• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    2021-01-13 07:29:40WANGHuimei,HOUYuxuan,WANGShuang
    Rice Science 2021年1期

    Letter

    WRKY72 Negatively Regulates Seed Germination Through Interfering Gibberellin Pathway in Rice

    Seed germination is associated with grain yield and quality in crop production. Gibberellic acid (GA) serves as a major phytohormone in the promotion of seed germination. It is synthesized in the embryos and transmitted to the aleurone layers, where GA triggers the synthesis and secretion of a set of hydrolases, especially α-amylase. Subsequently, the storage nutrients such as starch in the endosperm are digested by these hydrolases and absorbed by the embryo to sustain seed germination and early seedling establishment (Kaneko et al, 2002). The detailed GA biosynthesis process has been well studied and thoroughly reviewed in several literatures (Sakamoto et al, 2004; Reinecke et al, 2013). Briefly, geranylgeranyl diphosphate (GGDP) is turned into-kaurene by two terpene synthases,-copalyl diphosphate synthase (CPS) and-kaurene synthase (KS). Subsequently, the conversion of GA precursor-kaurene to-kaurenoic acid is catalyzed by-kaurene oxidase (KO), and that from-kaurenoic acid to GA12is catalyzed by-kaurenoic acid oxidase (KAO). Ultimately, GA12is converted to various GA intermediates and bioactive GAs by GA20-oxidase (GA20ox) and GA3-oxidase (GA3ox), respectively.

    WRKY transcription factors (TFs), one of the largest TF families in higher plants, usually bind to the W-box motif (T)(T)TGAC(C/T) in the promoter of the downstream target genes (Eulgem et al, 2000; Ulker and Somssich, 2004). Several WRKY family members have been reported to participate in GA-mediated seed germination in the past decade. In, AtWRKY27, which is directly regulated by GA signaling component RGA, is involved in GA-mediated seed germination (Zentella et al, 2007). Rushton et al (1995) reported that AfWRKY1 and AfWRKY2 inhibit the expression of α-amylase, therefore delay seed germination in. OsWRKY51 and OsWRKY71, which are homologous of AfWRKY1 and AfWRKY2, function as heterologous dimers and interact with GA signal positive regulator GAMYB to inhibit the expression of α-amylase in rice (Zhang et al, 2004; Xie et al, 2006). Here we report that WRKY72 acts as a negative regulator in rice seed germination by restricting GA accumulation through modulating ‘’ pathway, which would provide novel insights into the finely regulated mechanism of WRKY72-mediated seed germination in rice.

    Previous studies have shown thatis predominantly expressed in rice developing seeds, especially in aleurone layers, indicating it can participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). In this study, we mainly focused on the role ofin rice seed germination process. Firstly,over-expression lines () andmutants () were generated. Two independentover-expression lines (and) showed about 90-fold higher transcript level compared with the wild type (WT) (Fig. S1-A). Twomutants (and) harbored a G insertion and a T insertion in the 1st exon ofrespectively, which shifted the open reading frame, though the transcript level ofremained unchanged (Fig. S1-B to -D). Seeds of T2generation from bothandlines were subjected to seed germination assay. The germination rates oflines were significantly lower than that of the WT (Fig. 1-A). In consistent with the retarded seed germination, the seedling heights oflines were also lower than that of the WT (Fig. 1-B and -C). However, the germination rates and seedling growths oflines were similar to the WT, possibly due to its functional redundancy with other WRKY family members (Fig. 1-A to -C). As GA is a major activating phytohormone in seed germination, the retarded seed germination ofseeds intrigued us to measure the endogenous GA level inas well as the WT. The results showed that the GA3content was significantly reduced in thegerminating embryos, indicating thatdefected in GA accumulation, rather than GA signaling (Fig. 1-D). As expected, the retarded germination rates and seedling growths oflines were restored to the same level as the WT when 1.5 μmol/L exogenous GA3was applied (Fig. 1-E to -G). Hence, the suggestion is that WRKY72 inhibits seed germination at least partly by blocking GA accumulation.

    Fig. 1. Seed germination characteristics of overexpression linesand mutant lines.

    A,Germination time courses of the wild type (WT), overexpression linesand mutant lines, respectively. B, Germination phenotypes of the WT,andgrown on 1/2 Murashige and Skoog (MS) medium for 4 d. Scale bars, 1 cm.C, Seedling heights of the WT,andin accordance to B. D,GA3content in the germinating embryos of the WT and. E, Germination time courses of the WT andunder mock or 1.5 μmol/L GA3treatment. F, Germination phenotypes of the WT andunder mock or GA3treatment for 4 d. Scale bars, 2 cm. G, Seedling heights of the WT andlines in accordance to F. Error bars indicate SD with triple biological replicates (each replicate containing 50 seeds) in A andE, 50 biological replicates in C andG, and triple biological replicates in D. Asterisks indicate the significant differences between the WT and transgenic lines as determined by the Student’stest analysis. **,< 0.01.

