• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of QTLs for Cadmium Tolerance During Seedling Stage and Validation of qCDSL1 in Rice

    2021-01-13 07:41:16DingShilinLiuChaoleiShangLianguangYangShenglongZhangAnpengJiangHongzhenRuanBanpuFangGuonanTianBiaoYeGuoyouGuoLongbiaoQianQianGaoZhenyu
    Rice Science 2021年1期

    Ding Shilin, Liu Chaolei, Shang Lianguang, Yang Shenglong, Zhang Anpeng, Jiang Hongzhen, Ruan Banpu, Fang Guonan, Tian Biao, Ye Guoyou, Guo Longbiao, Qian Qian, Gao Zhenyu

    Research Paper

    Identification of QTLs for Cadmium Tolerance During Seedling Stage and Validation ofin Rice

    Ding Shilin1, 2, #, Liu Chaolei2, #, Shang Lianguang3, Yang Shenglong2, Zhang Anpeng2, Jiang Hongzhen2, Ruan Banpu2, Fang Guonan2, Tian Biao2, Ye Guoyou4, Guo Longbiao2, Qian Qian2, Gao Zhenyu2

    (Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 310006, China;Agricultural Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Strategic Innovation Platform, International Rice Research Institute, DAPO Box 7777, Metro Manila, the Philippines; These authors contributed equally to this work)

    Cadmium (Cd) is a non-essential toxic metal that is harmful to plants. To investigate the genetic mechanism of Cd tolerance in rice, quantitative trait loci (QTLs) associated with Cd tolerance at the seedling stage were analyzed using a recombinant inbred line (RIL) population derived from a cross between PA64s and 93-11. A total of 36 QTLs associated with shoot length, root length, shoot dry weight, root dry weight and total dry weight were detected in Hangzhou and Lingshui of China. Among them, 15 QTLs were identified under the control condition and 15 QTLs were identified under the Cd stress condition, and 6 QTLs for Cd tolerant coefficient were detected on chromosomes 1, 3, 7 and 9. Theandwere identified in Hangzhou and Lingshui, respectively, and had overlapping intervals on chromosome 1. To further confirm the effects ofand, we developed a chromosome segment substitution line (CSSL), CSSL, in 93-11 background harboring/from PA64s. Compared to 93-11, CSSLhad increased shoot length under the Cd stress condition. These results pave the way for further isolation of those genes controlling Cd tolerance in rice and marker-assistant selection of rice elite varieties with Cd tolerance.

    cadmium tolerance; recombinant inbred line;; rice; quantitative trait locus

    Cadmium (Cd) is a highly toxic heavy metal element to both plants and humans. In recent years, due to unreasonable industrial discharge, poor treatment of solid waste, sewage irrigation and application of fertilizers containing heavy metal elements, Cd content in the soil has increased sharply and its pollution has become increasingly serious (Clemens et al, 2013). Cd enters human body mainly through the food chain and has a half-life period of 10?35 years in human body (Clemens et al, 2013). Cd is mainly accumulated in the kidneys after entering the human body, which will be harmful to human bones and respiratory system, thus causing a series of diseases (Jarup and Akesson, 2009; Nawrot et al, 2010).

    Rice is one of the most important crops in China. Cd pollution not only deteriorates soil quality of paddy rice fields, but also damages rice growth and development. Meanwhile, it can be accumulated in rice grains through absorption and transportation in rice plants, which has become an important source for endangering human health (Yao et al, 2003). Genetic variation in Cd tolerance of rice indicates that it is possible to select cultivars with strong resistance to Cd and low Cd concentration in grains. Therefore, the study of genetic mechanism underlies Cd tolerance in rice is helpful to develop Cd-tolerant rice cultivars.

    For complex traits controlled by multiple genes, quantitative trait locus (QTL) mapping has become a powerful means to identify the number, location and effects of genetic factors, and also an important step to understand molecular genetic mechanism for complicated phenotype. So far, many QTLs and genes related to Cd accumulation have been identified and isolated in rice, including(Agrawal et al, 2002),(Agrawal et al, 2003),(Agrawal et al, 2003),(Mukhopadhyay et al, 2004),(Koike et al, 2004),(Nakanishi et al, 2006),(Nakanishi et al, 2006),(Lee et al, 2007),(Kuramata et al, 2009),(Shim et al, 2009),(Shimo et al, 2011),(Oda et al, 2011),(Miyadate et al, 2011),(Uraguchi et al, 2011),(Takahashi et al, 2011),(Ishimaru et al, 2011),(Takahashi et al, 2012),(Yuan et al, 2012),(Ishikawa et al, 2012),(Ramegowda et al, 2013),(Lim et al, 2014),(Yu et al, 2015),(Wang et al, 2015),(Wang et al, 2016),(Das et al, 2017),(Tan et al, 2017),(Luo et al, 2018) and(Yan et al, 2019). Although genetic studies were mainly focused on Cd accumulation in rice, genetic analysis of QTLs related to Cd tolerance in shoots and roots of rice was relatively fewer.

    To identify QTLs for Cd toxicity tolerance in rice at the seedling stage, we treated 118 recombinant inbred lines (RILs) derived from a cross between parents 93-11 and PA64s with 50 μmol/L CdCl2under controlled conditions. With a high-density SNP linkage map, a total of 36 QTLs associated with 5 important traits were detected in Hangzhou and Lingshui of China. A novel QTL,for shoot length under Cd stress was validated by a chromosome segment substitution line CSSLin 93-11 background harboringfrom PA64s, and candidate genes were predicted, which will be helpful for further cloning of the QTL and understanding of the genetic basis for rice Cd tolerance.

    Table 1. Phenotypic values of parents under different concentrations of Cd.

    Data are Mean ± SD (= 6). * and ** represent 5% and 1% significant differences, respectively, according to the Student’s-test.

    RESULTS

    Phenotypic variance in RIL population of 93-11 and PA64s in Hangzhou and Lingshui

    The traits of root length, shoot length, root dry weight, shoot dry weight and total dry weight were used to evaluate the Cd stress tolerance of the parents 93-11 and PA64s, and their RIL population in Hangzhou and Lingshui. To determine the suitable Cd concentration for treatment, gradient Cd concentrations (0, 10, 20, 30, 40, 50, 100 and 150 μmol/L) were applied on the two parents (93-11 and PA64s) in 2018, and 50 μmol/L Cd concentration was selected for Cd treatment (Table 1). The seeds of parents (93-11 and PA64s) and RILs harvested in 2019 were treated with 50 μmol/L CdCl2. Except for root length, root dry weight in Hangzhou and Lingshui, and total dry weight in Lingshui of PA64s, the values of traits were reduced in Cd stress compared to the control for two parents (Table 2). Cd tolerance coefficients of all the measured traits were higher in PA64s than 93-11 both in Hangzhou and Lingshui, indicating that PA64s is relatively tolerant to Cd compared with 93-11.

