaneously dominates conduction loss (εc′′) and reflection. That is, there is a competition effect between conduction loss and reflection, and the balance betweenεc′′ and reflection is hard to obtain.

    Integrating EM property with electronic devices is an inevitable trend for innovation and breakthroughs in advanced electromagnetic devices [47]. However, such research associated with the EM multifunctional material or device is very limited, although EM functional materials are in a booming stage. The single function mode hardly captures the rapid development of EM devices.

    Herein, a new dual-template nano-micro engineering is presented to tailor the internal structure of porous NiCo2O4nanofiber. With customizing the template state, the polarization and charge transport properties are modulated. By analyzing the balance ofεc′′ and reflected EM wave, the shielding function is turned on by the “switch” ofσ. Thus, EM absorbing and shielding can be achieved simultaneously. The mechanism of the state transition from EM absorption to shielding is gotten insight into. A patterned strain induction device, integrating the intrinsic EM absorption performance and resonance coupling effect of patterned structure, is designed. This sensor enables wireless and real-time detection of strain, potentially used in monitoring the state of large devices in harsh environments.

    2 Experimental Section

    2.1 Synthesis of NiCo2O4

    The precursor was synthesized by electrospinning method. In particular, polyacrylonitrile (500 mg) and DMF (10 mL) were stirred for 12 h at 55 °C. 560 mg of Co(Ac)2·4H2O and 240 mg of Ni(Ac)2·4H2O were added to the mixture with stirring for 6 h. Then, the solution was injected into the syringe to start electrospinning. The feeding speed was set to 0.1 mm min-1, and the voltage was set to 16 kV. The as-spun precursor was achieved after dried for 12 h at 60 °C. The Ni-Co@C was synthesized by a two-step calcination method. Firstly, the precursor was heat treated at 180 °C for 2 h in N2. Then, it was heat treated at 500, 600, and 700 °C, respectively, for 2 h in N2. The Ni-Co@C nanofiber was obtained. Finally, porous NiCo2O4nanofiber was heat treated at 400 °C in air.

    2.2 Fabrication of NiCo2O4 Composites

    NiCo2O4powders with different loading content (50, 70, and 90 wt%) were mixed with paraffin wax. Modest doses of C4H10O were added to the NiCo2O4-paraffin mixture with ultrasound until a uniform powder was obtained. Then, it was pressed into a toroidal EM mold. The inner diameter of the toroidal composite is 3.00 mm, and the outer diameter is 7.00 mm.

    2.3 Characterization

    The morphology and microstructure of Ni-Co@C and NiCo2O4were observed by scanning electron microscopy (SEM; HITACHI S-4800) and transmission electron microscopy (TEM; JEOL-2100). The crystal structure, elements, and composition were analyzed by an X-ray diffractometer (XRD; X’Pert PRO), X-ray photoelectron spectrometer (XPS; PHI Quanteral II (Japan)), Raman spectrometer (Renishaw Raman RE01), and Mettler Toledo thermal analysis TGA/DSC system.

    2.4 Calculation of Dielectric Properties

    εp′′ andεc′′ are the dielectric loss contributed by polarization relaxation and charge transport, respectively, which can be obtained according to Debye theory (Eqs. 1—3):

    whereεsis the relative permittivity at static, andε∞is that at “infinite” high frequency.τis the relaxation time.fis the frequency.σis the DC conductivity, andε0is the vacuum permittivity.

    2.5 Calculation of Reflection Loss

    The input impedance is calculated by Eq. 4:

    wherecis the light velocity anddis the thickness of the sample. The reflection loss (RL) is calculated by Eq. 5:

    2.6 Calculation of Electromagnetic Interference Shielding Performance

    EMI shielding effectiveness (SE), SEA, and SERcan be calculated by Eqs. 6—8,

    2.7 Calculation of Aeff

    The effective absorption efficiencyAeffis calculated by Eq. 9:

    whereRandTare the reflection and transmission coefficient.

    3 Results and Discussion

    3.1 Structure Characterization

    The growth process and compositional evolution of NiCo2O4are shown in Fig. 1a. Precursor nanofibers composed of polyacrylonitrile (PAN) and metal ions (Ni2+:Co2+= 1:2) are prepared by electrospinning strategy (Fig. 1b). After calcined for 4 h in N2, PAN nanofiber is carbonized with removal of non-carbon elements and Ni2+/Co2+ions are reduced to Ni/Co, giving rise to the formation of Ni-Co@C nanofiber (Fig. 1c) [48, 49]. Then, the oxidation is proceeded by heating Ni-Co@C at 400 °C in air (Fig. 1a). C fiber is used as a template to support the oxidation and assembly of bimetallic particles. The SEM images in Fig. 1d, e show the in situ assembly process of oxide nanoparticles into a fibrous structure. Ni—Co particles on the nanofiber surface are oxidized first. Then, C fiber is gradually burned with the metal particles inside being exposed and oxidized continuously until the reaction is complete.

