• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A New PCR/LDR-Based Multiplex Functional Molecular Marker for Marker-Assisted Breeding in Rice

    2021-01-13 07:32:00CHUHuangwei,TURongjian,NIUFuan
    Rice Science 2021年1期

    Letter

    A New PCR/LDR-Based Multiplex Functional Molecular Marker for Marker-Assisted Breeding in Rice

    Marker-assisted selection or marker-aided selection (MAS) provides an effective complementary approach for conventional rice breeding with precise and speedy mobilization of target genes into elite genetic backgrounds. The targeted genes, however, may not be selected in the course of MAS due to the occasional recombination between the marker and the target gene/QTL during the many cycles of meiosis involved in breeding programs. This leads to failure in the selection of target traits (Gopalakrishnan et al, 2008).

    Insertion-deletions (InDels) and single nucleotide polymorphisms (SNPs) are common genetic polymorphisms in rice genome. Functional InDels and SNPs in genes directly give rise to the phenotypic variation, and such polymorphisms are valuable for the development of functional markers (FMs). The utilization of FMs can effectively circumvent the problem of selection of false positive for the target genes in MAS progress (Andersen and Lübberstedt, 2003).

    Polymorphisms of InDels can be easily differentiated as co-dominant markers due to varying length of PCR products. However, it has been a long-term challenge of detecting SNPs with traditional molecular techniques (Mammadov et al, 2012). Several methods including allele-specific PCR (AS-PCR), cleaved amplified polymorphic sequences (CAPS), temperature-switch PCR (TSPCR) and gene re-sequencing, have been developed for discrimination of SNPs in the past few decades (Rasheed et al, 2016). Unfortunately, all these methods have limited potential in rice breeding programs due to their low throughput, laborious and time-consuming assays involved.

    Recently, a new method known as Kompetitive allele- specific PCR (KASP) has been developed to discriminate SNP and InDel polymorphisms at specific sites (Yang G L et al, 2019). KASP markers have been successfully deployed to convert several functional SNP and InDel sites into FMs, which greatly increases the speed and efficiency of selection in crop breeding programs (Neelam et al, 2013; Pariasca-Tanaka et al, 2015; Rasheed et al, 2016; Steele et al, 2018). However, KASP assays often have limited multiplexing capabilities and require several assays to be run for the detection of multiple target genes in rice breeding programs, which involves multiple genes pyramiding into a desirable genetic background.

    Thus far, over 50 SNP arrays and 15 different types of genotyping- by-sequencing (GBS) platforms have been developed in more than 25 crops and trees (Rasheed et al, 2017; Arbelaez et al, 2019). These high-throughput platforms are powerful tools for SNP discovery, genomic background selection and genome- wide association analysis. However, they may not be the ideal platforms for MAS, which needs quick data yield time, low per-sample cost and high reliability. MAS generally uses a set of specific markers of target functional polymorphisms to pyramid the underpinning economic traits into an elite variety (Bernardo et al, 2015).

    Several high-throughput multiplex molecular marker assays have been developed for MAS in rice (Masouleh et al, 2009; Kim et al, 2016), wheat (Bérard et al, 2009; Bernardo et al, 2015), legume (Varshney et al, 2016) and other crops. However, the utilization of these assays in MAS is hampered due to the low efficiency of customization, high cost and costly equipment needed for application (Rasheed et al, 2016).

    Polymerase chain reaction/ligase detection reaction (PCR/LDR) is a powerful technique that has been used in detecting single- base mutations (Khanna et al, 1999; Luo et al, 2010), and when coupled with universal array (PCR/LDR/UA), it is a powerful tool for sequencing polymorphism discrimination and detecting of low abundant DNA point mutations (Gerry et al, 1999) and SNPs (Qin et al, 2005) in genetically modified rice (Xu et al, 2006). In this study, we developed a multiplex FM based on PCR/LDR technology. To assess the reliability of this FM, we selected five functional allelic genes,NRT1.1B(Hu et al, 2015),(Ma et al, 2015; Shi and Gong, 2015),(Li et al, 2015),(Bradbury et al, 2005)and(Sato et al, 2002), as targeted polymorphism loci. This newly developed multiplex FM co-segregates with the all functional polymorphisms, and can simultaneously genotype multiple allelic genes in a single experiment. This multiplex FM platform is convenient, rapid, cost-effective and highly-efficient, and hence provides an effective approach for pyramiding of multiple favorable genes in rice improvement breeding.

    To check the accuracy and reliability of the multiplex FM, we initially chose five rice varieties Fan 14, 9311, WYJCG14, Fan 24 and Nanjing 9108 to detect polymorphisms using the multiplex FM. The multiplex FM is designed to discriminate the different alleles ofNRT1.1B,COLD1,,andgenes. Each allelic gene is distinguished by differing lengths of LDR products, which are detected by a DNA sequencer. The chromatographs and genotypes of five rice varieties are shown in Fig. 1-A and Table S1. To confirm the results of the multiplex FM, we used Sanger sequencing to detect the functional SNP sites ofNRT1.1B,COLD1,andgenes, and a PCR-based functional InDel marker to detect the polymorphism sites of. The results were agreement with those of multiplex FM (Fig. S1).