    The mean, range, skewness and kurtosis of each examined trait in RIL population were summarized in Table 2. Except for root dry weight, the phenotypic values of these traits in both locations under the Cd stress were lower than those under the control condition without Cd. And the segregation of these traits was continuously distributed among all the RILs (Figs. S1 and S2). Additionally, transgressive segregation in both directions was observed for all the traits, suggesting that both parents transmitted favorable alleles for each trait. All the traits of 118 RIL lines showed approximately normal distribution, which reflected polygenic segregation and satisfied the request of QTL analysis. In addition, all the tested traits exhibited a significantly positive correlation under the control and Cd stress conditions in Hangzhou and Lingshui, respectively (Table S1).

    Table 2. Phenotypic values of recombinant inbred line (RIL) population and their parents under control and Cd stress.

    CTC, Cd tolerance coefficient.Data are Mean ± SD (= 6). * and ** indicate 5% and 1% significant differences between the two parents, respectively, according to the Student’s-test.

    QTL analysis of five traits associated with cadmium tolerance

    To identify QTLs for the five traits associated with cadmium tolerance under the control and Cd stress, a total of 36 putative QTLs were detected on rice chromosomes 1, 2, 3, 4, 5, 7, 9, 10 and 11 (Table 3 and Fig. 1). Among them, 15 QTLs were identified under the control condition with each QTL accounted for 7.8%?18.1% of phenotypic variation, 15 QTLs were detected under the Cd stress condition with each QTL accounted for 0.9%?12.8% of phenotypic variation, and 6 QTLs for Cd tolerance coefficient were also mapped on chromosomes 1, 3, 7 and 9 with each QTL accounted for 6.2%?15.4% of phenotypic variation.

    Under the control and Cd stress conditions in Hangzhou and Lingshui, most of QTLs had positive allele coming from PA64s, indicating that most alleles from PA64s increase Cd tolerance. Total of seven clusters of QTLs were found, including two QTLs(and) mapped on the same region of chromosome 1, three QTLs(,and) on the same or overlapping region of chromosome 1, four QTLs (,,and) on the same or overlapping region of chromosome 2, three QTLs(,and) on the same or overlapping region of chromosome 4, three QTLs(,and) on the same or overlapping region of chromosome 5, four QTLs (,,and) and two QTLs(and) on the same or overlapping region of chromosome 11, respectively. These clusters of QTLs were all involved in dry matter accumulation under the control and Cd stress conditions. Onlyandwere detected both in Lingshui and Hangzhou, indicating the QTLs are genetically stable and independent on the two different environments (Table 3 and Fig. 1).

    Table 3. Putative QTLs with LOD > 2.0 detected in rice recombinant inbred line population.

    Individual QTL is designated with the italicized abbreviation of the character and the chromosome number. When more than one QTL affecting a character is identified on the same chromosome, they are distinguished using decimal numbers.Maximum-likelihood LOD score for the QTL calculated by MultiQTL package.The positive or negative value indicates that allele from 93-11 or PA64s increases the trait score, respectively. CTC, Cd tolerance coefficient; RL, Root length; SL, Shoot length; RDW, Root dry weight; SDW, Shoot dry weight; TDW, Total dry weight; Chr, Chromosome; Add, Additive effect; Var, Variation explained by the putative QTL.

    Fig. 1. Chromosomal locations of all QTLs for Cd tolerance in rice recombinant inbred line population at seedling stage.

    The genetic distance of marker (cM) is annotated on the left of each chromosome. Chr, Chromosome; CTC, Cd tolerance coefficient; RL, Root length; SL, Shoot length; RDW, Root dry weight; SDW, Shoot dry weight; TDW, Total dry weight.

    Validation of qCDSL1 for shoot length under Cd stress and determination of candidate genes

    To validate the physiological role ofin Cd stress response, we developed CSSL(Fig. 2-A). This line harbored the PA64s-derivedallele in 93-11 genetic background. To investigate whetherregulates the response to Cd stress, we exposed the 7-day-old plants of 93-11 and CSSLto 0 and 50 μmol/L Cd for 10 d in a hydroponic experiment. The shoot length of CSSLwas significantly shorter than that of 93-11 under the control condition and significantly longer than that of 93-11 under the Cd stress condition (Fig. 2-B and -C). There were 127 annotated genes in the 873.7 kb region for. Besides 13 transposon protein genes, 16 retrotransposon protein genes, 7 hypothetical protein genes and 25 expressed protein genes, 66 functionally annotated genes were included in the region (Table S2). Previous studies showed that thegene plays an important role in response to Cd stress and it is also located in theregion(Yu et al, 2015). Sequencing of thegene revealed six SNPs in the promoter ofbetween 93-11 and PA64s (Fig. 2-D). The expression level ofin CSSLwas significantly lower than that of 93-11 under the control condition and significantly higher than that of 93-11 under the Cd stress condition (Fig. 2-E), which was consisted with previous observation thatexpression increased5-fold in roots when treated with Cd (Yu et al, 2015).

    DISCUSSION

    Rice tolerance to Cd is a quantitative trait with complex genetic basis (Xue et al, 2009). To study the genetic basis of rice tolerance to Cd stress, it is necessary to select appropriate specific traits. Rice seedlings and seed germination are sensitive to heavy metal stress. It was found that with the increase of Cd concentration, the seedling length, root length, fresh weight and dry weight were all decreased (Yang et al, 2017). Different concentrations of Cd showed inhibition on seedling growth with different degrees (Li et al, 2019). Thus, it is assumed that the suitable Cd level should be selected in order to detect QTLs with large effects on Cd tolerance. Here, when the concentration of Cd was 50 μmol/L, the differences of shoot length, shoot dry weight, root dry weight and total dry weight between the two parents were the most significant (Table 1). Therefore, 50 μmol/L of Cd was chosen to treat RIL seedlings.