    When obtaining Ni—Co@C, calcination temperature can effectively tailor the C template size. In Fig. 2a, by raising the temperature, the purification of carbonized PAN continues, and the carbon consumption in reducing metal ions increases as the reaction progress more completely, resulting in thinner C nanofiber [48]. The corresponding morphology is revealed in Fig. 2b. The density of Ni-Co nanoparticles denoted by the bright white dots increases with the raised temperature, indicating that the thinner C fibers expose more metallic particles. The TEM images in Fig. 2f, g confirm that Ni—Co particles denoted by the dark spots are implanted on and inside the C fibers randomly, with the interplanar spacing of 0.204 nm, in accordance with the (111) planes of face-centered cubic. This suggests that Ni replaces part of cobalt atoms to form Fm-3 m NiCo2alloy [50]. The final oxidation products corresponding to 500, 600, and 700 °C are denoted by N1, N2, and N3, respectively.

    During the assembly of bimetallic oxide nanoparticles, there are two categories of the oxidation morphologies (Fig. 2c). When metal particles begin to oxidize, their edges preferentially nucleate to form a core—shell (metal—metal oxide) structure. The thin oxide shell acts as a template to support subsequent reactions. (i) For continuous shells, due to the Kirkendall effect that diffusion coefficient of Ni/Co is higher compared to oxygen, the central metal atoms can diffuse outward through the shell and are oxidized, generating a hollow particle with an expanding cavity [51—54]. Figure 2d shows the TEM images of hollow oxide particles with different diameters of 17.80, 18.61, and 16.69 nm. (ii) For shells with cracks, oxygen can enter the shell through the cracks, and the metal core is locally oxidized to form multiple cavities [54]. Figure 2e shows the presence of multiple-cavity in one oxide particle with the diameter ranging from 8.10 to 14.51 nm. Furthermore, because of oxygen adsorptioninduced segregation effect, Co element is preferentially distributed on the outer edge of the shell rather than evenly distributed [55]. The TEM images in Fig. 2h show the overall morphology of the nanofibers assembled by the hollow/multilocular bimetallic oxide nanoparticles. Such porous nanofibers are characterized by high specific surface and abundant electron transmission paths, leading to the improvement of materials’ properties, especially the electrical property. Figure 2i shows that nanofibers are not smooth, and the interplanar spacings of the oxide nanoparticle are 0.468 and 0.286 nm, respectively, indexed to the (111) and (220) planes of NiCo2O4. The corresponding analyses of XRD, Raman, and XPS spectra are shown in Fig. S1 [56—60].

    Fig. 1 a Growth process for NiCo2O4, and the corresponding cross-sectional view with different molecular structure. b-e SEM images corresponding to each growth process

    3.2 Electromagnetic Absorption Performance

    Since the fibrous morphology of N3 collapses (Fig. S2a—c), we only investigate the EM response of N1/N2. Figure 3a—c shows the EM responses of N1/N2-paraffin composites with loading content of 50, 70, and 90 wt%. As the loading content of NiCo2O4rises, ε′ and ε″ increase. For each composite,ε′ is trending downward due to the declined conductance and polarization response at high frequency. For characterizing the dielectric lossε′′, “material genes” of polarization and conduction loss (εp′′ andεc′′) are analyzed separately (Eqs. 1—3).εp′′ is characterized by the relaxation peaks (I, II, and III). The multiple relaxation behaviors are arising from the inner friction of the dipole orientation polarization.εc′′ is characterized by the declining trend ofε′′ due to the reduced conductance response. The relaxation peaks are becoming inconspicuous of 70/90 wt% composites owing to the relatively improvedσmasking the peaks. Therefore, the synergy and competitive effect of polarization and conduction “genes” enable the modulation of the EM response. Figure 3d—i and S3 show that all composites possess dual absorption bands. The maximum RL reaches - 52.72 dB (70 wt% N1). The ordinary RL of 70/90 wt% N2 (- 15.13 and - 10.50 dB) originates from the growing reflection caused by the impedance mismatching between the material and free space.