    To test whether the multiplex FM can be used to discriminatehomozygous and heterozygous lines, three F1hybrids, F1-1, F1-2and F1-3, generated from the crosses of Fan 14/9311, Fan 14/ WYJCG14and Nanjing 9108/Fan 24, respectively, were genotyped using the multiplex FM. Based on the genotypes of the parental lines, we speculated that F1-1should be heterozygous in the lociNRT1.1Band COLD1, F1-2should be heterozygous in the locus, and F1-3should be heterozygous in the lociand. As expected, 77 and 79 nt, 81 and 86 nt LDR products were simultaneously detected in the line F1-1, indicating the presence of heterozygosity of theNRT1.1BandCOLD1loci in the line F1-1. Similarly, the results showed that thelocus was heterozygous in the line F1-2, whereas theandloci were heterozygous in the line F1-3(Fig. 1-B and Table S1). These results implied that the multiplex FM developed in this study is robust enough to differentiate allele positive, negative and heterozygotes for each gene locus, thereby confirming the co-dominant inheritance pattern of this multiple FM.

    Three F2segregation populations, F2-1, F2-2and F2-3, derived from crosses of Fan 14/9311, Fan 14/WYJCG14and Nanjing 9108/ Fan 24, respectively, were screened with the new multiplex FM. The parents of F2-1, F1-1, is heterozygous inNRT1.1BandCOLD1, while the other three target sites were negative homozygous (Fig. 1-B and Table S1). The genotyping analysis of the F2-1population revealed that, among the 48 individuals, 12 had positive alleles, 7 had negative alleles, and 29 were heterozygous in theNRT1.1Blocus; while 10 had positive alleles, 16 had negative alleles, and 22 were heterozygous in theCOLD1locus (Tables S2 and S3, Fig. S2-A and -C). Like their parental line of F1-1, all the individuals of F2-1showed negative alleles in the,andloci (Tables S1 and S3). In order to confirm the co-segregation of the newly developed multiple FM with the functional SNPs ofNRT1.1BandCOLD1, the same samples were screened with the functional AS-PCR marker ofNRT1.1B(Tian et al, 2016) and functional dCAPS marker ofCOLD1(Yang J et al, 2019). These genotyping results are concordant with those from our multiplex FM (Table S3 and Fig. S2), suggesting the multiplex FM co-segregates with the functional SNPs ofNRT1.1BandCOLD1.

    Fig. 1. Genotype analysis of five elite rice varieties using multiplex functional marker (FM).

    A, Genotype analysis of five elite rice varieties using the multiplex FM. Ligase detection reaction (LDR) products differing in length are generated based on variant lengths of probes (Table S4). ForNRT1.1B(+/-), the LDR products are 77 nt (+) and 79 nt (-). ForCOLD1(+/-), the LDR products are 86 nt (+) and 81 nt (-). For(+/-), the LDR products are 91 nt (+) and 89 nt (-). For(+/-), the LDR products are 93 nt (+) and 95 nt (-). For(+/-), the LDR products are 97 nt (+) and 99 nt (-).B, Genotype analysis of three independent F1lines using the multiplex FM.F1-1is heterozygous inNRT1.1BandCOLD1loci, F1-2is heterozygous inlocus, and F1-3is heterozygous inandloci.

    Genotyping of 24 individuals of F2-2population using the multiplex FM revealed that, 5 had positive alleles, 6 had negative alleles, and 13 were heterozygous in thelocus (Tables S2 and S3), and all individuals had positive alleles inCOLD1and negative alleles inNRT1.1B,andas their parental line F1-2(Tables S1 and S3). Sequencing thegene in the F2-2population gained consistent results (Table S3 and Fig. S3), suggesting the co-segregation of the multiplex FM with the functional SNPs of

    In the 66 individuals of F2-3, 12 had positive alleles, 19 had negative alleles and 35 were heterozygous in thelocus; while 18 had positive alleles,18 had negative alleles and 30 were heterozygous in thelocus (Tables S2 and S3), whereas all the individuals had positive alleles inCOLD1and negative alleles inNRT1.1Bandas their parental line F1-3(Tables S1 and S3). To confirm the co-segregation of multiple FM with the functional polymorphisms ofandloci, the F2-3samples were screened with the reported functional InDel marker of(Cheng et al, 2018) and CAPS marker(Wang et al, 2009), and the results perfectly matched with those of the multiple FM (Table S3, Fig. S2-B and -D).

    In marker-assisted breeding, MAS should usually be performed before flowering, to allow breeders have sufficient time to make crosses or backcrosses between different gene resources for gene pyramiding. Therefore, the development of practical, high-efficiency and cost-effective multiplex FMs of allelic genes associated with important agronomic traits is very helpful in crop marker-assisted breeding (Kim et al, 2016).

    Thermostable ligase has been cloned for use in the PCR/LDR assay to detect single base mutations (Barany, 1991). The PCR/LDR assay procedure involves a primary PCR amplification followed by LDR detection. For each bi-allele polymorphism site, LDR probes consist of three different species: one fluorescently labeled, gene-specific probe and two allele-specific probes with different lengths, so that the LDR products will migrate to different positions in the DNA sequence analysis. PCR/LDR assay is ideal for multiplexing, since several probe sets can anneal to PCR products without interference faced in polymerase-based assays (Khanna et al, 1999). Furthermore, PCR/LDR assay is known as an accurate reliability assay for polymorphism genotyping due to the high thermostability and fidelity of the DNA ligase (Luo et al, 2010). This can effectively reduce false positives and it is procedurally simple, as it eliminates the need to purify PCR and LDR products for polymorphisms analysis.