    The detection of QTLs is affected by population size, threshold value, marker number, heritability, genetic background and experimental conditions. In previous studies, Xue et al (2009) detected 22 QTLs for 6 traits under the control and Cd stress conditions, including shoot height, root length, shoot dry weight, root dry weight, total dry weight and chlorophyll content, and 6 QTLs related to Cd tolerance coefficient at the seedling stage. Among them,for total dry weight were mapped in the region of G249?G164, where thelocated for relative root dry weight in our study. Li et al (2019) recently detected six QTLs for Cd tolerance coefficient on chromosomes 1, 4, 7, 8 and 10, among which thefor tolerance index of root fresh weight was also located in the region overlapped withhere, suggesting a major QTL controlling Cd tolerance on chromosome 7 in rice seedlings. A total of 34 new QTLs detected in the study indicated that Cd stress has different effects on various organs of rice seedlings and the genetic complexity of Cd tolerance in rice.

    Up to now, a few studies have been performed on mapping of QTLs for Cd stress tolerance at the rice seedling stage. However, no reports have been published on cloning of QTLs/genes for Cd tolerance at the rice seedling stage. After searching for genes related to Cd metabolism,was found to be located inorregion,was found to be located inandregion, indicating thatandare likely to control the expression of QTLs for these traits under the Cd condition. After annotation analysis of genes within theregion, thegene was found to be associated with Cd stress responses (Yu et al, 2015). Sequencing and expression analyses suggestedwas most probably responsible for regulating tolerance to Cd stress. Further fine mapping and functional confirmation will be conducted with F2population by crossing the CSSL with 93-11. Pyramiding of major QTLs is a powerful strategy in rice breeding. Therefore, QTLs related to high Cd resistance identified here and QTLs for low Cd accumulation in grains can also be used to develop novel elite rice varieties by QTL pyramid.

    METHODS

    Rice materials

    93-11 is anvariety, while PA64s is an-like variety with maternal origin of. The RIL population was generated from an advanced self-fertilization population of 93-11/PA64s F1plants. A total of 118 lines were obtained, and the seeds were harvested at the China National Rice Research Institute in Hangzhou and Lingshui of China with normal conventional field cultivation. The chromosomal segment substitution line, CSSL, was selected from the advanced backcross population (BC4F2) derived from a cross of the recurrent parent 93-11 and the donor parent PA64s (Zhang et al, 2019).

    Fig. 2. Validation of.

    A, Schematic graph of chromosome 1 of CSSL, the parents 93-11 and PA64s. The white and black bars represent 93-11 and PA64s alleles, respectively. B, Comparison of seedling growth morphology of 93-11 and CSSLunder the control and Cd stress conditions. Scale bar, 2 cm.C, Shoot lengths of 93-11 and CSSLunder the control and Cd stress conditions. Data are Mean ± SD (= 6). * and ** indicate 5% and 1% significant levels compared to 93-11 under the control and Cd stress conditions, respectively, according to the Student’s-test.D, Gene structure and sequence differences of() between PA64s and 93-11.E, Relative expression level ofin shoots of 93-11 and CSSLunder the control and Cd stress conditions. Data are Mean ± SD (= 3). ** indicates 1% significant level compared to 93-11 under the control and Cd stress conditions, respectively, according to the Student’s-test.

    Culture conditions

    The uniform seeds of the two parents and RILs were surface sterilized in 3% H2O2solution for 10 min, and then rinsed five times with deionized water. The seeds were then soaked in deionized water in the dark at 28 oC for 2 d, and then transferred to a net floating on deionized water for further 5 d in a controlled chamber with a photoperiod of 16 h light/8 h dark. After 5 d, rice seedlings with similar size were selected and transplanted into 40 L plastic containers containing nutrient solution (96 seedlings per container) and cultivated in the hydroponic form. The light/dark temperatures were set at 32 oC/ 28 oC, and relative humidity was kept at 80%. The seedlings were cultured in a half-strength Kimura B nutrient solution (pH 5.4) with the following composition: 90 μmol/L KH2PO4, 270 μmol/L MgSO4, 180 μmol/L (NH4)2SO4, 90 μmol/L KNO3, 180 μmol/L Ca(NO3)2, 3 μmol/L H3BO3, 0.5 μmol/L MnCl2, 1 μmol/L (NH4)6Mo7O24, 0.4 μmol/L ZnSO4and 20 μmol/L Fe3+-EDTA. The solution was renewed every 2 d. At 3 d after transplanting to the basic solution, two treatments were established: control, in which nine plants grew in the nutrient solution without Cd addition; and cadmium stress, CdCl2was added to the solution in equal increments every day, and after 5 d, the final Cd concentration was 50 μmol/L.

    Trait measurements

    At the 10 d after Cd treatment, shoot length, root length, shoot dry weight, root dry weight and total dry weight of each treatment were measured. Shoot length was measured from the coleoptile node to the tip of the longest leaf, and root length was measured from the coleoptile node to the tip of the longest root. The mean values were calculated from measured 4–6 plants. The sampled plants were separated into roots and shoots, dried at 70 oC for 3 d in an oven, and then weighted root and shoot dry weights. Total dry weight was calculated according to shoot and root dry weights. Cd tolerance coefficient (CTC) of relative root length, relative shoot length, relative shoot dry weight, relative root dry weight and relative total dry weight were calculated using the following formula: CTC = The value in Cd stress treatment / The value in the control.

    Data analysis and QTL mapping

    Statistical analysis was conducted with the SAS software (version 9.0). By resequencing parents 93-11 and PA64s and 118 RILs, we obtained 2 622 single nucleotide polymorphism (SNP) markers with high quality and polymorphism, and constructed a high-density SNP linkage map. The SNP linkage map covered a total of 1 381.9 cM of the rice genome, with an average linkage map spacing of 0.392 cM (Gao et al, 2013). QTL analysis was performed with the MultiQTL package (www.mutiqtl.com) using the maximum likelihood interval mapping approach for the RILs. QTL was determined with threshold< 0.005 and the threshold of LOD > 2.0 was chosen for claiming a putative QTL. The genetic parameters, additive effects and explained variation of each QTL were also estimated. We followed the rules for the QTL nomenclature by McCouch et al (1997).