    Fig. 2 a Effect of the calcination temperature on the C template. b Corresponding SEM images. Scale bar is 1 um. c Schematic of different oxidation processes affected by the continuity of the oxide shell. d Morphologies of hollow particles with different diameter. Scale bar is 20 nm. e Morphologies of multiple-cavity particles. Scale bar is 20 nm. f-g TEM images of Ni-Co@C. h-i TEM images of NiCo2O4

    Figure 4 shows the EM attenuation mechanism of the composite. When dispersed in paraffin matrix, the one-dimensional NiCo2O4and the rugged surface assembled by porous nanoparticles raise the probability of multiple reflections and scattering in the composite (Fig. 4a). In crystalline NiCo2O4, electrons absorb EM energy for transporting, including hopping the barrier and migrating in the network (Fig. 4b). The multi-cavity feature of NiCo2O4nanoparticles not only reduces the density of the material, but also provides more channels for electron transmission, thus effectively improving the electron transmission efficiency. Figure 4d shows the ratio of the contribution ofεp′′ andεc′′ to the dielectric loss. It reveals that NiCo2O4is a polarization-dominated EM absorbing material, since the preparation process will introduce abundant defects and groups to form dipoles (Fig. 4c). The cole—cole curves of 50 wt% N1 in Fig. 4e are derived from the polarization relaxation peaks at ~ 2.4, 4.2, and 14.8 GHz. Figure 4f—h shows three different types of dipoles, including asymmetric charge distribution on phase boundaries with different atomic arrangements, Ni atom vacancy (VNi), and oxygen vacancy (VO). In addition, there are other relaxation derived from metal ions of different valence states (Ni2+/3+, Co2+/3+) and impurity functional groups, which will attenuate EM energy by polarizing.

    Fig. 3 a-c ε′ and ε′′ of N1 and N2 composites with different loading concentrations of 50 wt%, 70 wt%, and 90 wt%. d-f RL of N1 with different loading concentrations. g-i RL of N2 with different loading concentrations

    3.3 Electromagnetic Interference Shielding Performance

    Fig. 4 EM attenuation mechanism of NiCo2O4 nanofibers. a Multiple reflection and scattering. b Conductive network and charge transport. c Polarization induced by defects. d The contribution of εp′′ and εc′′ to ε′′. The suffixes - 50, - 70, and - 90 represent the loading concentration of the composites. e Cole—cole curves of 50 wt% N1. f Interfacial polarization observed from TEM image. g, h Difference charge density around Ni vacancy (VNi) and oxygen vacancy (VO)

    3.4 Electromagnetic Sensor

    The excellent EM performance allows us to conceive new functional materials and EM-driven devices. By integrating the resonant coupling effect of patterned structure into the intrinsic EM properties of NiCo2O4composite, a strain sensor is designed to wireless record of pressure (Fig. 6a and S5). The structure can be equivalent to an electrical circuit, containing the resistance (R) of each component, the capacitance (C), and inductance (L) of zigzag pattern as well as the synergy of N1 and copper layers (Fig. 6b). The CST Microwave Studio for electric and magnetic field shows that the electric vectors resonate in thex-axis direction (Fig. 6c), while the magnetic vectors resonate in thez-axis direction (Fig. 6d). The corresponding energy density distributions demonstrate that electric component loss is concentrated in the patterned layer, and the magnetic component loss mainly occurs in the upper part due to the strong induced magnetic field by copper layer and N1 substrate. When the distance between the two N1 layers is compressed, the induced electric field caused by the magnetic vectors will overlap with the original electric vectors, thereby increasing the inductance coupling and modulating the response of reflection. Figure 6e shows the reflection spectra recorded from the structure. The resonance frequency shifts ~ 1 GHz by tuning the parameterlfrom 0.4 to 1.4 mm. Figure 6f shows that the resonance frequency is blue shifted and exhibits a linear response toldue to the raised inductance coupling. To construct a strain sensing EM device, the space between the two N1 layers is filled with a silicon rubber. When the silicon rubber is compressed with strain, the increment of the resonance frequency (ΔFrequency) is proportional to the strain (S), Δfr~ (0.012 ± 5E - 4)S(Fig. 6g). Compared to traditional sensors, this electromagnetic sensor with quick feedback shows greater competitiveness due to the ultrashort polarization establishment time of ~ 10-9s. Thus, the strain sensor is a promising application in real-time and wireless pressure measurement for the 5G era.