    The PCR/LDR assay has been successfully deployed to detect SNPs in many genes and varied species including(Khanna et al, 1999),,and(Favis and Barany, 2000), human mitochondrial DNA (Luo et al, 2010) and human allele polymorphisms (Belgrader et al, 1996). It is recognized as a simple, high-reliability and cost-effective assay for the detection of DNA sequence variations, and has enormous potential to be applied in development multiple FMs of SNPs and/or InDels underpinning important agronomic traits in MAS of crop breeding. In this study, we developed a 5-plex FM from four SNP and one InDel polymorphism sites that represent five genes of agronomic importance in rice, and the FAM (carboxyfluorescein) labeled LDR resultant products were analyzed using an ABI 3730 DNA sequencer (Applied Biosystems, USA). The newly developed FM can successfully discriminate the positive, negative and heterozygous alleles of the five selected polymorphism sites (Fig. 1 and Table S1). Validations using three independent F2populations prove that the multiple FM is in co-segregation with all target allelic genes (Table S3, Figs. S2 and S3). Our results confirmed that the PCR/LDR-based assay is suitable for development of molecular markers for both SNP and InDel loci. More than two alleles may exist in some gene loci, e.g.COLD1(Ma et al, 2015),(Kovach et al, 2009) and(Zhang et al, 2019). Allele specific PCR/LDR-based molecular markers can be developed using distinct MAS breeding programs with alternative alleles. This procedure can also be applied to design markers for other polymorphism sites associated with other agronomic traits, and hence is a very promising assay in the development of multiple FMs for crop improvement breeding program.

    The utilization of high-efficient, reliable and cost-effective molecular markers plays a crucial role in MAS breeding during pyramiding of several valuable genes. SNPs and InDels have become the most promising polymorphism loci owing to their wide distribution within genomes. A massive number of unique SNPs and InDels have been identified via next generation sequencing in rice, and the gap between the identification of SNP and InDel markers and the application in breeding is filled by KASP. KASP is a cost-effective single-step method, cheaper than conventional PCR and gel electrophoresis based molecular markers (Rasheed et al, 2016; Yang G L et al, 2019). However, the disadvantage of the KASP approach is disable multiplexing. As a result, five assays have to be used to detect the genotypes of five loci using KASP, whereas only one assay is needed using the PCR/LDR method. Therefore, the cost of PCR/LDR method is about half as much as KASP. We hold the opinion thatPCR/LDR is a more high-efficient and cost-effective method in pyramiding several useable genes in MAS breeding, even though it requires performing both PCR and LDR.

    The analysis of PCR/LDR-based multiplex FM is performed using the ABI DNA sequencer, which is a popular equipment used for analysis such as microsatellites, SNP analysis, mutation detection and Sanger sequencing of DNA fragment. ABI 3730 and 3730XL DNA Sequencer can analyze 48 and 96 samples in parallel in 2 h, providing the capacity for analyzing hundreds of samples per day. DNA fragment size differences of as small as two nucleotides can be detected accurately using the DNA sequencer. The use of PCR/LDR-based multiplex FMs will provide greater convenience and costs savings for breeders in MAS breeding.

    ACKNOWLEDGEMENTs

    This research was supported by the National Key Research and Development Project of Ministry of Science and Technology, China (Grant No. 2016YFD0101106), Program of Shanghai Technology Research Leader (Grant No. 18XD1424300) and Agriculture Research System of Shanghai, China (Grant No. 201903). We acknowledge Dr. Hong Jinghan for valuable critiques and comments on the manuscript.

    Supplemental DatA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Validations of multiplex functional markers.

    Fig. S2. Validations of genotypes ofNRT1.1B(A),(B),COLD1(C) and(D)in F2segregation populations.

    Fig. S3. Sanger sequencing ofgene in F2-2segregation population.

    Table S1. Genotypes of parental and F1lines analyzed using multiple functional markers.

    Table S2. Segregations of F2populations analyzed using multiple functional markers.

    Table S3. Genotyping results of F2population using multiplex functional markers.

    Table S4. LDR probes and length of LDR products.

    Table S5. Primer sequences and PCR products size of target genes.

    >

    Andersen J R, Lübberstedt T. 2003. Functional markers in plants., 8: 554?560.

    Arbelaez J D, Dwiyanti M S, Tandayu E, Llantada K, Jarana A, Ignacio J C, Platten J D, Cobb J, Rutkoski J E, Thomson M J, Kretzschmar T. 2019. 1k-RiCA () a novel genotyping amplicon-based SNP assay for genetics and breeding applications in rice., 12: 55.

    Barany F. 1991. Genetic disease detection and DNA amplification using cloned thermostable ligase., 88: 189?193.

    Belgrader P, Marino M M, Lubin M, Barany F. 1996. A multiplex PCR-ligase detection reaction assay for human identity testing., 1: 77?87.

    Bérard A, le Paslier M C, Dardevet M, Exbrayat-Vinson F, Bonnin I, Cenci A, Haudry A, Brunel D, Ravel C. 2009. High- throughput single nucleotide polymorphism genotyping in wheat (spp)., 7: 364?374.

    Bernardo A, Wang S, St. Amand P, Bai G. 2015. Using next generation sequencing for multiplexed trait-linked markers in wheat., 10: e143890.

    Bradbury L M, Fitzgerald T L, Henry R J, Jin Q, Waters D L. 2005. The gene for fragrance in rice., 3: 363?370.

    Cheng C, Yang J, Zhou J H, Niu F A, Hu X J, Tu R J, Luo Z Y, Wang X Q, Cao M L, Chu H W. 2018. Functional molecular marker-based identification of fragrant parents ofhybrid rice (L.).,16: 5653? 5659. (in Chinese with English abstract)

    Favis R, Barany F. 2000. Mutation detection in K-, BRCA1, BRCA2, and p53 using PCR/LDR and a universal DNA microarray., 906: 39?43.