    Expression analysis at transcript level

    To analyze the transcriptional expression of candidate genes, the 7-day-old plants of 93-11 and CSSLwere exposed to 0 or 50 μmol/L CdCl2for 10 d, and then the shoots were excised for RNA extraction. Total RNA was extracted using the RNA Extraction kit (Axygen, New York, America). DNase I- treated RNA (1 μg) was used to synthesize the first-strand cDNAs by using a ReverTra?Ace qPCR-RT kit (TOYOBO, Osaka, Japan). The cDNA products and the 2× SYBR Green PCR Master Mix (TOYOBO, Osaka, Japan) were used for real-time PCR analysis.was used as an internal control. Data were collected in accordance with the ABI PRISM 7900HT Sequence Detector system. Primers forandare listed in Table S3.

    ACKNOWLEDGEMENTS

    This research was supported by the National Natural Science Foundation of China (Grant No. 31671761) and the Agricultural Science and Technology Innovation Program, Shenzhen Science and Technology Program (Grant No. 2017050414212249).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Fig. S1. Frequency distribution of Cd tolerance at the seedling stage in RIL population with seeds from Hangzhou under control and Cd stress conditions.

    Fig. S2.Frequency distribution of Cd tolerance at the seedling stage in RIL population with seeds from Lingshui under control and Cd stress conditions.

    Table S1. Correlation coefficients between five traits under control and Cd stress conditions.

    Table S2. Functionally annotated genes in the 873.7 kb region for.

    Table S3. Primers used for qRT-PCR in the study.

    Agrawal G K, Rakwal R, Iwahashi H. 2002. Isolation of novel rice (L.) multiple stress responsive MAP kinase gene,, whose mRNA accumulates rapidly in response to environmental cues., 294(5): 1009–1016.

    Agrawal G K, Agrawal S K, Shibato J, Iwahashi H, Rakwal R, 2003. Novel rice MAP kinasesandinvolved in encountering diverse environmental stresses and developmental regulation., 300(3): 775–783.

    Clemens S, Aarts M G M, Thomine S, Verbruggen N. 2013. Plant science: The key to preventing slow cadmium poisoning., 18(2): 92–99.

    Das N, Bhattacharya S, Bhattacharyya S, Maiti M K. 2017. Identification of alternatively spliced transcripts of rice phytochelatin synthase 2 gene, involved in mitigation of cadmium and arsenic stresses., 94: 167–183.

    Gao Z Y, Zhao S C, He W M, Guo L B, Peng Y L, Wang J J, Guo X S, Zhang X M, Rao Y C, Zhang C, Dong G J, Zhang F Y, Lu C X, Hu J, Zhou Q, Liu H J, Wu H Y, Xu J, Ni P X, Zeng D L, Liu D H, Tian P, Gong L H, Ye C, Zhang G H, Wang J, Tian F K, Xue D W, Liao Y, Zhu L, Cheng M S, Li J Y, Cheng S H, Zhang G Y, Wang J, Qian Q. 2013. Dissecting yield-associated loci in super hybrid rice by resequencing recombinant inbred lines and improving parental genome sequences., 110: 14492–14497.

    Ishikawa S, Ishimaru Y, Igura M, Kuramata M, Abe T, Senoura T, Hase Y, Arao T, Nishizawa N K, Nakanishi H. 2012. Ion-beam irradiation, gene identification, and marker-assisted breeding in the development of low-cadmium rice., 109: 19166–19171.

    Ishimaru Y, Kakei Y, Shimo H, Bashir K, Sato Y, Sato Y, Uozumi N, Nakanishi H, Nishizawa N K. 2011. A rice phenolic efux transporter is essential for solubilizing precipitated apoplasmic iron in the plant stele., 286: 24649–24655.

    Jarup L, Akesson A. 2009. Current status of cadmium as an environ- mental health problem., 238(3): 201–208.

    Koike S, Inoue H, Mizuno D, Takahashi M, Nakanishi H, Mori S, Nishizawa N K. 2004. OsYSL2 is a rice metal-nicotianamine transporter that is regulated by iron and expressed in the phloem., 39(3): 415–424.

    Kuramata M, Masuya S, Takahashi Y, Kitagawa E, Inoue C, Ishikawa S, Youssefan S, Kusano T. 2009. Novel cysteine-rich peptides fromandenhance tolerance to cadmium by limiting its cellular accumulation., 50(1): 106–117.

    Lee S, Kim Y Y, Lee Y, An G. 2007. Rice P1B-type heavy-metal ATPase, OsHMA9, is a metal efflux protein., 145(3): 831–842.

    Li W X, Ou Yang L J, Wen W, Xiong Y Y, Xu W Q, Peng X S, Chen X R, He X P, Fu J R, Bian J M, Xu J, Zhou D H, He H H, Sun X T, Zhu C L. 2019. Identification of QTL for cadmium tolerance at seedling stage of rice (L.)., 41(1): 19–24. (in Chinese with English abstract)

    Lim S D, Hwang J G, Han A R, Park Y C, Lee C, Ok Y S, Jang C S. 2014. Positive regulation of rice RING E3 ligase OsHIR1 in arsenic and cadmium uptakes., 85: 365–379.

    Luo J S, Huang J, Zeng D L, Peng J S, Zhang G B, Ma H L, Guan Y, Yi H Y, Fu Y L, Han B, Lin H X, Qian Q, Gong J M. 2018. A defensin-like protein drives cadmium efflux and allocation in rice., 9(1): 645.

    McCouch S R, Cho Y G, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T. 1997. Rice: Report on QTL nomenclature., 14: 11–13.

    Miyadate H, Adachi S, Hiraizumi A, Tezuka K, Nakazawa N, Kawamoto T, Katou K, Kodama I, Sakurai K, Takahashi H, Satoh-Nagasawa N, Watanabe A, Fujimura T, Akagi H. 2011. OsHMA3, a P1B-type of ATPase affects root-to-shoot cadmium translocation in rice by mediating efflux into vacuoles., 189(1): 190–199.

    Mukhopadhyay A, Vij S, Tyagi A K. 2004. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco., 101(16): 6309–6314.

    Nakanishi H, Ogawa I, Ishimaru Y, Mori S, Nishizawa N K. 2006. Iron deficiency enhances cadmium uptake and translocation mediated by the Fe transporters OsIRT1 and OSIRT2 in rice., 52(4): 464–469.

    Nawrot T S, Staessen J A, Roels H A, Munters E, Cuypers A, Richart T, Ruttens A, Smeets K, Clijsters H, Vangronsveld J. 2010. Cadmium exposure in the population: From health risks to strategies of prevention., 23(5): 769–782.