    Fig. 5 a Average EMI SE, SEA, and SER of different NiCo2O4 composites. b Average effective absorption and absorption coefficient of different composites. c σ of the NiCo2O4 composites. Sort in ascending order. Inset: schematic of the effect of σ on material properties. d SER and reflection coefficient versus σ. e Tendency of EM absorbing and shielding caused by charge transport. f gs of each sample. Inset, schematic of EM wave incidence, reflection, transmission, and absorption

    4 Conclusion

    In summary, a multifunctional NiCo2O4nanofiber is successfully fabricated via dual-template method. By controlling the template state, EM response of NiCo2O4can be tuned. In particular, the increased charge transport capacity not only plays a dominant role inεc′′ to promote EM attenuation, but reduces the degree of impedance matching, thus enhancing the EM reflection. Based on the results, the EM absorbing and green shielding functions of NiCo2O4composite can be customized and coexistence. More importantly, a strain sensor device constructed by patterned NiCo2O4composites is demonstrated. These findings open new horizons for design of multifunctional EM materials and will promote to expand the functions of NiCo2O4to various fields, including metamaterials, sensing, and EM attenuation.

    AcknowledgementsThis work was supported by National Natural Science Foundation of China (No. 51977009, 11774027, 51372282, and 51132002). The authors gratefully acknowledge Prof. Yuping Dong and Dr. Wenbo Dai for the photoluminescence and UV—Vis tests.

    Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons.org/licen ses/by/4.0/.

    Fig. 6 a Schematic illustration for the sensor. b Equivalent circuit model of the device. c Simulated electric field, electric energy density distributions. d Simulated magnetic field, magnetic energy density distributions. e Reflection spectra vs. frequency at l = 0.4—1.4 mm. f Distancesensitive resonance frequency response. g Strain-response curves

    Electronic supplementary materialThe online version of this article (https://doi.org/10.1007/s4082 0-020-00552-9) contains supplementary material, which is available to authorized users.