    Gerry N P, Witowski N E, Day J, Hammer R P, Barany G, Barany F. 1999. Universal DNA microarray method for multiplex detection of low abundance point mutations., 292: 251?262.

    Gopalakrishnan S, Sharma R K, Anand Rajkumar K, Joseph M, Singh V P, Singh A K, Bhat K V, Singh N K, Mohapatra T. 2008. Integrating marker assisted background analysis with foreground selection for identification of superior bacterial blight resistant recombinants in Basmati rice., 127: 131?139.

    Hu B, Wang W, Ou S J, Tang J Y, Li H, Che R H, Zhang Z H, Chai X Y, Wang H R, Wang Y Q, Liang C Z, Liu L C, Piao Z Z, Deng Q Y, Deng K, Xu C, Liang Y, Zhang L H, Li L G, Chu C C. 2015. Variation incontributes to nitrate-use divergence between rice subspecies., 47: 834?838.

    Khanna M, Park P, Zirvi M, Cao W, Picon A, Day J, Paty P, Barany F. 1999. Multiplex PCR/LDR for detection of K-mutations in primary colon tumors., 18: 27?38.

    Kim S, Ramos J, Ashikari M, Virk P S, Torres E A, Nissila E, Hechanova S L, Mauleon R, Jena K K. 2016. Development and validation of allele-specific SNP/Indel markers for eight yield- enhancing genes using whole-genome sequencing strategy to increase yield potential of rice,L., 9: 12.

    Kovach M J, Calingacion M N, Fitzgerald M A, McCouch S R. 2009. The origin and evolution of fragrance in rice (L.)., 106: 14444–14449.

    Li X M, Chao D Y, Wu Y, Huang X, Chen K, Cui L G, Su L, Ye W W, Chen H, Chen H C, Dong N Q, Guo T, Shi M, Feng Q, Zhang P, Han B, Shan J X, Gao J P, Lin H X. 2015. Natural alleles of a proteasome α2 subunit gene contribute to thermo- tolerance and adaptation of African rice., 47: 827?833.

    Luo Y J, Tang S, Gao W X, Chen L, Yang X H, Huang T S, Gao Y Q. 2010. Genotyping mitochondrial DNA single nucleotide polymorphisms by PCR ligase detection reactions., 48: 475?483.

    Ma Y, Dai X Y, Xu Y Y, Luo W, Zheng X M, Zeng D L, Pan Y J, Lin X L, Liu H H, Zhang D J, Xiao J, Guo X Y, Xu S J, Niu Y D, Jin J B, Zhang H, Xu X, Li L G, Wang W, Qian Q, Ge S, Chong K. 2015.confers chilling tolerance in rice., 160: 1209?1221.

    Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla S. 2012. SNP markers and their impact on plant breeding., 2012: 1?11.

    Masouleh A K, Waters D L, Reinke R F, Henry R J. 2009. A high-throughput assay for rapid and simultaneous analysis of perfect markers for important quality and agronomic traits in rice using multiplexed MALDI-TOF mass spectrometry., 7: 355?363.

    Neelam K, Brown-Guedira G, Huang L. 2013. Development and validation of a breeder-friendly KASPar marker for wheat leaf rust resistance locus., 31: 233?237.

    Pariasca-Tanaka J, Lorieux M, He C, McCouch S, Thomson M J, Wissuwa M. 2015. Development of a SNP genotyping panel for detecting polymorphisms ininters- pecific crosses.,201: 67?78.

    Qin H Y, Zhao X, Pan Y X, Liu J H, Feng G Y, Fu J C, Bao J Y, Zhang Z Z, He L. 2005. An association study of the-methyl- D-aspartate receptor NR1 subunit gene () and NR2B subunit gene () in schizophrenia with universal DNA microarray.,13: 807?814.

    Rasheed A, Wen W, Gao F M, Zhai S N, Jin H, Liu J D, Guo Q, Zhang Y J, Dreisigacker S, Xia X C, He Z H. 2016. Development and validation of KASP assays for genes underpinning key economic traits in bread wheat.,129: 1843?1860.

    Rasheed A, Hao Y F, Xia X C, Khan A, Xu Y B, Varshney R K, He Z H. 2017. Crop breeding chips and genotyping platforms: Progress, challenges, and perspectives.,10: 1047?1064.

    Sato H, Suzuki Y, Sakai M, Imbe T. 2002. Molecular characterization of, a novel mutant gene for low-amylose content in endosperm of rice (L.).,52: 131?135.

    Shi Y T, Gong Z Z. 2015. One SNP indetermines cold tolerance during rice domestication.,42: 133?134.

    Steele K A, Quinton-Tulloch M J, Amgai R B, Dhakal R, Khatiwada S P, Vyas D, Heine M, Witcombe J R. 2018. Accelerating public sector rice breeding with high-density KASP markers derived from whole genome sequencing ofrice., 38: 38.

    Tian M X, Yu B X, Zhang S L, He Y X, Wu R, Tian J P, Ye Y Y. 2016. Development and application of a functional marker for high nitrogen-use efficiencygene in rice.,14: 410?416. (in Chinese with English abstract)

    Varshney R K, Singh V K, Hickey J M, Xun X, Marshall D F, Wang J, Edwards D, Ribaut J. 2016. Analytical and decision support tools for genomics-assisted breeding.,21: 354?363.

    Wang C L, Zhang Y D, Zhu Z D, Chen T, Zhao L, Lin J, Zhou L H. 2009. Development of a newrice variety Nan-jing 46 with good eating quality by marker assisted selection.,7: 1070?1076.