    Oda K, Otani M, Uraguchi S, Akihiro T, Fujiwara T. 2011. Riceis Cd inducible and confers Cd tolerance on yeast., 75(6): 1211–1213.

    Ramegowda Y, Venkategowda R, Jagadish P, Govind G, Hanuman- thareddy R R, Makarla U, Guligowda S. 2013. Expression of a rice Zn transporter, OsZIP1, increases Zn concentration in tobacco and finger millet transgenic plants., 7(3): 309–319.

    Shim D, Hwang J U, Lee J, Lee S, Choi Y, An G, Martinoia E, Lee Y. 2009. Orthologs of the class A4 heat shock transcription factor HsfA4a confer cadmium tolerance in wheat and rice., 21(12): 4031–4043.

    Shimo H, Ishimaru Y, An G, Yamakawa T, Nakanishi H, Nishizawa N K. 2011.(), a novel gene related to cadmium tolerance and accumulation in rice., 62(15): 5727–5734.

    Takahashi R, Ishimaru Y, Senoura T, Shimo H, Ishikawa S, Arao T, Nakanishi H, Nishizawa N K. 2011. The OsNRAMP1 iron transporter is involved in Cd accumulation in rice., 62(14): 4843–4850.

    Takahashi R, Ishimaru Y, Shimo H, Ogo Y, Senoura T, Nishizawa N K, Nakanishi H. 2012. The OsHMA2 transporter is involved in root-to-shoot translocation of Zn and Cd in rice., 35(11): 1948–1957.

    Tan M P, Cheng D, Yang Y N, Zhang G Q, Qin M J, Chen J, Chen Y H, Jiang M Y. 2017. Co-expression network analysis of the transcriptomes of rice roots exposed to various cadmium stresses reveals universal cadmium responsive genes., 17(1): 194.

    Uraguchi S, Kamiya T, Sakamoto T, Kassai K, Sato Y, NagamuraY, Yoshida A, Kyozuka J, Ishikawa S, Fujiwara T. 2011. Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains., 108: 20959–20964.

    Wang C H, Guo W L, Shan Y, Wei P C, David W O. 2016. Reduction of Cd in rice through expression of-like gene fragments., 9(2): 301–304.

    Wang F J, Wang M, Liu Z P, Shi Y, Han T Q, Ye Y Y, Gong N, Sun J W, Zhu C. 2015. Different responses of low grain-Cd- accumulating and high grain-Cd-accumulating rice cultivars to Cd stress., 96: 261–269.

    Xue D W, Chen M C, Zhang G P. 2009. Mapping of QTLs associated with cadmium tolerance and accumulation during seedling stage in rice (L.)., 165(3): 587–596.

    Yan H L, Xu W X, Xie J Y, Gao Y W, Wu L L, Sun L, Feng L, Chen X, Zhang T, Dai C H, Li T, Lin X N, Zhang Z Y, Wang X Q, Li F M, Zhu X Y, Li J J, Li Z C, Chen C Y, Ma M, Zhang H L, He Z Y. 2019. Variation of a major facilitator superfamily gene contributes to differential cadmium accumulation between rice subspecies., 10: 2562.

    Yang M, Chen L, Xu Q G, Sun Y L. 2017. Effects of cadmium stress on seed germination and growth characteristic of different rice cultivars., 31(6): 659–663.

    Yao H Y, Xu J M, Huang C Y. 2003. Substrate utilization pattern, biomass and activity of microbial communities in a sequence of heavy metal-polluted paddy soils., 115(1/2): 139–148.

    Yu C L, Sun C D, Shen C J, Wang S K, Liu F, Liu Y, Chen Y L, Li C Y, Qian Q, Aryal B, Geisler M, Jiang D A, Qi Y H. 2015. The auxin transporter, OsAUX1, is involved in primary root and root hair elongation and in Cd stress responses in rice (L)., 83(5): 818–830.

    Yuan L Y, Yang S G, Liu B X, Zhang M, Wu K Q. 2012. Molecular characterization of a rice metal tolerance protein, OsMTP1., 31(1): 67–79.

    Zhang B, Shang L G, Ruan B P, Zhang A P, Yang S L, Jiang H Z, Liu C L, Hong K, Lin H, Gao Z Y, Hu J, Zeng D L, Guo L B, Qian Q. 2019. Development of three sets of high throughput genotyped rice chromosome segment substitution lines and QTL mapping for eleven traits., 12(1): 12–33.

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.11.009

    12 December 2019;

    30 March 2020

    s:Gao Zhenyu (gaozhenyu@caas.cn); Qian Qian (qianqian188@hotmail.com)

    (Managing Editor: Wu Yawen)