    中文字幕人妻熟人妻熟丝袜美| 久久99精品国语久久久| 久久久精品94久久精品| 1024手机看黄色片| 国产成人a区在线观看| 亚洲成色77777| 日本五十路高清| 国产亚洲午夜精品一区二区久久 | 亚洲乱码一区二区免费版| 色吧在线观看| 国内精品宾馆在线| 亚洲天堂国产精品一区在线| 网址你懂的国产日韩在线| 欧美日韩在线观看h| 丰满乱子伦码专区| 久久人人爽人人片av| 亚洲最大成人av| 99久久无色码亚洲精品果冻| 韩国av在线不卡| 麻豆精品久久久久久蜜桃| 99久久人妻综合| 日韩一区二区视频免费看| 欧美三级亚洲精品| 高清日韩中文字幕在线| 一个人观看的视频www高清免费观看| 日本黄色片子视频| 久久久久国产网址| 久久精品夜夜夜夜夜久久蜜豆| 日本免费a在线| 亚洲国产精品成人久久小说| 久久久精品大字幕| 22中文网久久字幕| 亚洲内射少妇av| 欧美xxxx黑人xx丫x性爽| 亚洲av电影不卡..在线观看| 99久久九九国产精品国产免费| 97人妻精品一区二区三区麻豆| av在线天堂中文字幕| 少妇人妻精品综合一区二区| 国产欧美日韩精品一区二区| 天天躁夜夜躁狠狠久久av| 又粗又硬又长又爽又黄的视频| 久久久久九九精品影院| 国产淫语在线视频| 国产精品一区二区性色av| 黑人高潮一二区| 男人的好看免费观看在线视频| 国产精品永久免费网站| 熟女电影av网| 爱豆传媒免费全集在线观看| 午夜爱爱视频在线播放| 免费av观看视频| 日韩精品青青久久久久久| 色综合站精品国产| 最近2019中文字幕mv第一页| 日韩成人伦理影院| 欧美日本亚洲视频在线播放| 久久精品久久精品一区二区三区| 91精品国产九色| 国产免费男女视频| 久久亚洲精品不卡| 插阴视频在线观看视频| 免费人成在线观看视频色| 午夜福利网站1000一区二区三区| 成人特级av手机在线观看| 日韩 亚洲 欧美在线| 看片在线看免费视频| 22中文网久久字幕| 日本av手机在线免费观看| 国产单亲对白刺激| .国产精品久久| 久久99热这里只有精品18| av卡一久久| 日本三级黄在线观看| 国产精品1区2区在线观看.| 日本wwww免费看| 毛片一级片免费看久久久久| 九九爱精品视频在线观看| 波野结衣二区三区在线| 国产高清视频在线观看网站| 亚洲欧美中文字幕日韩二区| 在线播放无遮挡| 日韩av在线免费看完整版不卡| or卡值多少钱| 亚洲av不卡在线观看| www.av在线官网国产| 欧美bdsm另类| 午夜福利视频1000在线观看| a级一级毛片免费在线观看| 久久热精品热| 丰满乱子伦码专区| 国产69精品久久久久777片| 内射极品少妇av片p| 亚洲精品日韩av片在线观看| 日韩欧美精品免费久久| 久久这里有精品视频免费| 日本免费一区二区三区高清不卡| 欧美一区二区亚洲| 亚洲不卡免费看| 欧美区成人在线视频| 在线免费观看的www视频| 免费观看的影片在线观看| 成人美女网站在线观看视频| 只有这里有精品99| 日本av手机在线免费观看| 国产91av在线免费观看| 精品不卡国产一区二区三区| 亚洲欧洲日产国产| 亚洲国产成人一精品久久久| 国内精品美女久久久久久| 有码 亚洲区| 国产乱来视频区| 人人妻人人看人人澡| 久久99精品国语久久久| videossex国产| 日本一本二区三区精品| 黄片无遮挡物在线观看| 一边摸一边抽搐一进一小说| 国产淫语在线视频| 五月伊人婷婷丁香| 国产精品嫩草影院av在线观看| 免费人成在线观看视频色| 久久欧美精品欧美久久欧美| 日韩av在线大香蕉| 久久人妻av系列| 夜夜看夜夜爽夜夜摸| 国产一区亚洲一区在线观看| 久久99热6这里只有精品| 看免费成人av毛片| 国产精品国产三级国产av玫瑰| 精品欧美国产一区二区三| 国产精品野战在线观看| 看非洲黑人一级黄片| 99国产精品一区二区蜜桃av| 国产伦精品一区二区三区四那| 亚洲精品久久久久久婷婷小说 | 精品国内亚洲2022精品成人| 亚洲精品乱码久久久久久按摩| 免费观看人在逋| 精品99又大又爽又粗少妇毛片| 小说图片视频综合网站| 淫秽高清视频在线观看| 国产乱人偷精品视频| 国产免费福利视频在线观看| 视频中文字幕在线观看| 十八禁国产超污无遮挡网站| 村上凉子中文字幕在线| 99久久精品国产国产毛片| 免费一级毛片在线播放高清视频| 美女大奶头视频| 午夜福利在线观看吧| 亚洲丝袜综合中文字幕| 最新中文字幕久久久久| 亚洲人与动物交配视频| 