    Germinating embryos ofand the WT grown on half-strength Murashige and Skoog(MS) medium for 2 d were collected for RNA-sequencing (RNA-seq)assay to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. As a result, we totally identified 2457 differentiallyexpressed genes (DEGs), including 727 down-regulated and 1730 up-regulated genes in(|log2 ratio|≥1; False discovery rate <0.01) (Table S1). To validate the transcriptome analysis, 13 DEGs, which are functionally relevant to GA biosynthesis or seed germination, were selected for gene transcript abundance verification (Table S2). As shown in Fig. 2-A, the transcript levels of most of the selected genes were consistent with the RNA-seq results, suggesting the high-reliability of the RNA-seq data. Interestingly, among these detected DEGs, several have been reported to be functionally involved in GA biosynthesis or metabolism. For example,(gibberellin 20 oxidase 2, a major GA biosynthesis enzyme) () was down-regulated in, and mutation ofreduces GA biosynthesis and thereby delays seed germination (Ye et al, 2015).(a C2C2-type zinc finger protein) () was also reduced in, and it can interact with OsbZIP58 to promote seed germination through activating the gibberellin biosynthesis gene(Wu et al, 2014).(a leucine-rich repeat receptor-like kinase, LRR-RLKs)() was significantly elevated in, and it represses GA biosynthesis through inhibiting the activity of the GA biosynthesis enzyme OsKO2 (Itoh et al, 2004; Yang et al, 2013). We further analyzed the-element distribution in the promoter region of these selected DEGs using the online tool PlantCARE(http://bioinformatics.psb.ugent.be/webtools/plantcare/html/), and found that onlyandcontain W-box (TTGAC[C/T]) or W-box like (TGAC[C/T])-elements (Fig. S2). Theincreased transcript levelofinindicated thatmight be involved in WRKY72-mediated GA biosynthesis repression(Fig. 2-A). Therefore, we mainly focused on whethercan be the direct target of WRKY72. To test this hypothesis, the EMSA(electrophoresis mobility shift assay) was firstly performed to detect the DNA binding ability of WRKY72 with. As shown in Fig. 2-B and -C, GST-WRKY72 protein can bind to the probe 3 (P3), which contains a conserved W-box motif close to the transcription starting site, andthe shift band signal was gradually weakened by the addition of unlabeled, competitive P3 probe in a dosage-dependentmanner, suggesting that this binding is highly specific (Fig. 2-B and -C). Subsequently, ChIP-qPCR (chromatin immunoprecipitation-quantitative PCR) assay was performed to validate the binding pattern of WRKY72 onpromoter. In consistent with the results of EMSA, WRKY72 was significantly enriched in the P3 region ofpromoter, while there was no significant enrichment in the other fragments, except that P1 region located inpromoter exhibited slightly WRKY72enrichment,strongly suggesting that the W-box in the P3 region acts as a core binding site for WRKY72 (Fig. 2-B and -D).Finally, a dual-luciferase (LUC) transient transcriptional activity assay was performed to determine the regulatory effect of WRKY72 ontranscription (Fig. 2-E and -F). In comparison with the empty effector,drastically elevated the transcript level ofreporter, but such induction was significantly reduced when the W-box in the P3 promoter region ofwas mutated, which was in accordancewith the transcription pattern ofintransgenic lines (Fig. 2-A, -E and -F). Taken together, these experiments clearly demonstrated that WRKY72 specifically binds to thepromoter containing a W-box-element and induces the latter’s transcription.

    Fig. 2. WRKY72 mediates seed germination by WRKY72--pathway.

    A, Real-time PCR (qRT-PCR) validation of the differentially expressed genes (DEGs) revealed by RNA-sequencing (RNA-seq) experiments. cDNA of germinating embryos grown on 1/2 Murashige and Skoog (MS) medium for 2 d was used as templates. B, Probe positions onpromoter and genome. Grey, black and yellow boxes represent untranslational regions, coding sequence and promoter regions, respectively. Transcription starting site (TSS) was set as 0. Numbers indicate the distances (bps) to the TSS. C, Electrophoretic mobility shift assay (EMSA) to show GST-WRKY72 specifically binds with the probe 3 (P3) region on the promoter ofin B. Purified GST, GST-bZIP72 was detected with anti-GST antibody. The 5-, 10- and 100-fold excess non-labeled probes were applied for competition. D, Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR) assay to show WRKY72 binding to the promoter regions of. P1?P7 represent the regions shown in B detected by ChIP-qPCR, respectively. The enrichment values were normalized to the Input. IgG immunoprecipitated DNA was used as a control. E and F, Luciferase (LUC) transient transcriptional activity assay in rice protoplast., The promoter ofwith G-box mutated. G, qRT-PCR analysis for the transcript accumulation ofingerminating embryos grown on half-strength MS medium for 2 d. H, Germination time courses of the wild type (WT) andunder mock, 3 μmol/L-kaurenoic acid or 10 μmol/L paclobutrazol (PAC) treatments, respectively. I, Germination phenotypes of the WT andunder mock,-kaurenoic acid or PAC treatments for 4 d. Scale bars, 2 cm. J,Seedling heights of the WT andin accordance to I. Data represent Mean ± SD (= 3) in A, D, F and G,= 3 (each replicate containing 50 seeds) in H, and= 50 in J. Asterisks indicate the significant differences as determined by the Student’stest analysis (*,< 0.05; **,< 0.01).