    Xu J, Miao H Z, Wu H F, Huang W S, Tang R, Qiu M Y, Wen J G, Zhu S F, Li Y. 2006. Screening genetically modified organisms using multiplex-PCR coupled with oligonucleotide microarray., 22: 71?77.

    Yang G L, Chen S P, Chen L K, Sun K, Huang C h, Zhou D H, Huang Y T, Wang J F, Liu Y Z, Wang H, Chen Z Q, Guo T. 2019. Development of a core SNP arrays based on the KASP method for molecular breeding of rice., 12: 21.

    Yang J, Cao L M, Zhou J H, Niu F A, Hu X J, Tu R J, Luo Z Y, Wang X Q, Cheng C, Chu H W. 2019. Development and application of functional marker of chilling tolerance gene,, in rice., 17: 6028?6032. (in Chinese with English abstract)

    Zhang C Q, Zhu J H, Chen S J, Fan X L, Li Q F, Lu Y, Wang M, Yu H X, Yi C D, Tang S Z, Gu M H, Liu Q Q. 2019.Wx, the ancestral allele of ricegene., 12: 1157?1166.

    ChuHuangwei, Tu Rongjian, Niu Fuan, Zhou Jihua, Sun Bin, Luo Zhongyong, Cheng Can, Cao Liming

    ()

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.11.002

    s:Cao Liming (caoliming@saas.sh.cn);

    Cheng Can (chengcan@saas.sh.cn)