成人高潮视频无遮挡免费网站| av在线蜜桃| 狂野欧美激情性xxxx在线观看| 91精品国产九色| 99视频精品全部免费 在线| 久久精品影院6| 免费在线观看成人毛片| 九九在线视频观看精品| 欧美精品国产亚洲| 久久99热6这里只有精品| 黄色日韩在线| 久久亚洲精品不卡| 国产高清有码在线观看视频| 一区二区三区免费毛片| a级毛色黄片| 亚洲美女搞黄在线观看| 亚洲欧美成人精品一区二区| 大话2 男鬼变身卡| 七月丁香在线播放| 欧美成人a在线观看| 女人被狂操c到高潮| 免费一级毛片在线播放高清视频| 国产免费福利视频在线观看| 久久99热这里只有精品18| 国产黄片视频在线免费观看| 国产黄色视频一区二区在线观看 | 国产精品国产三级国产av玫瑰| 性插视频无遮挡在线免费观看| 蜜桃亚洲精品一区二区三区| 高清视频免费观看一区二区 | 久久久久久久午夜电影| 日本三级黄在线观看| 国内少妇人妻偷人精品xxx网站| 日本av手机在线免费观看| 国产又黄又爽又无遮挡在线| www日本黄色视频网| 久久国内精品自在自线图片| 国产亚洲精品av在线| 精品久久久久久电影网 | 黄片无遮挡物在线观看| 99久久精品国产国产毛片| 亚洲无线观看免费| 国产精品国产三级国产av玫瑰| 久久精品国产亚洲网站| 成年女人看的毛片在线观看| 日日干狠狠操夜夜爽| 午夜精品一区二区三区免费看| 亚洲欧美精品专区久久| 99在线视频只有这里精品首页| 欧美人与善性xxx| 我的女老师完整版在线观看| 女的被弄到高潮叫床怎么办| 久久精品人妻少妇| 国产精华一区二区三区| 久久久久久久久久久免费av| 一级毛片久久久久久久久女| 99热精品在线国产| 精品一区二区免费观看| 国产精品蜜桃在线观看| 亚洲精品亚洲一区二区| 久久久色成人| 亚洲av二区三区四区| 久久久久久久午夜电影| 久久精品国产鲁丝片午夜精品| 男人舔奶头视频| 成人无遮挡网站| 免费av观看视频| av免费在线看不卡| 亚洲久久久久久中文字幕| 成人毛片60女人毛片免费| 精品免费久久久久久久清纯| 波多野结衣巨乳人妻| 精品久久久久久电影网 | 亚洲伊人久久精品综合 | 人妻夜夜爽99麻豆av| 免费观看性生交大片5| 午夜精品一区二区三区免费看| 五月伊人婷婷丁香| 桃色一区二区三区在线观看| 午夜福利高清视频| 男插女下体视频免费在线播放| 亚洲无线观看免费| 成人特级av手机在线观看| 日韩欧美国产在线观看| 国内揄拍国产精品人妻在线| 成年免费大片在线观看| 国产三级中文精品| 亚洲va在线va天堂va国产| 高清视频免费观看一区二区 | 亚洲欧美中文字幕日韩二区| 欧美最新免费一区二区三区| 中国国产av一级| 一级爰片在线观看| 久久99热这里只有精品18| 成年免费大片在线观看| 亚洲精品日韩在线中文字幕| 国产人妻一区二区三区在| 成年版毛片免费区| 狠狠狠狠99中文字幕| 午夜视频国产福利| 亚洲18禁久久av| 欧美成人免费av一区二区三区| 欧美精品一区二区大全| 亚洲av免费高清在线观看| 99久久九九国产精品国产免费| 丰满乱子伦码专区| 免费人成在线观看视频色| 亚洲怡红院男人天堂| 99热全是精品| 亚洲激情五月婷婷啪啪| 国产亚洲av嫩草精品影院| 不卡视频在线观看欧美| 国产亚洲最大av| 国产一区有黄有色的免费视频 | 亚洲精品色激情综合| 欧美极品一区二区三区四区| 亚洲精品日韩av片在线观看| 啦啦啦啦在线视频资源| 神马国产精品三级电影在线观看| 能在线免费观看的黄片| 成人毛片60女人毛片免费| videossex国产| 国产成人freesex在线| 久久久久久大精品| 精品久久久噜噜| 久久这里只有精品中国| 亚洲精品456在线播放app| 日韩一本色道免费dvd| 插阴视频在线观看视频| 三级男女做爰猛烈吃奶摸视频| 欧美一区二区亚洲| 97超碰精品成人国产| 亚洲av成人av| 久久久久久久亚洲中文字幕| 久久久久久伊人网av| 亚洲av不卡在线观看| 人人妻人人澡欧美一区二区| 免费黄色在线免费观看| 身体一侧抽搐| 一本一本综合久久| 美女脱内裤让男人舔精品视频| 欧美激情在线99| 国产av一区在线观看免费| 寂寞人妻少妇视频99o| 少妇猛男粗大的猛烈进出视频 | 乱系列少妇在线播放| 美女脱内裤让男人舔精品视频| 亚洲欧美日韩卡通动漫| 一个人看视频在线观看www免费| 久久久精品94久久精品| 小蜜桃在线观看免费完整版高清| 