    It is reported thatrestricts rice internode elongation through suppressingand thereby results in reduced endogenous GA level (Yang et al, 2013). OsKO2, a key-kaurene oxidase, promotes GA biosynthesis by catalyzing GA precursor-kaurene intokaurenoic acid, and the mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). These evidences intrigued us to speculate that the function of OsKO2 could be interrupted by WRKY72. In consistent with the up-regulation of, thetranscription was significantly reduced in(Fig. 2-G). Moreover, the effects of-kaurenoic acid and paclobutrazol (PAC, a KO inhibitor) (Swain et al, 2005) were further determined on the seed germination of. Interestingly,-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully restored the delayed seed germination and seedling growth of(Fig. 2-H to -J). On the contrary, PAC significantly inhibited the seed germination and seedling growth of all the tested seeds (Fig. 2-H to -J). These results strongly suggested that WRKY72 negatively regulates seed germination and GA accumulation via the ‘WRKY72-’ pathway.

    Up to date, over 100 WRKY gene family members have been identified in rice (Ramamoorthy et al, 2008). Rice WRKY proteins have been shown to regulate the cross-talk between multiple hormone-mediated signaling pathways in various biological processes, but most notably in biotic stress responses (Qiu et al, 2007; Peng et al, 2012; Wang et al, 2015). Previous studies have shown thatis induced by polyethylene glycol, NaCl, naphthalene acetic acid, abscisic acid (ABA) and heat stress in rice, indicating the versatile roles of WRKY72 in multiple physiological processes (Song et al, 2010). Very recently, our group revealed that WRKY72 acts negatively in rice resistance to bacterial blast disease through repressing jasmonic acid (JA) accumulation (Hou et al, 2019). WRKY72 can directly bind to the promoter of a key JA biosynthesis gene, and repress thetranscription possibly via a RNA-directed DNA methylation mechanism. Meanwhile, the WRKY72 transrepression activity depends on its phosphory-lation status mediated by SAPK10, which is a core component in ABA signaling (Hou et al, 2019). Hence, WRKY72 likely serves as an important node in the ABA-JA interaction. Due to its predominant expression pattern in rice developing seeds, especially in aleurone layers, WRKY72 might also participate in the regulation of seed maturation or germination (Xie et al, 2005; Hou et al, 2019). Indeed, when WRKY72 is ectopically expressed in, seed germination of the transgenic lines is drastically retarded (Song et al, 2010). Nevertheless, how WRKY72 functions in rice remains unclear. In this study, we revealed that over-expression ofinhibited seed germination and seedling growth (Fig. 1-A to -C). Several cases have demonstrated that WRKYs involve in seed germination by interfering GA biosynthesis or signaling. For example, heterologous dimmers of OsWRKY51 and OsWRKY71 are found to negatively regulate GA signaling through direct interacting with GAMYB, a GA signal positive regulator, and ultimately inhibit the expression of α-amylase (Zhang et al, 2004; Xie et al, 2006). In our case, it is clear that GA-deficiency resulted in the retarded germination and seedling growth of, becauseexhibited reduced endogenous GA level, and the addition of GA completely restored the phenotype (Fig. 1-D to -G). Therefore, WRKY72 can be a key player in the interaction of phythormones including ABA, JA and GA.

    Since WRKY72is annotated as a transcription factor, identifying its direct target gene is crucial to clarify the regulatory mechanism underlying the WRKY72-governed seed germination. Our RNA-seq and qRT-PCR analyses identified a long list of DEGs which are functionally related to GA biosynthesis and metabolism. Among the DEGs, a leucine-rich repeat receptor-like kinase (LRR-RLKs), which is up-regulated in, is of particular interest (Fig. 2-A). EMSA experiment, ChIP-qPCR and rice protoplasts transient transcriptional activity assaydemonstrated that WRKY72 canspecifically bind to theW-box-element ofpromoter and activate its transcription, suggesting thatis a direct target of WRKY72 (Fig. 2-B to -D). It is reported thatrestricts rice internode elongation through suppressing the-kaurene oxidaseand thereby results in reduced endogenous GA level (Yang et al, 2013). In agreement with the up-regulation of,was significantly reduced in(Fig. 2-G). OsKO2 has been known as a key enzyme catalyzing the conversion of-kaurene tokaurenoic acid, and mutation ofcauses severe GA deficiency and dwarf phenotype (Itoh et al, 2004). This hypothesis is further supported by the fact that addition of-kaurenoic acid, the product of OsKO2 catalyzed reaction, fully rescued the retarded germination of(Fig. 2-H to -J). Thus, WRKY72 inhibits seed germination and GA accumulation via the‘WRKY72-’pathway.

    ACKNOWLEDGEMENTS

    This study was supported by the National Natural Science Foundation of China (Grant No. 31701395), the special research funds for the Central Public Research Institute of the China National Rice Research Institute (Grant No. 2017RG002-5) and the special research funds of State Key Laboratory of Rice Biology (Grant No. 2017ZZKT10105).

    SUPPLEMENTAL DATA

    The following materials are available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    File S1. Methods.

    Fig. S1. Molecular characterization ofandmutants.

    Fig. S2. Occurrence of-regulatory elements in promoters ofand.

    Table S1. Differentially expressed genes between wild type and.

