• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Bimigrativity of Overlap and Grouping Functions

    2021-01-08 03:59:06XIEHai

    XIE Hai

    (School of Science, Center for Data Analysis and Algorithm Technology,Guilin University of Technology, Guilin 541004, China)

    Abstract:This paper focuses mainly on the bimigrativity between overlap functions, grouping functions and uninorms or nullnorms. First, we investigate the bimigrativity of overlap and grouping functions by using the notions of bimigrativity of aggregation functions. Second, we introduce the concepts and properties of bimigrativity of uninorms (resp. nullnorms) over overlap and grouping functions. Finally, we discuss the concepts and properties of bimigrativity of overlap (resp. grouping functions) over uninorms and nullnorms.

    Key words:bimigrativity; overlap functions; grouping functions; uninorms; nullnorms

    0 Introduction

    The concepts of overlap functions and grouping functions were firstly introduced by Bustinceetal. In[1-2] and[3], respectively. Overlap functions and grouping functions are two particular cases of bivariate continuous aggregation functions[4-5]. Those two concepts have been applied to some interesting problems, such as image processing[6], classification[7-8]and decision making[9]. Some new interesting results about overlap and grouping functions were presented in[10]. Dimuro and Bedregal[11]presented the concept of Archimedean overlap functions and studied the cancellation, idempotency and limiting properties of Archimedean overlap functions. In[12], Gómezetal. introduced the definition ofn-dimensional overlap functions and the conditions under whichn-dimensional overlap functions are migrative, homogeneous or Lipschitz continuous. The concept of general overlap functions was introduced by De Miguel in[13], the difference betweenn-dimensional overlap functions and general overlap functionsis in the boundary conditions. Durante and Riccib[14]studied the supermigrativity of aggregation functions. Theα-migrativity of an aggregation function was introduced by Durante and Sarkoci[15].In[16], Bustinceetal. introduced a generalization of the concepts ofα-migrativity and migrativity.Lopez-Molinaetal.[17]introduced the notions of bimigrativity and total bimigrativity of an aggregationfunction w.r.t. another aggregation function, as a natural generalization of the notions of migrativity and bisymmetry. In[18], Qiao and Hu generalized theα-migrativity of any overlap functionOfrom the usual formulaO(αx,y)=O(x,αy) to the so-called (α,O*,O?)-migrativityO(O*(α,x),y)=O(x,O?(α,y)),whereO*andO?are two fixed overlap functions. Qiao and Hu[19]discussed the migrativity property of uninorms over overlap and grouping functions and the migrativity property of nullnorms over overlap and grouping functions. Zhu and Hu[20]investigated theα-migrativity of overlap functions and grouping functions over uninorms and nullnorms, and pointed out the similarities and differences between theα-migrativity of a uninorm over an overlap functionOas well as a grouping functionGand theα-migrativity of an overlap functionOas well as a grouping functionGover a uninormU.

    Our study is mainly motivated by the bimigrativity of binary aggregation functions introduced by Lopez-Molinaetal.[17]. We firstly investigate the bimigrativity of overlap and grouping functions. Moreover, the migrativity of uninormsUover overlap functionsO(resp. grouping functionsG)U(O(α,x),y)=U(x,O(α,y)) (resp.U(G(α,x),y)=U(x,G(α,y)) is generalized to the bimigrativity of uninormsUover overlap functionsO(resp. grouping functionsG)U(O(x,α),O(β,y))=U(O(x,β),O(α,y)) (resp.U(G(x,α),G(β,y))=U(G(x,β),G(α,y)). Similarly, we study the bimigrativity of nullnorms over overlap and grouping functions, the bimigrativity of overlap functions over uninorms and nullnorms, and the bimigrativity of grouping functions over uninorms and nullnorms.

    The rest of this paper is organized as follows. In Section 1, we present some basic definitions and vital properties on overlap functions,grouping functions, uninorms and nullnorms, the notions of bimigrativity and total bimigrativity of an aggregation function. In Section 2, the bimigrativity of overlap and grouping functions is discussed. In Section 3, we study the bimigrativity of uninorms over overlap and grouping functions. In Section 4, we investigate the bimigrativity of nullnorms over overlap and grouping functions. In Section 5, we briefly discuss the bigrativity of overlap and grouping functions over uninorms (resp. nullnorms). Finally, the main results are summarized.

    1 Preliminaries

    In this section, we recall some concepts and properties related to overlap functions, grouping functions,uninorms and nullnorms which shall be needed in the sequel.

    Definition1 (See Bustinceetal.[1]) A bivariate functionO: [0,1]2→ [0,1] is said to be an overlap function if it satisfies the following conditions:

    (O1)Ois commutative;

    (O2)O(x,y)=0 ifxy=0;

    (O3)O(x,y)=1 ifxy=1;

    (O4)Ois increasing;

    (O5)Ois continuous.