日本猛色少妇xxxxx猛交久久| 亚洲美女搞黄在线观看| 国产精品av视频在线免费观看| 干丝袜人妻中文字幕| 22中文网久久字幕| 国产美女午夜福利| 亚洲国产精品合色在线| 国产黄片视频在线免费观看| 伊人久久精品亚洲午夜| 免费大片18禁| 色5月婷婷丁香| 男女边吃奶边做爰视频| 国产激情偷乱视频一区二区| 又粗又硬又长又爽又黄的视频| 最近最新中文字幕大全电影3| 少妇丰满av| 欧美3d第一页| 黄片无遮挡物在线观看| 久久精品国产99精品国产亚洲性色| 婷婷色麻豆天堂久久 | 深夜a级毛片| 国产真实乱freesex| 99视频精品全部免费 在线| 国产成人a∨麻豆精品| 亚洲在久久综合| 美女xxoo啪啪120秒动态图| 一级毛片aaaaaa免费看小| 亚洲av福利一区| av在线老鸭窝| 爱豆传媒免费全集在线观看| 久久久精品大字幕| АⅤ资源中文在线天堂| 99热精品在线国产| 国产一区二区亚洲精品在线观看| 午夜视频国产福利| 最近视频中文字幕2019在线8| 亚洲丝袜综合中文字幕| a级毛片免费高清观看在线播放| 亚洲丝袜综合中文字幕| 成人特级av手机在线观看| av专区在线播放| 99在线人妻在线中文字幕| 久久人妻av系列| 国产精品,欧美在线| 在线播放国产精品三级| 99热网站在线观看| 亚洲天堂国产精品一区在线| 亚州av有码| 久久久a久久爽久久v久久| 亚洲伊人久久精品综合 | 亚洲精品成人久久久久久| 亚洲一区高清亚洲精品| 少妇人妻一区二区三区视频| 18禁动态无遮挡网站| 少妇人妻一区二区三区视频| 亚洲av电影不卡..在线观看| 国产伦精品一区二区三区视频9| 老司机福利观看| av免费观看日本| 国产精品久久久久久久久免| 免费播放大片免费观看视频在线观看 | 日本一本二区三区精品| 国产国拍精品亚洲av在线观看| 国产一区有黄有色的免费视频 | 99九九线精品视频在线观看视频| 亚洲在久久综合| 69人妻影院| 日韩国内少妇激情av| 少妇裸体淫交视频免费看高清| 国产午夜精品论理片| 超碰av人人做人人爽久久| 日日摸夜夜添夜夜添av毛片| 综合色丁香网| 少妇高潮的动态图| 成人无遮挡网站| 熟女电影av网| 亚洲国产精品成人久久小说| 久久欧美精品欧美久久欧美| 久久精品国产99精品国产亚洲性色| 日本色播在线视频| 亚洲人成网站在线播| 男人舔女人下体高潮全视频| 午夜久久久久精精品| 国产私拍福利视频在线观看| 国产色婷婷99| 亚洲精品国产成人久久av| 国产精品人妻久久久久久| or卡值多少钱| 成人高潮视频无遮挡免费网站| 欧美一区二区亚洲| 亚洲丝袜综合中文字幕| 老司机影院毛片| 不卡视频在线观看欧美| 久久久久久伊人网av| 好男人在线观看高清免费视频| 亚洲精华国产精华液的使用体验| 精品久久久久久久久亚洲| videossex国产| 欧美日韩国产亚洲二区| 黑人高潮一二区| 精品99又大又爽又粗少妇毛片| 午夜日本视频在线| 国产在视频线精品| 日韩,欧美,国产一区二区三区 | 成人二区视频| 中文字幕av成人在线电影| 欧美成人一区二区免费高清观看| 高清视频免费观看一区二区 | 欧美性猛交╳xxx乱大交人| 成人综合一区亚洲| 精品国产三级普通话版| 色视频www国产| 中文天堂在线官网| 亚洲精品国产av成人精品| 九草在线视频观看| 免费看美女性在线毛片视频| 亚洲丝袜综合中文字幕| 九九久久精品国产亚洲av麻豆| 中文字幕制服av| 搡女人真爽免费视频火全软件| 亚洲国产精品国产精品| 爱豆传媒免费全集在线观看| 赤兔流量卡办理| 亚洲av电影在线观看一区二区三区 | av女优亚洲男人天堂| 国产三级中文精品| 女的被弄到高潮叫床怎么办| 色吧在线观看| 精品国内亚洲2022精品成人| 国产亚洲最大av| 一个人看视频在线观看www免费| 国产成人a∨麻豆精品| 亚洲中文字幕日韩| 精品人妻熟女av久视频| 黄片无遮挡物在线观看| 国产av一区在线观看免费| 国产高清视频在线观看网站| 国产亚洲精品av在线| 亚洲av熟女| 国产高清不卡午夜福利| 国产人妻一区二区三区在| 久久99精品国语久久久| 九九爱精品视频在线观看| 亚州av有码| 中文字幕av在线有码专区| 一级毛片久久久久久久久女| 全区人妻精品视频| 能在线免费观看的黄片| 哪个播放器可以免费观看大片| 女的被弄到高潮叫床怎么办| 中文欧美无线码| 最近的中文字幕免费完整| 日本黄色视频三级网站网址| 欧美性感艳星| 国产欧美日韩精品一区二区| 国产亚洲91精品色在线| 99热这里只有是精品50| 久久国产乱子免费精品| 国产乱来视频区| 精品人妻偷拍中文字幕| 亚洲精品国产av成人精品| 亚洲av二区三区四区| 狠狠狠狠99中文字幕| 日日摸夜夜添夜夜添av毛片| 国国产精品蜜臀av免费| 久久久精品大字幕| 美女黄网站色视频| 99久久人妻综合| 在线观看一区二区三区| a级毛色黄片| 日韩av在线免费看完整版不卡| 国产老妇伦熟女老妇高清| 日本免费在线观看一区| 六月丁香七月| 国产精品.