    Table S2. Selected differentially expressed genes used for RNA-seq verification.

    Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors., 5(5): 199–206.

    Hou Y X, Wang Y F, Tang L Q, Tong X H, Wang L, Liu L M, Huang S W, Zhang J. 2019. SAPK10-mediated phosphorylation on WRKY72 releases its suppression on jasmonic acid biosynthesis and bacterial blight resistance.,16: 499–510.

    Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M. 2004. A rice semi-dwarf gene,(), encodes the gibberellin biosynthesis enzyme,-kaurene oxidase., 54(4): 533–547.

    Kaneko M, Itoh H, Ueguchi-Tanaka M, Ashikari M, Matsuoka M. 2002. The alpha-amylase induction in endosperm during rice seed germination is caused by gibberellin synthesized in epithelium., 128(4): 1264–1270.

    Peng X X, Hu Y J, Tang X K, Zhou P L, Deng X B, Wang H H, Guo Z J. 2012. Constitutive expression of ricegene increases the endogenous jasmonic acid accumulation,gene expression and resistance to fungal pathogens in rice., 236(5): 1485–1498.

    Qiu D Y, Xiao J, Ding X H, Xiong M, Cai M, Cao Y L, Li X H, Xu C G, Wang S P. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate- dependent signaling., 20(5): 492–499.

    Ramamoorthy R, Jiang S Y, Kumar N, Venkatesh P N, Ramachandran S. 2008. A comprehensive transcriptional profiling of thegene family in rice under various abiotic and phytohormone treatments., 49(6): 865–879.

    Reinecke D M, Wickramarathna A D, Ozga J A, Kurepin L V, Jin A L, Good A G, Pharis R P. 2013. Gibberellin 3-oxidase gene expression patterns influence gibberellin biosynthesis, growth, and development in pea., 163(2): 929–945.

    Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. 1995. Members of a new family of DNA-binding proteins bind to a conserved-element in the promoters of α-genes., 29(4): 691–702.

    Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal G K, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M. 2004. An overview of gibberellin metabolism enzyme genes and their related mutants in rice., 134(4): 1642–1653.

    Song Y, Chen L G, Zhang L P, Yu D Q. 2010. Overexpression ofgene interferes in the abscisic acid signal and auxin transport pathway of., 35(3): 459–471.

    Swain S M, Singh D P, Helliwell C A, Poole A T. 2005. Plants with increased expression of-kaurene oxidase are resistant to chemical inhibitors of this gibberellin biosynthesis enzyme., 46(2): 284–291.

    Ulker B, Somssich I E. 2004. WRKY transcription factors: From DNA binding towards biological function., 7(5): 491–498.

    Wang H H, Meng J, Peng X X, Tang X K, Zhou P L, Xiang J H, Deng X B. 2015. Rice WRKY4 acts as a transcriptional activator mediating defense responses toward, the causing agent of rice sheath blight., 89(1/2): 157–171.

    Wu J H, Zhu C F, Pang J H, Zhang X R, Yang C L, Xia G X, Tian Y C, He C Z. 2014. OsLOL1, a C2C2-type zinc finger protein, interacts with OsbZIP58 to promote seed germination through the modulation of gibberellin biosynthesis in., 80(6): 1118–1130.

    Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. 2005. Annotations and functional analyses of the ricegene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells., 137(1): 176–189.

    Xie Z, Zhang Z L, Zou X L, Yang G X, Komatsu S, Shen Q J. 2006. Interactions of two abscisic-acid inducedgenes in repressing gibberellin signaling in aleurone cells., 46(2): 231–242.

    Yang M F, Qi W W, Sun F, Zha X J, Chen M L, Huang Y Q, Feng Y Q, Yang J S, Luo X J. 2013. Overexpression of ricerestricts internode elongation by down-regulating., 35(1): 121–128.

    Ye H, Feng J H, Zhang L H, Zhang J F, Mispan M S, Cao Z Q, Beighley D H, Yang J C, Gu X Y. 2015. Map-based cloning ofidentified a gibberellin synthesis gene regulating the development of endosperm-imposed dormancy in rice., 169(3): 2152–2165.

    Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. 2007. Global analysis of della direct targets in early gibberellin signaling in., 19(10): 3037–3057.

    Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H, Shen Q J. 2004. A ricegene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells., 134(4): 1500–1513.

    Wang Huimei1, Hou Yuxuan1, Wang Shuang1, 2, Tong Xiaohong1, Tang Liqun1, Abolore Adijat Ajadi1, Zhang Jian1, Wang Yifeng1

    (State Key Lab of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; College of Life Science, Yangtze University, Jingzhou 434025, China)

    Copyright ? 2021, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2020.11.001

    s:Wang Yifeng (wangyifeng@caas.cn); Zhang Jian (zhangjian@caas.cn)