    国产成人aa在线观看| 国产国拍精品亚洲av在线观看| 少妇人妻久久综合中文| 制服人妻中文乱码| 亚洲四区av| 狠狠精品人妻久久久久久综合| 亚洲人成网站在线观看播放| 蜜臀久久99精品久久宅男| 亚洲伊人久久精品综合| 午夜久久久在线观看| 黄色欧美视频在线观看| 女性被躁到高潮视频| 91精品伊人久久大香线蕉| av国产精品久久久久影院| 天堂8中文在线网| 亚洲,一卡二卡三卡| 综合色丁香网| 春色校园在线视频观看| 成人二区视频| 91成人精品电影| 久久久久久久久久成人| 高清午夜精品一区二区三区| 国产精品成人在线| xxx大片免费视频| 最近中文字幕高清免费大全6| 久久午夜福利片| 一边摸一边做爽爽视频免费| 亚洲精品国产av蜜桃| 乱码一卡2卡4卡精品| 两个人免费观看高清视频| 精品酒店卫生间| av.在线天堂| 亚洲精品久久久久久婷婷小说| 欧美bdsm另类| 亚洲国产欧美在线一区| 黄色怎么调成土黄色| av电影中文网址| 国语对白做爰xxxⅹ性视频网站| 99久国产av精品国产电影| 免费黄色在线免费观看| 亚洲成人一二三区av| 久热这里只有精品99| 欧美人与善性xxx| 成人免费观看视频高清| 久久久久久久久久久免费av| 国产免费福利视频在线观看| 69精品国产乱码久久久| 五月玫瑰六月丁香| 高清不卡的av网站| 国产精品熟女久久久久浪| 啦啦啦啦在线视频资源| 成年人午夜在线观看视频| 日本黄色片子视频| 午夜福利影视在线免费观看| 老司机亚洲免费影院| 一级黄片播放器| 黑人巨大精品欧美一区二区蜜桃 | 国产精品久久久久久精品电影小说| 韩国av在线不卡| 纯流量卡能插随身wifi吗| 久久久a久久爽久久v久久| 80岁老熟妇乱子伦牲交| 熟女av电影| 在线天堂最新版资源| 久久99一区二区三区| 国产黄频视频在线观看| 少妇人妻久久综合中文| 一边亲一边摸免费视频| 天堂8中文在线网| 精品少妇内射三级| 国产片特级美女逼逼视频| 久久99热6这里只有精品| 国产深夜福利视频在线观看| 中国美白少妇内射xxxbb| 在线观看免费日韩欧美大片 | 免费高清在线观看日韩| 亚洲精品自拍成人| 亚州av有码| 观看美女的网站| 久热久热在线精品观看| 大香蕉久久网| 爱豆传媒免费全集在线观看| 少妇人妻精品综合一区二区| 久久毛片免费看一区二区三区| a级毛片在线看网站| 中国三级夫妇交换| 久久ye,这里只有精品| 日本爱情动作片www.在线观看| 精品卡一卡二卡四卡免费| 曰老女人黄片| 91精品国产九色| 欧美97在线视频| 精品人妻熟女毛片av久久网站| 三级国产精品欧美在线观看| 如日韩欧美国产精品一区二区三区 | 永久免费av网站大全| 男人操女人黄网站| 自拍欧美九色日韩亚洲蝌蚪91| 日本爱情动作片www.在线观看| av电影中文网址| 国产亚洲av片在线观看秒播厂| 成年美女黄网站色视频大全免费 | 久久精品国产亚洲av涩爱| 最黄视频免费看| 精品少妇内射三级| 一级爰片在线观看| 伊人亚洲综合成人网| 久久午夜综合久久蜜桃| 欧美成人精品欧美一级黄| 性高湖久久久久久久久免费观看| 久久久久久伊人网av| 高清欧美精品videossex| h视频一区二区三区| 18在线观看网站| 日本av手机在线免费观看| 高清毛片免费看| 国产有黄有色有爽视频| 2018国产大陆天天弄谢| 国产日韩欧美视频二区| 国产又色又爽无遮挡免| 大陆偷拍与自拍| 国产毛片在线视频| 在线天堂最新版资源| 日韩中字成人| 国产免费视频播放在线视频| 在现免费观看毛片| 一级黄片播放器| 天天影视国产精品| 伦理电影大哥的女人| 日韩av不卡免费在线播放| 日韩大片免费观看网站| 在线观看免费高清a一片| 国产片特级美女逼逼视频| 免费久久久久久久精品成人欧美视频 | 看免费成人av毛片| 国产一区二区三区av在线| 欧美另类一区| 99热6这里只有精品| 亚洲国产毛片av蜜桃av| 色94色欧美一区二区| 亚洲精品乱码久久久久久按摩| 久久久久久伊人网av| 人人澡人人妻人| 中文字幕精品免费在线观看视频 | 国产无遮挡羞羞视频在线观看| 久久精品熟女亚洲av麻豆精品| 九草在线视频观看| 亚洲av国产av综合av卡| 爱豆传媒免费全集在线观看| 99久久综合免费| 亚洲国产欧美日韩在线播放| 在线观看免费视频网站a站| 汤姆久久久久久久影院中文字幕| 欧美 日韩 精品 国产| 伦理电影大哥的女人| 亚洲国产欧美在线一区| 欧美丝袜亚洲另类| 熟女电影av网| 亚洲欧洲精品一区二区精品久久久 | 99国产精品免费福利视频| 一区二区av电影网| 国产精品99久久99久久久不卡 | 久久国内精品自在自线图片| 免费看光身美女| 日日撸夜夜添| 国产日韩欧美视频二区| 日韩熟女老妇一区二区性免费视频| 久久久久视频综合| 国产乱来视频区| 亚洲经典国产精华液单| 日韩av免费高清视频| 超碰97精品在线观看| 色网站视频免费| 免费av中文字幕在线| 欧美日韩亚洲高清精品| 欧美xxⅹ黑人| 一二三四中文在线观看免费高清| 精品一区二区三卡| 制服诱惑二区| 欧美精品亚洲一区二区| 黄色配什么色好看| 自拍欧美九色日韩亚洲蝌蚪91| 性色av一级| 国产高清不卡午夜福利| 狂野欧美激情性xxxx在线观看| 欧美成人午夜免费资源| 亚洲激情五月婷婷啪啪| 好男人视频免费观看在线| av视频免费观看在线观看| 3wmmmm亚洲av在线观看| 国产老妇伦熟女老妇高清| 国产成人freesex在线| 爱豆传媒免费全集在线观看| 狠狠精品人妻久久久久久综合| 久久99一区二区三区| 久久精品久久精品一区二区三区| 久久久精品免费免费高清| 久久精品国产自在天天线| 高清欧美精品videossex| 高清视频免费观看一区二区| 九色成人免费人妻av| 如何舔出高潮| 国产黄色免费在线视频| 国产免费一区二区三区四区乱码| 久久av网站| 亚洲精品乱久久久久久| 嘟嘟电影网在线观看| 国产成人精品久久久久久| 啦啦啦在线观看免费高清www| 