久久久| 嫩草影院新地址| 中国美白少妇内射xxxbb| 成人特级av手机在线观看| 国产精品野战在线观看| 一边亲一边摸免费视频| 国产又黄又爽又无遮挡在线| 久久久精品大字幕| 久久久久久国产a免费观看| 欧美+日韩+精品| 美女内射精品一级片tv| 日本免费一区二区三区高清不卡| 18禁动态无遮挡网站| 日韩三级伦理在线观看| 国产伦理片在线播放av一区| 午夜老司机福利剧场| 男女啪啪激烈高潮av片| 午夜精品国产一区二区电影 | 欧美三级亚洲精品| 国产69精品久久久久777片| 亚洲国产精品专区欧美| 天堂av国产一区二区熟女人妻| 亚洲av一区综合| 成人亚洲欧美一区二区av| 国产黄色视频一区二区在线观看 | 成人美女网站在线观看视频| 成人漫画全彩无遮挡| 人人妻人人澡人人爽人人夜夜 | 欧美成人免费av一区二区三区| 亚州av有码| 亚洲无线观看免费| 亚洲欧美清纯卡通| 日本五十路高清| 国产精品永久免费网站| a级毛片免费高清观看在线播放| 大香蕉久久网| 午夜爱爱视频在线播放| 国内揄拍国产精品人妻在线| 秋霞伦理黄片| 久久6这里有精品| 亚洲中文字幕一区二区三区有码在线看| 一级黄片播放器| 久久精品夜夜夜夜夜久久蜜豆| 国产精品电影一区二区三区| 成人午夜高清在线视频| 国产精品综合久久久久久久免费| 超碰97精品在线观看| 免费不卡的大黄色大毛片视频在线观看 | 欧美+日韩+精品| 男插女下体视频免费在线播放| 人人妻人人澡欧美一区二区| 真实男女啪啪啪动态图| 观看美女的网站| 成年女人看的毛片在线观看| 免费看日本二区| 国产男人的电影天堂91| 人妻制服诱惑在线中文字幕| 老司机影院成人| 3wmmmm亚洲av在线观看| 秋霞伦理黄片| 美女内射精品一级片tv| 国产精品国产三级专区第一集| 精品人妻一区二区三区麻豆| 99九九线精品视频在线观看视频| 欧美日韩一区二区视频在线观看视频在线 | 色噜噜av男人的天堂激情| 成人一区二区视频在线观看| 99久久无色码亚洲精品果冻| 亚洲精品亚洲一区二区| 日韩欧美国产在线观看| 免费看美女性在线毛片视频| 亚洲欧美精品自产自拍| 国产单亲对白刺激| АⅤ资源中文在线天堂| 成年版毛片免费区| 99热6这里只有精品| 精品一区二区免费观看| 中文资源天堂在线| 大香蕉97超碰在线| 免费观看a级毛片全部| 大又大粗又爽又黄少妇毛片口| 久久99热这里只频精品6学生 | 午夜老司机福利剧场| 亚洲乱码一区二区免费版| 成人美女网站在线观看视频| 成人午夜高清在线视频| 中文字幕av成人在线电影| 国产乱人偷精品视频| 欧美性感艳星| 亚洲av日韩在线播放| 久久久久久久国产电影| 综合色av麻豆| 亚洲电影在线观看av| 特大巨黑吊av在线直播| 床上黄色一级片| 波野结衣二区三区在线| 桃色一区二区三区在线观看| 国产男人的电影天堂91| 亚洲色图av天堂| 久久久久性生活片| 最近最新中文字幕免费大全7| 国产伦理片在线播放av一区| 久久久色成人| 搡女人真爽免费视频火全软件| 日韩在线高清观看一区二区三区| 免费观看的影片在线观看| 精品久久久久久久久亚洲| 午夜视频国产福利| 亚洲欧美清纯卡通| 3wmmmm亚洲av在线观看| 人人妻人人看人人澡| 国产亚洲av嫩草精品影院| 看非洲黑人一级黄片| 人人妻人人看人人澡| 国产精华一区二区三区| 国产一区二区在线观看日韩| 人人妻人人看人人澡| 99久久精品国产国产毛片| 欧美bdsm另类| 欧美日本视频| 99在线视频只有这里精品首页| 草草在线视频免费看| 国产伦一二天堂av在线观看| 国产真实乱freesex| 久久久久久伊人网av| 免费看光身美女| 水蜜桃什么品种好| 七月丁香在线播放| 看免费成人av毛片| 韩国av在线不卡| 欧美精品国产亚洲| 在线观看66精品国产| 欧美3d第一页| 久久久久久久午夜电影| 三级男女做爰猛烈吃奶摸视频| 国产单亲对白刺激|