    20 December 2019;

    30 May 2020

    女的被弄到高潮叫床怎么办| 亚洲av.av天堂| 人妻夜夜爽99麻豆av| 国产黄片美女视频| 午夜免费观看性视频| 99久国产av精品| 亚洲欧美中文字幕日韩二区| 久久综合国产亚洲精品| 亚洲精品色激情综合| 久久久成人免费电影| 亚洲成人中文字幕在线播放| 26uuu在线亚洲综合色| 国内少妇人妻偷人精品xxx网站| 亚洲av二区三区四区| 内射极品少妇av片p| 亚洲在线观看片| 特大巨黑吊av在线直播| 久久精品国产亚洲网站| 国产亚洲精品久久久com| 日韩av在线大香蕉| 我要看日韩黄色一级片| 国国产精品蜜臀av免费| 国产男人的电影天堂91| 亚洲国产欧美在线一区| 热99在线观看视频| 日本色播在线视频| 中文天堂在线官网| 亚洲经典国产精华液单| 欧美日本视频| 赤兔流量卡办理| 成年av动漫网址| 亚洲av不卡在线观看| 能在线免费观看的黄片| 午夜福利视频1000在线观看| 国产精品久久视频播放| 亚洲欧美日韩卡通动漫| 超碰av人人做人人爽久久| 丰满乱子伦码专区| 国产男人的电影天堂91| 精品午夜福利在线看| 亚洲av成人av| 又大又黄又爽视频免费| 天堂中文最新版在线下载 | 男女视频在线观看网站免费| 嫩草影院精品99| 国产精品人妻久久久影院| 亚洲av.av天堂| 男女下面进入的视频免费午夜| 男女边摸边吃奶| 欧美日韩综合久久久久久| 国产伦一二天堂av在线观看| 成人美女网站在线观看视频| 久久草成人影院| 免费观看的影片在线观看| 舔av片在线| 亚洲国产欧美人成| 国产精品久久久久久精品电影| 日本-黄色视频高清免费观看| 国产黄片美女视频| 天天一区二区日本电影三级| 国产成人freesex在线| 亚洲最大成人中文| 午夜福利在线观看免费完整高清在| 免费观看a级毛片全部| 亚洲精品色激情综合| 日韩欧美三级三区| 高清日韩中文字幕在线| 欧美日韩在线观看h| 国产黄频视频在线观看| 日本色播在线视频| 国内揄拍国产精品人妻在线| 草草在线视频免费看| 我的女老师完整版在线观看| www.色视频.com| 亚洲av成人精品一二三区| 黄片wwwwww| 久久久成人免费电影| 我的女老师完整版在线观看| 国产精品一及| 亚洲国产欧美在线一区| 在线免费观看的www视频| 中文精品一卡2卡3卡4更新| av又黄又爽大尺度在线免费看| 免费电影在线观看免费观看| 亚洲自拍偷在线| 女人被狂操c到高潮| 国产成人91sexporn| 又大又黄又爽视频免费| 亚洲18禁久久av| 国产黄片视频在线免费观看| 精品人妻熟女av久视频| 日韩 亚洲 欧美在线| 亚洲成人久久爱视频| 禁无遮挡网站| 亚洲va在线va天堂va国产| 能在线免费看毛片的网站| 国产亚洲精品久久久com| 精品人妻熟女av久视频| 国产人妻一区二区三区在| 久久精品国产亚洲网站| 国产乱来视频区| 女的被弄到高潮叫床怎么办| 丝瓜视频免费看黄片| 国产高清三级在线| 国产淫语在线视频| 国产午夜精品一二区理论片| 色5月婷婷丁香| 又黄又爽又刺激的免费视频.| 精品99又大又爽又粗少妇毛片| 99热6这里只有精品| 秋霞在线观看毛片| 99热全是精品| 欧美成人精品欧美一级黄| 建设人人有责人人尽责人人享有的 | 三级国产精品欧美在线观看| 午夜福利网站1000一区二区三区| 亚洲精品aⅴ在线观看| 国产精品国产三级专区第一集| 91午夜精品亚洲一区二区三区| 男的添女的下面高潮视频| 国产精品一区二区性色av| 亚洲欧美一区二区三区黑人 | 丰满少妇做爰视频| 一级二级三级毛片免费看| av免费在线看不卡| 97超视频在线观看视频| 2022亚洲国产成人精品| 久久久久久九九精品二区国产| 国产爱豆传媒在线观看| 中文字幕av成人在线电影| 国产高潮美女av| 大话2 男鬼变身卡| 国产三级在线视频| av免费观看日本| 国产男女超爽视频在线观看| 免费观看av网站的网址| 九九在线视频观看精品| 精品不卡国产一区二区三区| 伊人久久精品亚洲午夜| 国产伦在线观看视频一区| 一个人看视频在线观看www免费| 国产亚洲精品av在线| 在线天堂最新版资源| 男的添女的下面高潮视频| 少妇丰满av| 在线免费观看的www视频| 亚洲av电影在线观看一区二区三区 | 亚洲成色77777| 午夜福利在线观看免费完整高清在| 国产黄色免费在线视频| 日本与韩国留学比较| 免费播放大片免费观看视频在线观看| 美女国产视频在线观看| 精品久久久久久久久av| 