    20 January 2020;

    20 May 2020

    美女高潮的动态| 人体艺术视频欧美日本| 久久99热这里只有精品18| 青青草视频在线视频观看| 欧美色视频一区免费| 欧美成人午夜免费资源| 欧美激情久久久久久爽电影| 亚洲欧洲国产日韩| 免费大片18禁| 一级av片app| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 日韩大片免费观看网站 | 青春草国产在线视频| 亚洲av成人精品一区久久| 天堂av国产一区二区熟女人妻| 麻豆成人av视频| 大香蕉久久网| 国产成人91sexporn| 我要搜黄色片| videossex国产| 热99re8久久精品国产| 极品教师在线视频| kizo精华| 2022亚洲国产成人精品| 国产高清国产精品国产三级 | 日韩精品青青久久久久久| 国产国拍精品亚洲av在线观看| 男人的好看免费观看在线视频| 国产精品永久免费网站| 高清午夜精品一区二区三区| 亚洲av.av天堂| 精品久久久久久久末码| 一卡2卡三卡四卡精品乱码亚洲| 高清视频免费观看一区二区 | 99九九线精品视频在线观看视频| 久热久热在线精品观看| 不卡视频在线观看欧美| 成人国产麻豆网| 亚洲av熟女| 免费看av在线观看网站| 亚洲欧美日韩东京热| 只有这里有精品99| 久久精品久久精品一区二区三区| 亚洲精品乱码久久久v下载方式| 岛国毛片在线播放| 亚洲av成人精品一二三区| 久久韩国三级中文字幕| 亚洲美女搞黄在线观看| 女人久久www免费人成看片 | 久久久久久久亚洲中文字幕| 日本黄色视频三级网站网址| 少妇的逼好多水| 午夜精品在线福利| 看片在线看免费视频| 91久久精品电影网| 青春草亚洲视频在线观看| 成人性生交大片免费视频hd| 国产又色又爽无遮挡免| 国产精品无大码| 久久综合国产亚洲精品| 成人亚洲精品av一区二区| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 亚洲aⅴ乱码一区二区在线播放| 晚上一个人看的免费电影| 不卡视频在线观看欧美| 亚洲伊人久久精品综合 | 国产午夜精品论理片| 1000部很黄的大片| 精品久久久久久久久av| 精品无人区乱码1区二区| 午夜视频国产福利| 人人妻人人澡欧美一区二区| 免费观看性生交大片5| 国产一级毛片在线| 白带黄色成豆腐渣| 国产精品,欧美在线| 嫩草影院入口| 夜夜爽夜夜爽视频| 亚洲精品久久久久久婷婷小说 | 午夜久久久久精精品| 插逼视频在线观看| 97在线视频观看| 亚洲人与动物交配视频| 日韩国内少妇激情av| 婷婷色综合大香蕉| 18禁裸乳无遮挡免费网站照片| 国产在视频线在精品| 在线观看66精品国产| 亚洲精品成人久久久久久| 国产黄色小视频在线观看| 日本黄色片子视频| 一个人看的www免费观看视频| 日韩精品有码人妻一区| 最近手机中文字幕大全| 波多野结衣巨乳人妻| 国产三级中文精品| 国产高清有码在线观看视频| 亚洲精品一区蜜桃| 中文天堂在线官网| 亚洲av电影在线观看一区二区三区 | 国产一区二区在线观看日韩| 亚洲精品国产av成人精品| 国产日韩欧美在线精品| 蜜臀久久99精品久久宅男| 一边亲一边摸免费视频| 国产69精品久久久久777片| 熟妇人妻久久中文字幕3abv| 99久久中文字幕三级久久日本| 男插女下体视频免费在线播放| 国产色婷婷99| 亚洲欧美精品专区久久| 丰满少妇做爰视频| 赤兔流量卡办理| 久久99精品国语久久久| 性插视频无遮挡在线免费观看| 高清在线视频一区二区三区 | 中文欧美无线码| 国产精品人妻久久久影院| 18禁在线播放成人免费| 亚洲国产精品久久男人天堂| 国产爱豆传媒在线观看| 久久6这里有精品| 在线播放国产精品三级| 又粗又爽又猛毛片免费看| 乱人视频在线观看| 国产乱人偷精品视频| 小说图片视频综合网站| 国产视频首页在线观看| 亚洲精品乱码久久久v下载方式| 国产熟女欧美一区二区| 久久久精品欧美日韩精品| 欧美成人免费av一区二区三区| av天堂中文字幕网| 少妇的逼好多水| 国产精品一二三区在线看| 国产精品不卡视频一区二区| av福利片在线观看| 成人一区二区视频在线观看| 国产91av在线免费观看| 小蜜桃在线观看免费完整版高清| 精品熟女少妇av免费看| 欧美bdsm另类| 国产伦精品一区二区三区视频9| 国产黄片视频在线免费观看| 亚洲四区av| 99热这里只有精品一区| 在线播放无遮挡| 午夜福利高清视频| 男女下面进入的视频免费午夜| 久久精品影院6| 国产精品久久视频播放| 啦啦啦观看免费观看视频高清| 汤姆久久久久久久影院中文字幕 | 超碰av人人做人人爽久久| 欧美高清性xxxxhd video| 亚洲中文字幕日韩| 日本爱情动作片www.在线观看| 国产av一区在线观看免费| 亚洲av日韩在线播放| 成人漫画全彩无遮挡| 欧美高清性xxxxhd video| av在线蜜桃| 亚洲av电影在线观看一区二区三区 | 深爱激情五月婷婷| 国产日韩欧美在线精品| 在线观看一区二区三区| 亚洲人与动物交配视频| 高清午夜精品一区二区三区| 69人妻影院| 国产色爽女视频免费观看| 又粗又爽又猛毛片免费看| 亚洲欧美日韩卡通动漫| 亚洲在线观看片| 人人妻人人澡欧美一区二区| 一区二区三区免费毛片| 国产午夜精品论理片| 国产成人免费观看mmmm| 免费看av在线观看网站| 麻豆久久精品国产亚洲av| 亚洲av电影在线观看一区二区三区 | 久久韩国三级中文字幕| 啦啦啦韩国在线观看视频| 村上凉子中文字幕在线| 国产精品嫩草影院av在线观看| 尾随美女入室| 亚洲国产欧洲综合997久久,| 精品久久久久久成人av| 亚洲av中文av极速乱| 免费搜索国产男女视频| 国产又色又爽无遮挡免| 97超视频在线观看视频| 欧美极品一区二区三区四区| 欧美精品一区二区大全| 六月丁香七月| 色5月婷婷丁香| 国产精品一及| 久久精品国产99精品国产亚洲性色| 欧美日韩一区二区视频在线观看视频在线 | 国内精品一区二区在线观看| 国产亚洲午夜精品一区二区久久 | 一个人看的www免费观看视频| 国产成年人精品一区二区| 乱系列少妇在线播放| 国产成人freesex在线| av又黄又爽大尺度在线免费看 | 亚洲精品自拍成人| 卡戴珊不雅视频在线播放| 久久精品熟女亚洲av麻豆精品 | 日韩三级伦理在线观看| 99热6这里只有精品| 中文字幕久久专区| 91久久精品电影网| 久久久久久大精品| 一卡2卡三卡四卡精品乱码亚洲| 纵有疾风起免费观看全集完整版 | 1024手机看黄色片| 国产精品1区2区在线观看.