热99国产精品久久久久久7| 免费黄频网站在线观看国产| 伦理电影大哥的女人| 一区在线观看完整版| 97在线视频观看| 欧美日韩国产mv在线观看视频| 中文字幕免费在线视频6| 精品人妻熟女毛片av久久网站| 国产精品偷伦视频观看了| 9色porny在线观看| 国产日韩欧美视频二区| 考比视频在线观看| a级毛片在线看网站| 男女国产视频网站| 亚洲国产色片| 午夜免费男女啪啪视频观看| 亚洲av欧美aⅴ国产| 黑人猛操日本美女一级片| 日韩一区二区三区影片| 天堂中文最新版在线下载| 久久99热这里只频精品6学生| 在线观看一区二区三区激情| 国产成人91sexporn| 丰满饥渴人妻一区二区三| 国产精品偷伦视频观看了| 高清av免费在线| 久久久久精品性色| 国产高清不卡午夜福利| 18禁裸乳无遮挡动漫免费视频| 中文乱码字字幕精品一区二区三区| 九草在线视频观看| 中文字幕最新亚洲高清| 欧美精品高潮呻吟av久久| 欧美日韩精品成人综合77777| 熟女人妻精品中文字幕| 99精国产麻豆久久婷婷| 色视频在线一区二区三区| 大又大粗又爽又黄少妇毛片口| 国产欧美日韩综合在线一区二区| 亚洲精品中文字幕在线视频| 一级,二级,三级黄色视频| 一本久久精品| 免费高清在线观看日韩| 校园人妻丝袜中文字幕| 欧美变态另类bdsm刘玥| av又黄又爽大尺度在线免费看| 国产欧美日韩一区二区三区在线 | 久久久久久久国产电影| 大香蕉久久成人网| 亚洲国产精品成人久久小说| 精品熟女少妇av免费看| av卡一久久| 欧美激情 高清一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 精品人妻一区二区三区麻豆| 人妻夜夜爽99麻豆av| 国产精品国产三级国产av玫瑰| 日日摸夜夜添夜夜爱| 国产精品蜜桃在线观看| 国产不卡av网站在线观看| 午夜日本视频在线| 99九九线精品视频在线观看视频| 热re99久久精品国产66热6| 欧美人与善性xxx| 欧美人与性动交α欧美精品济南到 | 另类精品久久| 99国产精品免费福利视频| 3wmmmm亚洲av在线观看| 日韩欧美精品免费久久| 免费人成在线观看视频色| 久久精品久久久久久噜噜老黄| 青春草国产在线视频| 寂寞人妻少妇视频99o| 男男h啪啪无遮挡| 亚洲国产精品999| 少妇的逼好多水| 丁香六月天网| 亚洲综合色惰| av在线app专区| 精品国产乱码久久久久久小说| 美女国产高潮福利片在线看| 亚洲,欧美,日韩| 一区二区av电影网| 亚洲成人手机| 99热这里只有精品一区| 亚洲人成77777在线视频| 国产欧美日韩综合在线一区二区| 午夜激情福利司机影院| 亚洲av欧美aⅴ国产| 免费观看的影片在线观看| 亚洲经典国产精华液单| 免费观看无遮挡的男女| 精品少妇黑人巨大在线播放| 视频中文字幕在线观看| 在线播放无遮挡| 精品久久久久久久久av| 国产色爽女视频免费观看| 精品国产一区二区久久| 国产爽快片一区二区三区| 制服诱惑二区| 飞空精品影院首页| 欧美日韩视频精品一区| 建设人人有责人人尽责人人享有的| 成年美女黄网站色视频大全免费 | 22中文网久久字幕| 国产片特级美女逼逼视频| 高清午夜精品一区二区三区| 亚洲欧美清纯卡通| 大陆偷拍与自拍| 美女福利国产在线| 五月开心婷婷网| 日本av手机在线免费观看| 尾随美女入室| 视频中文字幕在线观看| 久久久久久久久久成人| 美女xxoo啪啪120秒动态图| 80岁老熟妇乱子伦牲交| 欧美国产精品一级二级三级| 99久久精品一区二区三区| 亚洲精品色激情综合| 国产深夜福利视频在线观看| 亚洲伊人久久精品综合| 亚洲国产精品国产精品| 日本wwww免费看| 亚洲av不卡在线观看| 亚洲天堂av无毛| 亚洲av综合色区一区| 美女大奶头黄色视频| a级毛片黄视频| 狠狠婷婷综合久久久久久88av| 丰满少妇做爰视频| 亚洲成人av在线免费| 啦啦啦视频在线资源免费观看| 亚洲久久久国产精品| 免费大片18禁| 99re6热这里在线精品视频| 成人漫画全彩无遮挡| 考比视频在线观看| 免费av中文字幕在线| 亚洲精品久久成人aⅴ小说 | 亚洲美女搞黄在线观看| 久久精品久久久久久噜噜老黄| 亚洲精品456在线播放app| 亚洲精品日韩在线中文字幕| 日韩 亚洲 欧美在线| 纵有疾风起免费观看全集完整版| 国产黄色视频一区二区在线观看| 汤姆久久久久久久影院中文字幕| 超碰97精品在线观看| 91aial.com中文字幕在线观看| 久久久精品区二区三区| av播播在线观看一区| 国产精品一二三区在线看| 国产精品国产三级专区第一集| 国产黄色视频一区二区在线观看| 亚洲精品自拍成人| 99热这里只有是精品在线观看| 久久99精品国语久久久| 丰满饥渴人妻一区二区三| 国产黄频视频在线观看| 999精品在线视频| 中文欧美无线码| 妹子高潮喷水视频| 中文天堂在线官网| 大片免费播放器 马上看| 热99久久久久精品小说推荐| 最近最新中文字幕免费大全7| 国产亚洲精品第一综合不卡 | 夜夜骑夜夜射夜夜干| 免费观看av网站的网址| 亚洲精品日本国产第一区| 永久免费av网站大全| 丝袜脚勾引网站| 国产永久视频网站| 久久精品国产亚洲网站| 亚洲色图 男人天堂 中文字幕 | 久久国产精品男人的天堂亚洲 | 简卡轻食公司| 亚洲精品视频女| 日韩 亚洲 欧美在线| av网站免费在线观看视频| 曰老女人黄片| freevideosex欧美| 国产精品一二三区在线看| 久久99精品国语久久久| 婷婷成人精品国产| 哪个播放器可以免费观看大片| 热re99久久精品国产66热6| 最新的欧美精品一区二区| 亚洲五月色婷婷综合| 2022亚洲国产成人精品| 久久精品久久久久久久性| 国产精品国产三级专区第一集| 天堂俺去俺来也www色官网| 国产精品国产三级专区第一集| a级毛色黄片| 欧美亚洲 丝袜 人妻 在线| 三级国产精品片| 国产午夜精品久久久久久一区二区三区| 丰满饥渴人妻一区二区三| 