欧美激情在线99| 久久午夜福利片| av女优亚洲男人天堂| 大香蕉97超碰在线| 欧美成人一区二区免费高清观看| 国产精品女同一区二区软件| 亚洲欧洲日产国产| 一二三四中文在线观看免费高清| 禁无遮挡网站| 秋霞在线观看毛片| 女的被弄到高潮叫床怎么办| 极品少妇高潮喷水抽搐| 欧美变态另类bdsm刘玥| 内射极品少妇av片p| 建设人人有责人人尽责人人享有的 | 男女边吃奶边做爰视频| 久久6这里有精品| 国产精品嫩草影院av在线观看| 99热全是精品| 久久精品国产亚洲av天美| 男女那种视频在线观看| 免费av观看视频| 精品不卡国产一区二区三区| 亚洲精品自拍成人| 少妇被粗大猛烈的视频| av又黄又爽大尺度在线免费看| 国产黄a三级三级三级人| 18禁在线播放成人免费| 午夜老司机福利剧场| 乱系列少妇在线播放| 亚洲av在线观看美女高潮| 夜夜爽夜夜爽视频| 亚洲,欧美,日韩| 国产一区二区三区综合在线观看 | 亚洲图色成人| 国产免费又黄又爽又色| 中国美白少妇内射xxxbb| 最近中文字幕2019免费版| 精品熟女少妇av免费看| 男的添女的下面高潮视频| 婷婷色综合大香蕉| av免费在线看不卡| 精品久久国产蜜桃| 91久久精品国产一区二区三区| 青春草亚洲视频在线观看| 亚洲国产精品成人久久小说| 午夜久久久久精精品| 97超碰精品成人国产| h日本视频在线播放| 日韩精品青青久久久久久| 美女大奶头视频| 国产成人精品婷婷| 亚洲国产精品成人综合色| 国产淫片久久久久久久久| 午夜激情欧美在线| 九九爱精品视频在线观看| 国产在线男女| 精品国产露脸久久av麻豆 | 国产精品国产三级国产av玫瑰| 国产一区二区亚洲精品在线观看| 色播亚洲综合网| 亚洲国产色片| 色尼玛亚洲综合影院| 看黄色毛片网站| 国产白丝娇喘喷水9色精品| 国产高潮美女av| 亚洲精品日韩av片在线观看| 爱豆传媒免费全集在线观看| 噜噜噜噜噜久久久久久91| 男女视频在线观看网站免费| 能在线免费观看的黄片| 嘟嘟电影网在线观看| 伊人久久国产一区二区| 亚洲在久久综合| 国产精品综合久久久久久久免费| 97人妻精品一区二区三区麻豆| 最近最新中文字幕免费大全7| 一级毛片久久久久久久久女| 国产精品一区www在线观看| 狠狠精品人妻久久久久久综合| 亚洲人成网站在线观看播放| 最近中文字幕2019免费版| 亚洲真实伦在线观看| 国产成人精品婷婷| 亚洲欧美日韩卡通动漫| 久久人人爽人人片av| 国产大屁股一区二区在线视频| 人妻制服诱惑在线中文字幕| 亚洲av日韩在线播放| 国产精品人妻久久久影院| 国产精品久久视频播放| 免费看av在线观看网站| 中文资源天堂在线| 免费观看在线日韩| 少妇丰满av| 久久久精品欧美日韩精品| 老司机影院成人| 九九爱精品视频在线观看| 日韩电影二区| 亚洲欧美精品自产自拍| 最新中文字幕久久久久| 乱人视频在线观看| 乱系列少妇在线播放| 欧美 日韩 精品 国产| 成人午夜精彩视频在线观看| 精品熟女少妇av免费看| 成人国产麻豆网| 激情五月婷婷亚洲| 久久久久网色| 亚洲图色成人| 日韩,欧美,国产一区二区三区| 日韩av不卡免费在线播放| 黑人高潮一二区| 精品久久久精品久久久| 欧美丝袜亚洲另类| 欧美一级a爱片免费观看看| 岛国毛片在线播放| 久久国产乱子免费精品| 国产精品精品国产色婷婷| 大香蕉97超碰在线| 亚洲av不卡在线观看| 亚洲性久久影院| 91午夜精品亚洲一区二区三区| 亚洲成色77777| 久久精品国产自在天天线| 精品久久久久久久久av| 偷拍熟女少妇极品色| 亚洲国产最新在线播放| 久久精品久久久久久久性| 国产伦精品一区二区三区四那| 精品熟女少妇av免费看| 菩萨蛮人人尽说江南好唐韦庄| 久久久精品94久久精品| 亚洲婷婷狠狠爱综合网| 麻豆精品久久久久久蜜桃| 精品99又大又爽又粗少妇毛片| 久久精品熟女亚洲av麻豆精品 | www.av在线官网国产| 日产精品乱码卡一卡2卡三| xxx大片免费视频| 亚洲婷婷狠狠爱综合网| 又爽又黄无遮挡网站| 国产又色又爽无遮挡免| 中文天堂在线官网| 久久国产乱子免费精品| 成人漫画全彩无遮挡| 亚洲人成网站在线播| 亚洲成人av在线免费| 搡女人真爽免费视频火全软件| 免费观看性生交大片5| 国产美女午夜福利| 国产伦在线观看视频一区| 2022亚洲国产成人精品| 美女xxoo啪啪120秒动态图| 久久精品久久久久久久性| kizo精华| 神马国产精品三级电影在线观看| 国产精品爽爽va在线观看网站| 