| 久久精品综合一区二区三区| 又黄又爽又刺激的免费视频.| 91aial.com中文字幕在线观看| 最近手机中文字幕大全| 欧美不卡视频在线免费观看| 精品久久久久久久久av| 老女人水多毛片| 国产一区二区三区av在线| 大香蕉97超碰在线| 黄色日韩在线| 在线观看美女被高潮喷水网站| 观看免费一级毛片| 日本wwww免费看| 久久久久性生活片| 日本免费一区二区三区高清不卡| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 激情 狠狠 欧美| 国产又黄又爽又无遮挡在线| 成人国产麻豆网| 秋霞在线观看毛片| 你懂的网址亚洲精品在线观看 | 九九在线视频观看精品| 99国产精品一区二区蜜桃av| 日日摸夜夜添夜夜添av毛片| 色哟哟·www| 国产久久久一区二区三区| 日韩精品青青久久久久久| 亚洲va在线va天堂va国产| 亚洲,欧美,日韩| 中文精品一卡2卡3卡4更新| 午夜精品国产一区二区电影 | 国产亚洲精品av在线| 在线免费观看的www视频| 国产精品伦人一区二区| 日韩精品青青久久久久久| 亚洲精品国产av成人精品| 一个人看视频在线观看www免费| 国产国拍精品亚洲av在线观看| 亚洲美女搞黄在线观看| 欧美日韩精品成人综合77777| 乱系列少妇在线播放| 欧美区成人在线视频| 校园人妻丝袜中文字幕| av在线亚洲专区| 亚洲熟妇中文字幕五十中出| 内地一区二区视频在线| 村上凉子中文字幕在线| 国产精品野战在线观看| 丰满人妻一区二区三区视频av| 99久国产av精品| 午夜福利在线观看免费完整高清在| 久久6这里有精品| 日韩在线高清观看一区二区三区| 麻豆国产97在线/欧美| 在线播放国产精品三级| 日本wwww免费看| 好男人在线观看高清免费视频| 级片在线观看| 日韩国内少妇激情av| av国产免费在线观看| 18禁在线无遮挡免费观看视频| 国产亚洲av片在线观看秒播厂 | 中文字幕av在线有码专区| 蜜臀久久99精品久久宅男| 综合色丁香网| 日本三级黄在线观看| 永久网站在线| 一级二级三级毛片免费看| 成年av动漫网址| 国产熟女欧美一区二区| 一级毛片电影观看 | 一个人看的www免费观看视频| 免费不卡的大黄色大毛片视频在线观看 | 18禁在线播放成人免费| 亚洲美女搞黄在线观看| 身体一侧抽搐| 天天躁日日操中文字幕| 伦精品一区二区三区| a级毛片免费高清观看在线播放| 成人美女网站在线观看视频| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 成人午夜高清在线视频| 久久精品国产亚洲av涩爱| 91久久精品国产一区二区三区| 天堂影院成人在线观看| 久久久久久伊人网av| 18禁动态无遮挡网站| 日本与韩国留学比较| 乱系列少妇在线播放| 精品熟女少妇av免费看| 午夜福利视频1000在线观看| 高清午夜精品一区二区三区| 亚洲综合精品二区| 一级黄色大片毛片| 精品久久久久久久末码| 人妻制服诱惑在线中文字幕| 欧美激情在线99| 特级一级黄色大片| 嫩草影院新地址| 久久亚洲国产成人精品v| 成年女人永久免费观看视频| 可以在线观看毛片的网站| 国产高清视频在线观看网站| 国产色婷婷99| 久久久久久久久久黄片| 观看免费一级毛片| 国产精品一及| 精品人妻一区二区三区麻豆| 免费电影在线观看免费观看| 国产精品麻豆人妻色哟哟久久 | 大香蕉97超碰在线| 国产一级毛片七仙女欲春2| 亚洲va在线va天堂va国产| 在线观看66精品国产| 国产成人a∨麻豆精品| 亚洲国产精品合色在线| 少妇猛男粗大的猛烈进出视频 | 麻豆一二三区av精品| 国产国拍精品亚洲av在线观看| 久久久久久久亚洲中文字幕| 国产成人精品婷婷| 啦啦啦韩国在线观看视频| 精品午夜福利在线看| 最近最新中文字幕大全电影3| 色综合亚洲欧美另类图片| 国产精品久久电影中文字幕| 成人国产麻豆网| 精品99又大又爽又粗少妇毛片| 亚洲精品成人久久久久久| 一级av片app| 国产真实伦视频高清在线观看| 国产精品国产三级国产专区5o | 亚洲国产精品久久男人天堂| 老师上课跳d突然被开到最大视频| 欧美日韩精品成人综合77777| 亚洲精品456在线播放app| 久久99精品国语久久久| 国产成人aa在线观看| 国产免费一级a男人的天堂| 国产精品嫩草影院av在线观看| 成年女人看的毛片在线观看| 日本一二三区视频观看| 日本黄大片高清| 午夜福利视频1000在线观看| 麻豆久久精品国产亚洲av| 中文乱码字字幕精品一区二区三区 | 亚洲精品aⅴ在线观看| 精品欧美国产一区二区三| 国产成人精品久久久久久| 亚洲av免费高清在线观看| 国产极品精品免费视频能看的| 2021少妇久久久久久久久久久| 日本黄色视频三级网站网址| 麻豆成人午夜福利视频| 日韩av在线免费看完整版不卡| 久99久视频精品免费| 国产乱人视频| 在线免费观看不下载黄p国产| 91午夜精品亚洲一区二区三区| 久久精品夜色国产| 亚洲成人精品中文字幕电影| 女的被弄到高潮叫床怎么办| 亚洲美女视频黄频| 观看免费一级毛片| 床上黄色一级片| a级一级毛片免费在线观看| 97在线视频观看| 久久久久久久久中文| 亚洲最大成人av| 欧美日本视频| av视频在线观看入口| 成年版毛片免费区| 春色校园在线视频观看| 成人毛片60女人毛片免费| 亚洲国产色片| 午夜福利在线在线| 蜜桃亚洲精品一区二区三区| 日本wwww免费看| 中文在线观看免费www的网站| 丰满人妻一区二区三区视频av| 一级爰片在线观看| a级毛片免费高清观看在线播放| 