日本av免费视频播放| 香蕉精品网在线| 99热国产这里只有精品6| 久久久久久久大尺度免费视频| 26uuu在线亚洲综合色| 成年av动漫网址| 亚洲欧洲国产日韩| 久久精品国产鲁丝片午夜精品| 七月丁香在线播放| 乱码一卡2卡4卡精品| 五月玫瑰六月丁香| 国产又色又爽无遮挡免| 最近中文字幕高清免费大全6| 性高湖久久久久久久久免费观看| 亚洲综合精品二区| 肉色欧美久久久久久久蜜桃| 国产精品一区www在线观看| 久久久久久久久久久久大奶| 三级国产精品片| 国产一区二区三区av在线| 欧美日韩亚洲高清精品| 日韩制服骚丝袜av| 在线观看一区二区三区激情| 欧美国产精品一级二级三级| 欧美+日韩+精品| 日本av手机在线免费观看| 国产成人精品福利久久| 大片免费播放器 马上看| 国产有黄有色有爽视频| 欧美日韩av久久| 最新的欧美精品一区二区| 亚洲成人一二三区av| 国产午夜精品久久久久久一区二区三区| 国产精品蜜桃在线观看| 大香蕉久久成人网| a 毛片基地| 老司机影院毛片| 国产高清三级在线| 少妇丰满av| 久久精品国产亚洲av天美| 欧美日韩精品成人综合77777| 国产乱人偷精品视频| 黑人高潮一二区| 99久久精品一区二区三区| 国产综合精华液| 亚洲成色77777| 高清欧美精品videossex| 交换朋友夫妻互换小说| 国产精品久久久久久精品古装| 国产极品粉嫩免费观看在线 | 免费人妻精品一区二区三区视频| 国产精品一区www在线观看| 全区人妻精品视频| 精品卡一卡二卡四卡免费| 欧美激情极品国产一区二区三区 | a级毛片黄视频| 国产av码专区亚洲av| 大片免费播放器 马上看| 欧美+日韩+精品| 制服人妻中文乱码| 人妻 亚洲 视频| 综合色丁香网| 精品国产露脸久久av麻豆| 水蜜桃什么品种好| 欧美bdsm另类| 美女中出高潮动态图| 免费av不卡在线播放| 高清欧美精品videossex| 亚洲av中文av极速乱| 三上悠亚av全集在线观看| 日韩中文字幕视频在线看片| 久久av网站| 一区二区三区免费毛片| 国产精品 国内视频| 亚洲国产欧美日韩在线播放| 一级毛片 在线播放| 欧美变态另类bdsm刘玥| 久久 成人 亚洲| 日本-黄色视频高清免费观看| 麻豆乱淫一区二区| 日本vs欧美在线观看视频| 精品人妻在线不人妻| 日本爱情动作片www.在线观看| 高清午夜精品一区二区三区| a级毛色黄片| 菩萨蛮人人尽说江南好唐韦庄| av专区在线播放| av国产精品久久久久影院| 成年美女黄网站色视频大全免费 | 如日韩欧美国产精品一区二区三区 | 久久久久久久久久久免费av| 国产精品久久久久久精品电影小说| 午夜av观看不卡| 久久久国产欧美日韩av| 一级二级三级毛片免费看| 色网站视频免费| 免费黄色在线免费观看| 精品久久久久久电影网| 免费看不卡的av| 丝袜美足系列| 亚洲精品日韩在线中文字幕| 国产在线一区二区三区精| 欧美另类一区| 久久女婷五月综合色啪小说| 少妇人妻精品综合一区二区| 菩萨蛮人人尽说江南好唐韦庄| 80岁老熟妇乱子伦牲交| 亚洲高清免费不卡视频| 久久久亚洲精品成人影院| 妹子高潮喷水视频| 精品久久蜜臀av无| 国产在线视频一区二区| 亚洲国产色片| 久久久久精品久久久久真实原创| 一区二区日韩欧美中文字幕 | 曰老女人黄片| 免费播放大片免费观看视频在线观看| 在线观看免费视频网站a站| 日日摸夜夜添夜夜爱| 成人毛片a级毛片在线播放| 中文字幕亚洲精品专区| 精品久久久久久久久av| 性高湖久久久久久久久免费观看| 最近2019中文字幕mv第一页| 国产精品秋霞免费鲁丝片| 久久毛片免费看一区二区三区| 美女内射精品一级片tv| 亚洲一区二区三区欧美精品| 精品亚洲乱码少妇综合久久| 国产高清国产精品国产三级| 99国产综合亚洲精品| 丰满饥渴人妻一区二区三| 各种免费的搞黄视频| 精品少妇黑人巨大在线播放| 中文乱码字字幕精品一区二区三区| 欧美日韩精品成人综合77777| 精品视频人人做人人爽| 午夜福利视频精品| freevideosex欧美| 久久久国产欧美日韩av| 校园人妻丝袜中文字幕| 交换朋友夫妻互换小说| 黑人巨大精品欧美一区二区蜜桃 | 热re99久久精品国产66热6| 国产欧美另类精品又又久久亚洲欧美| 日本黄色日本黄色录像| 精品人妻熟女av久视频| 国产伦精品一区二区三区视频9| 蜜桃在线观看..| 亚洲欧美清纯卡通| 免费观看a级毛片全部| 男人添女人高潮全过程视频| 一二三四中文在线观看免费高清| 日韩av不卡免费在线播放| 十八禁高潮呻吟视频| 久久综合国产亚洲精品| 日本黄大片高清| 中文字幕制服av| 丰满乱子伦码专区| 九九在线视频观看精品| 丝袜在线中文字幕| 欧美国产精品一级二级三级| 国产av精品麻豆| 999精品在线视频| 午夜久久久在线观看| 久久国产精品大桥未久av| 热re99久久精品国产66热6| 国产成人精品婷婷| 波野结衣二区三区在线| 久久99热6这里只有精品| 国产男人的电影天堂91| 国产白丝娇喘喷水9色精品| 一级黄片播放器| 亚洲精品色激情综合| 精品酒店卫生间| 国产日韩欧美视频二区| 在线观看三级黄色| 亚洲av二区三区四区| 一边摸一边做爽爽视频免费| 精品久久蜜臀av无| 久久精品人人爽人人爽视色| 丰满饥渴人妻一区二区三| 一级片'在线观看视频| 波野结衣二区三区在线| 婷婷色av中文字幕| 欧美国产精品一级二级三级| 国产精品久久久久久久电影| 国产精品久久久久久久久免| 男女高潮啪啪啪动态图| 在线天堂最新版资源| 中文字幕制服av| 国产精品一区二区在线不卡| 午夜福利在线观看免费完整高清在| 中文字幕制服av| 成人18禁高潮啪啪吃奶动态图 | 午夜福利影视在线免费观看| av福利片在线| 日韩成人伦理影院| 美女国产高潮福利片在线看| 亚洲av男天堂| 欧美激情极品国产一区二区三区 | 91精品三级在线观看| 国产 精品1| 爱豆传媒免费全集在线观看| videosex国产| 另类精品久久|