三级毛片av免费| 久久久欧美国产精品| 亚洲av中文av极速乱| 狂野欧美激情性xxxx在线观看| 久久久久网色| 国产大屁股一区二区在线视频| 看十八女毛片水多多多| 国产伦精品一区二区三区视频9| 91精品伊人久久大香线蕉| 久久久久久久大尺度免费视频| 国产精品99久久久久久久久| 亚洲精品自拍成人| 日韩av免费高清视频| 麻豆成人午夜福利视频| videos熟女内射| 波野结衣二区三区在线| 亚洲精品日韩av片在线观看| 高清av免费在线| av女优亚洲男人天堂| 大又大粗又爽又黄少妇毛片口| 精品国产露脸久久av麻豆 | 免费电影在线观看免费观看| 最后的刺客免费高清国语| 伊人久久国产一区二区| 看十八女毛片水多多多| 亚洲综合色惰| 禁无遮挡网站| 午夜精品一区二区三区免费看| 日本-黄色视频高清免费观看| 亚洲国产欧美在线一区| 亚洲四区av| 中文字幕人妻熟人妻熟丝袜美| 九九在线视频观看精品| 亚洲精品乱久久久久久| 亚洲精品日本国产第一区| 成人午夜精彩视频在线观看| 2022亚洲国产成人精品| 免费大片18禁| 别揉我奶头 嗯啊视频| 在线天堂最新版资源| 日韩大片免费观看网站| 男人和女人高潮做爰伦理| 十八禁国产超污无遮挡网站| 永久网站在线| 国产国拍精品亚洲av在线观看| 一级黄片播放器| 亚洲欧美成人精品一区二区| 亚洲成人精品中文字幕电影| 卡戴珊不雅视频在线播放| 国产色爽女视频免费观看| 国内少妇人妻偷人精品xxx网站| 亚洲av福利一区| 成人性生交大片免费视频hd| 国产亚洲精品av在线| 日本午夜av视频| 69av精品久久久久久| 中文字幕亚洲精品专区| 国产一级毛片七仙女欲春2| 国产精品一区二区三区四区久久| 国产精品美女特级片免费视频播放器| 夜夜爽夜夜爽视频| 亚洲精品aⅴ在线观看| 欧美日韩视频高清一区二区三区二| 亚洲成人一二三区av| 国产黄片美女视频| 亚洲av.av天堂| 久99久视频精品免费| 天天一区二区日本电影三级| 国产精品av视频在线免费观看| 精品欧美国产一区二区三| 91精品一卡2卡3卡4卡| www.色视频.com| 日本一二三区视频观看| 成年女人在线观看亚洲视频 | 国产精品一区二区在线观看99 | 男插女下体视频免费在线播放| 欧美+日韩+精品| 午夜激情久久久久久久| 亚洲精品第二区| 人体艺术视频欧美日本| 嫩草影院精品99| 男人狂女人下面高潮的视频| 夫妻性生交免费视频一级片| 中文精品一卡2卡3卡4更新| 97精品久久久久久久久久精品| 日韩,欧美,国产一区二区三区| 久久久久久久久久黄片| 97精品久久久久久久久久精品| 成人高潮视频无遮挡免费网站| 五月玫瑰六月丁香| 日韩一区二区三区影片| 99久久九九国产精品国产免费| 国产男人的电影天堂91| 久热久热在线精品观看| 国产免费福利视频在线观看| 免费av不卡在线播放| 精品一区在线观看国产| 十八禁国产超污无遮挡网站| 国产一区二区在线观看日韩| 国产黄色视频一区二区在线观看| 精品国产一区二区三区久久久樱花 | 国产成人91sexporn| 99热这里只有是精品在线观看| 久久久久久久久久人人人人人人| 爱豆传媒免费全集在线观看| 午夜激情欧美在线| 少妇高潮的动态图| a级毛片免费高清观看在线播放| 国产色爽女视频免费观看| 亚洲美女视频黄频| 99热这里只有是精品在线观看| 天堂中文最新版在线下载 | a级毛片免费高清观看在线播放| 狠狠精品人妻久久久久久综合| 免费观看在线日韩| 噜噜噜噜噜久久久久久91| 亚洲av电影不卡..在线观看| 日本免费在线观看一区| 青春草亚洲视频在线观看| 亚洲三级黄色毛片| 精品久久久久久久久亚洲| 在线 av 中文字幕| 你懂的网址亚洲精品在线观看| 嫩草影院新地址| 秋霞伦理黄片| 日韩精品有码人妻一区| 简卡轻食公司| 在线a可以看的网站| 听说在线观看完整版免费高清| 国产成人精品一,二区| 黄片wwwwww| 午夜激情福利司机影院| 老司机影院毛片| 亚洲最大成人av| 精品久久久久久久久久久久久| av网站免费在线观看视频 | 精品人妻熟女av久视频| 免费高清在线观看视频在线观看| 精品久久久久久久久亚洲| 老司机影院成人| 国产毛片a区久久久久| 一边亲一边摸免费视频| 亚洲av不卡在线观看| 午夜福利网站1000一区二区三区| 两个人视频免费观看高清| 日韩电影二区| 26uuu在线亚洲综合色| 国产成人aa在线观看| 欧美最新免费一区二区三区| 精品一区在线观看国产| 精品亚洲乱码少妇综合久久| 汤姆久久久久久久影院中文字幕 | 婷婷色av中文字幕| 午夜福利高清视频| 亚洲婷婷狠狠爱综合网| 国产伦在线观看视频一区| 亚洲欧洲日产国产| 国产一区有黄有色的免费视频 | 国产精品久久久久久av不卡| 亚洲精品一二三| 精品国产三级普通话版| 乱系列少妇在线播放| 色网站视频免费| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 亚州av有码| 高清在线视频一区二区三区| 精品久久久久久久久亚洲| 国产精品一二三区在线看| 国产永久视频网站| 99久国产av精品国产电影| 一个人看的www免费观看视频| 美女xxoo啪啪120秒动态图| 联通29元200g的流量卡| www.色视频.com| 如何舔出高潮| av播播在线观看一区| 国产精品久久久久久精品电影小说 | 夜夜看夜夜爽夜夜摸| 午夜福利视频精品| 十八禁网站网址无遮挡 | 精品一区在线观看国产| 国产乱人偷精品视频| 欧美日韩在线观看h| 好男人在线观看高清免费视频| 三级男女做爰猛烈吃奶摸视频| 国产视频首页在线观看| 国产 一区 欧美 日韩| 97人妻精品一区二区三区麻豆| 最近的中文字幕免费完整| 搞女人的毛片| 91av网一区二区| 最后的刺客免费高清国语| 国产成人精品一,二区| 神马国产精品三级电影在线观看| 在线 av 中文字幕| 成年女人看的毛片在线观看| 好男人视频免费观看在线| 在线播放无遮挡| 国产精品爽爽va在线观看网站| 啦啦啦韩国在线观看视频| 爱豆传媒免费全集在线观看| 久久久久性生活片| 午夜福利在线观看免费完整高清在| 亚洲高清免费不卡视频| 亚洲国产日韩欧美精品在线观看| 黑人高潮一二区| 色尼玛亚洲综合影院| 国内揄拍国产精品人妻在线| 久久99热6这里只有精品| 久久久久久九九精品二区国产| 日本一二三区视频观看| 欧美激情久久久久久爽电影| 嫩草影院精品99| 一级毛片aaaaaa免费看小| 婷婷六月久久综合丁香| 久久草成人影院| 国产黄色免费在线视频| 简卡轻食公司| 纵有疾风起免费观看全集完整版 | 亚洲久久久久久中文字幕| 五月伊人婷婷丁香| 成人鲁丝片一二三区免费| 国产女主播在线喷水免费视频网站 | 国产中年淑女户外野战色| 永久免费av网站大全| 亚洲综合精品二区| 九草在线视频观看| 91久久精品国产一区二区三区| 99久久精品一区二区三区| 一级毛片aaaaaa免费看小| 99热网站在线观看| 内地一区二区视频在线| 看非洲黑人一级黄片| 中文字幕亚洲精品专区| 免费播放大片免费观看视频在线观看| 久久精品国产亚洲av天美| 国产伦精品一区二区三区视频9| 99热这里只有精品一区| 国产成人91sexporn| 观看免费一级毛片| 久久久久久伊人网av| 国产大屁股一区二区在线视频| 搡女人真爽免费视频火全软件| 狠狠精品人妻久久久久久综合| 日韩精品有码人妻一区| 久久精品国产亚洲av天美| 精品久久久久久电影网| 午夜精品国产一区二区电影 | 成人午夜精彩视频在线观看| 色吧在线观看| 色尼玛亚洲综合影院| 热99在线观看视频| 亚洲精品乱码久久久v下载方式| 又大又黄又爽视频免费| 蜜桃亚洲精品一区二区三区| 国产一区二区三区av在线| 国产精品一二三区在线看| 国产av在哪里看| a级毛色黄片| 街头女战士在线观看网站| 啦啦啦啦在线视频资源| 日本色播在线视频| 亚洲国产成人一精品久久久| 国产精品av视频在线免费观看| 国产大屁股一区二区在线视频| 久久久国产一区二区| 国产大屁股一区二区在线视频| 日韩三级伦理在线观看| 日韩视频在线欧美| 国产男人的电影天堂91| av专区在线播放| 18禁在线播放成人免费| 伦精品一区二区三区| 国产黄色小视频在线观看| 十八禁网站网址无遮挡 | 久久6这里有精品| 精品酒店卫生间| 欧美成人a在线观看| 全区人妻精品视频| 国内精品宾馆在线| 亚洲av国产av综合av卡| 男人狂女人下面高潮的视频| 久久国产乱子免费精品| 亚洲精品乱码久久久v下载方式| 国产成人免费观看mmmm| 国产一区有黄有色的免费视频 | 男插女下体视频免费在线播放| 亚洲av日韩在线播放| 国产黄色视频一区二区在线观看| 神马国产精品三级电影在线观看| 男人狂女人下面高潮的视频| 亚洲欧洲国产日韩| 国产亚洲av片在线观看秒播厂 | 丰满少妇做爰视频| 亚洲第一区二区三区不卡| 麻豆成人午夜福利视频| 男人舔奶头视频| 久久精品久久久久久久性| 免费观看a级毛片全部| 精品亚洲乱码少妇综合久久| 七月丁香在线播放| 日韩一区二区视频免费看|