欧美高清成人免费视频www| 18禁在线播放成人免费| 大香蕉久久网| 春色校园在线视频观看| 22中文网久久字幕| 国产亚洲一区二区精品| 国产一区二区在线观看日韩| 在线播放国产精品三级| 亚洲av成人av| 日韩欧美在线乱码| 日韩成人av中文字幕在线观看| 天天一区二区日本电影三级| 欧美xxxx黑人xx丫x性爽| 国产av码专区亚洲av| 亚洲四区av| 欧美一区二区精品小视频在线| 国产黄色视频一区二区在线观看 | 尤物成人国产欧美一区二区三区| 国产精品国产三级国产av玫瑰| 日韩视频在线欧美| 国产高清国产精品国产三级 | 2021少妇久久久久久久久久久| 亚洲精品aⅴ在线观看| 久久精品夜色国产| 免费观看a级毛片全部| 内地一区二区视频在线| 国产欧美另类精品又又久久亚洲欧美| 国产在线男女| 日本av手机在线免费观看| 色综合色国产| 国内精品宾馆在线| 欧美又色又爽又黄视频| 午夜福利成人在线免费观看| 日韩大片免费观看网站 | 最近最新中文字幕免费大全7| 久久久国产成人精品二区| 国产av在哪里看| 晚上一个人看的免费电影| 国产不卡一卡二| 精品人妻一区二区三区麻豆| 国产成人福利小说| 欧美高清成人免费视频www| 长腿黑丝高跟| av在线老鸭窝| 国产 一区精品| 国产精品熟女久久久久浪| 国产探花极品一区二区| 亚洲欧洲日产国产| 久久久久久久亚洲中文字幕| 久久这里只有精品中国| 国产单亲对白刺激| 91午夜精品亚洲一区二区三区| 男人和女人高潮做爰伦理| 成人亚洲欧美一区二区av| 亚洲av熟女| 熟妇人妻久久中文字幕3abv| 亚洲最大成人av| 看片在线看免费视频| 久久精品影院6| 国产成人精品一,二区| 国产精品久久久久久精品电影| 精品99又大又爽又粗少妇毛片| 成人三级黄色视频| 久久精品国产亚洲网站| 日本免费一区二区三区高清不卡| 男人和女人高潮做爰伦理| 欧美日韩综合久久久久久| 亚洲国产精品成人久久小说| 亚洲国产精品sss在线观看| 亚洲国产精品国产精品| 国产精品日韩av在线免费观看| 伦精品一区二区三区| 久久午夜福利片| 国产高潮美女av| 日韩 亚洲 欧美在线| 自拍偷自拍亚洲精品老妇| 高清毛片免费看| 国产成人精品婷婷| 精品少妇黑人巨大在线播放 | 永久免费av网站大全| 成年免费大片在线观看| 日韩精品有码人妻一区| 99热精品在线国产| 深爱激情五月婷婷| 九九在线视频观看精品| 国产中年淑女户外野战色| 久久久久精品久久久久真实原创| 99热这里只有是精品50| 欧美性感艳星| 熟女电影av网| 狂野欧美白嫩少妇大欣赏| 看非洲黑人一级黄片| 99久久成人亚洲精品观看| 天堂√8在线中文| 国产免费男女视频| 日韩欧美精品免费久久| 我的老师免费观看完整版| 麻豆乱淫一区二区| 热99在线观看视频| 免费一级毛片在线播放高清视频| 国产黄片视频在线免费观看| 欧美区成人在线视频| 亚洲人与动物交配视频| 日韩精品有码人妻一区| 国产欧美日韩精品一区二区| 日日摸夜夜添夜夜爱| 我的老师免费观看完整版| 日本黄色片子视频| 久久99热这里只有精品18| a级一级毛片免费在线观看| 嫩草影院新地址| 欧美日韩一区二区视频在线观看视频在线 | ponron亚洲| 特大巨黑吊av在线直播| 亚洲av成人av| 国产精品乱码一区二三区的特点| 国产在视频线精品| 亚洲精品日韩在线中文字幕| 色尼玛亚洲综合影院| 国国产精品蜜臀av免费| 看十八女毛片水多多多| 国产黄色视频一区二区在线观看 | 免费人成在线观看视频色| 69人妻影院| 人妻夜夜爽99麻豆av| 欧美成人精品欧美一级黄| 亚洲自偷自拍三级| 国产成人freesex在线| 国产精品嫩草影院av在线观看| 久久国产乱子免费精品| 亚洲av成人精品一区久久| 少妇裸体淫交视频免费看高清| 亚洲国产高清在线一区二区三| 久久精品久久久久久久性| 美女黄网站色视频| 国产伦在线观看视频一区| 丰满少妇做爰视频| 日本与韩国留学比较| 真实男女啪啪啪动态图| 午夜亚洲福利在线播放| 人妻夜夜爽99麻豆av| 亚洲国产成人一精品久久久| 少妇的逼好多水| 成年版毛片免费区| 国产中年淑女户外野战色| 久久久久久伊人网av| 日日摸夜夜添夜夜添av毛片| 男人的好看免费观看在线视频| 亚洲欧美精品专区久久| 国产成人a区在线观看| 在线观看美女被高潮喷水网站| 成年女人看的毛片在线观看| 久热久热在线精品观看| 国产成人福利小说| av国产免费在线观看| 欧美潮喷喷水| 好男人视频免费观看在线| 国产极品天堂在线| 午夜久久久久精精品| 一级毛片久久久久久久久女| 国产精品一区二区性色av| 久久久久久久国产电影| 九九热线精品视视频播放| 美女脱内裤让男人舔精品视频| 久久精品久久久久久久性| 久久久久久伊人网av| 欧美日韩国产亚洲二区| 好男人在线观看高清免费视频| 少妇丰满av| 少妇的逼水好多| 能在线免费看毛片的网站| 波多野结衣高清无吗| 中文在线观看免费www的网站| 在线观看美女被高潮喷水网站| 麻豆久久精品国产亚洲av| 蜜桃久久精品国产亚洲av| 久久久精品欧美日韩精品| 久久精品91蜜桃| 成人亚洲精品av一区二区| 九九热线精品视视频播放| 国产熟女欧美一区二区| 91精品国产九色| 久久久久久国产a免费观看| 精品国产一区二区三区久久久樱花 | 亚洲国产日韩欧美精品在线观看| 国产亚洲av嫩草精品影院| www日本黄色视频网| 天堂av国产一区二区熟女人妻| 一边摸一边抽搐一进一小说| 欧美日韩在线观看h| 成人一区二区视频在线观看| 久久午夜福利片| 日韩欧美精品v在线| 欧美潮喷喷水| 一级毛片我不卡| 久久国产乱子免费精品| 午夜视频国产福利| 日本一二三区视频观看| 久久精品国产自在天天线| 看黄色毛片网站| 美女cb高潮喷水在线观看| eeuss影院久久| kizo精华| 好男人在线观看高清免费视频| 婷婷六月久久综合丁香| 伦精品一区二区三区| 乱系列少妇在线播放| 色吧在线观看| 国产精品一区二区三区四区免费观看| 99热全是精品| 亚洲国产欧洲综合997久久,| .国产精品久久| 成人二区视频|