    Example1 (See Qiao and Hu[18]) For anyp>0, consider the bivariate functionOp:[0,1]2→[0,1] given by

    Op(x,y)=xpyp

    for allx,y∈[0,1]. Then it is an overlap function and we call itp-product overlap function, here.

    Definition2 (See Bustinceetal.[1]) A bivariate functionG: [0,1]2→ [0,1] is said to be a grouping function if it satisfies the following conditions:

    (G1)Gis commutative;

    (G2)G(x,y)=0 ifx=y=0;

    (G3)G(x,y)=1 ifx=1 ory=1;

    (G4)Gis increasing;

    (G5)Gis continuous.

    Definition3 (See Bustinceetal.[16]) Consider an aggregation functionB. An aggregation functionAis called:

    (i)α-B-migrative, withα∈[0,1], if the identity

    A(B(x,α),y)=A(x,B(α,y));

    holds for anyx,y∈[0,1];

    (ii)B-migrative if it isα-B-migrative for anyα∈[0,1].

    Definition4 (See Lopez-Molinaetal.[17]) Consider an aggregation functionB. An aggregation functionAis called (a,b)-B-bimigrative, with (a,b)∈[0, 1]2, if the identity

    A(B(x,a),B(b,y))=A(B(x,b),B(a,y))

    (1)

    holds for anyx,y∈[0, 1]. Furthermore, we introduce the setB(A,B):

    B(A,B)={(a,b)∈[0, 1]2|Ais

    (a,b)-B-bimigrative}.

    (2)

    Definition5 (See Lopez-Molinaetal.[17]) Consider an aggregation functionB. An aggregation functionAis calledB-bimigrative if the identity

    A(B(x,a),B(b,y))=A(B(x,b),B(a,y))

    (3)

    holds for anyx,y,a,b∈[0,1], or, equivalently, ifB(A,B)=[0,1]2.

    Definition6 (See Lopez-Molinaetal.[17]) Consider an aggregation functionA.

    (i) An elemente∈[0, 1] is called a neutral element ofAifA(x,e)=A(e,x)=xfor anyx∈[0,1].

    (ii) An elementa∈[0,1] is called an absorbing element (or annihilator) ofAifA(x,a)=A(a,x)=afor anyx∈[0, 1].

    Remark1 By Definition 6 and Definition 1, any overlap functionOhas only one absorbing element (or annihilator) 0. By Definition 6 and Definition 2, any grouping functionGhas only one absorbing element (or annihilator) 1.

    Definition7 (See Yager and Rybalov[21]) A bivariate functionU:[0,1]2→[0,1] is said to be a uninorm if, for anyx,y,z∈[0,1], it satisfies the following conditions:

    (U1)U(x,y)=U(y,x);

    (U2)U(U(x,y),z)=U(x,U(y,z));

    (U3)Uis non-decreasing in each place;

    (U4) There has a neutral elemente∈[0, 1], that is,U(x,e)=x.

    Definition8 (See Qiao and Hu[19]) Considerαin [0,1] andagiven overlap functionO. A uninormU:[0,1]2→[0,1] is said to beα-migrative overO((α,O)-migrative, for short) if

    U(O(α,x),y)=U(x,O(α,y))

    (4)

    for allx,y∈[0,1].

    In [22], Li and Shi had provedU(0,1)∈{0,1} for any uninormU. And, a uninormUis called conjunctive ifU(1,0)=0 and disjunctive ifU(1,0)=1.

    Proposition1 (See Qiao and Hu[19]) Suppose thatαin [0,1],Ois a given overlap function andUis a uninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (α,O)-migrative;

    (ii)O(α,x)=U(O(α,e),x) for allx∈[0,1].

    Then (i)?(ii).

    Definition9 (See Masetal.[23]and Zongetal.[24]) A conjunctive (resp. disjunctive) uninormUis said to be locally internal on the boundary if it satisfiesU(1,x)∈{1,x} (resp.U(0,x)∈{0,x}) for allx∈[0,1].

    Definition10 (See Qiao and Hu[19]) Considerα∈[0,1] and a given grouping functionG. A uninormU: [0,1]2→[0,1] is said to beα-migrative overG((α,G)-migrative, for short) if

    U(G(α,x),y)=U(x,G(α,y))

    (5)

    for allx,y∈[0,1].

    Proposition2 (See Qiao and Hu[19]) Suppose thatα∈[0,1],Gis a given grouping function andUis a uninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (α,G)-migrative;

    (ii)G(α,x)=U(G(α,e),x) for allx∈[0,1].

    Then (i)?(ii).

    Definition11 (See Calvoetal.[25]and Masetal.[26]) A bivariate functionF:[0,1]2→[0,1] is said to be a nullnorm if, for anyx,y,z∈[0,1], it satisfies the following conditions:

    (F1)F(x,y)=F(y,x);

    (F2)F(F(x,y),z)=F(x,F(y,z));

    (F3)Fis non-decreasing in each place;

    (F4) There has an absorbing elementk∈[0, 1], that is,F(k,x)=kand the following statements hold.

    (i)F(0,x)=xfor allx≤k.

    (ii)F(1,x)=xfor allx≥k.

    Notice that whenk=0,Fis at-norm, and whenk=1,Fis at-conorm. In general,kis always given byF(1,0).

    Definition12 (See Qiao and Hu[19]) Considerαin [0, 1] and a given overlap functionO. A nullnormF:[0,1]2→[0,1] is said to beα-migrative overO((α,O)-migrative, for short) if

    F(O(α,x),y)=F(x,O(α,y))

    (6)

    for allx,y∈[0,1].

    Definition13 (See Qiao and Hu[19]). Considerαin [0, 1] and a given grouping functionG. A nullnormF:[0,1]2→[0,1] is said to beα-migrative overG((α,G)-migrative, for short) if

    F(G(α,x),y)=F(x,G(α,y))

    (7)

    for allx,y∈[0, 1].

    Definition14 (See Zhu and Hu[20]). Considerα∈[0,1] and a given uninormU. An overlap functionOis said to beα-migrative overUor (α,U)-migrative if

    O(U(α,x),y)=O(x,U(α,y))

    (8)

    for allx,y∈[0,1].

    Proposition3 (See Zhu and Hu[20]) LetObe an overlap function andUbe a uninorm with neutral elemente∈[0, 1]. ThenUis conjunctive if and only ifOis (0,U)-migrative.

    Definition15 (See Zhu and Hu[20]) Considerα∈[0, 1] and a given uninormU. A grouping functionGis said to beα-migrative overUor (α,U)-migrative if

    G(U(α,x),y)=G(x,U(α,y))

    (9)

    for allx,y∈[0,1].

    Definition16 (See Zhu and Hu[20]) Considerα∈[0,1] and a given nullnormF. An overlap functionOis said to beα-migrative overFor (α,F)-migrative if

    O(F(α,x),y)=O(x,F(α,y))

    (10)

    for allx,y∈[0,1].

    Definition17 (See Zhu and Hu[20]) Considerα∈[0,1] and a given nullnormF. A grouping functionGis said to beα-migrative overFor (α,F)-migrative if

    G(F(α,x),y)=G(x,F(α,y))

    (11)

    for allx,y∈[0,1].

    Proposition4 (See Wang and Liu[27]) LetO:[0,1]2→[0,1] be an overlap function,G:[0, 1]2→[0,1] be a grouping function, andφ:[0,1]→[0,1] be a strictly increasing automorphism. Then the following statements hold:

    (i)Oφ:[0,1]2→[0,1] is an overlap function given byOφ(x,y)=φ-1(O(φ(x),φ(y))), for allx,y∈[0,1].

    (ii)Gφ:[0,1]2→[0,1] is a grouping function given byGφ(x,y)=φ-1(G(φ(x),φ(y))), for allx,y∈[0,1].

    2 Bimigrativity of overlap and grouping functions

    In this section, we mainly propose the bimigrativity between overlap functions and grouping functions.

    Proposition5 LetO,O*:[0, 1]2→[0, 1] be two overlap functions,G,G*:[0, 1]2→[0, 1] be two grouping functions, andφ:[0, 1]→[0, 1] be an automorphism. Then the following statements hold:

    (i)OisG-bimigrative if and only ifOφisGφ-bimigrative.

    (ii)GisO-bimigrative if and only ifGφisOφ-bimigrative.

    ProofHere we only prove the item (i).

    (?) IfOis (φ(a),φ(b))-G-bimigrative, then one can has

    Oφ(Gφ(x,a),Gφ(b,y))=

    φ-1(O((φ(Gφ(x,a)),φ(Gφ(b,y))))=

    φ-1(O((G(φ(x),φ(a)),G(φ(b),φ(y)))))=

    φ-1(O((G(φ(x),φ(b)),G(φ(a),φ(y)))))=

    φ-1(O((φ(Gφ(x,b)),φ(Gφ(a,y))))=

    Oφ(Gφ(x,b),Gφ(a,y)).

    (?) IfOφisGφ-bimigrative, then it is obvious thatOisG-bimigrative because (Oφ)φ-1=Oand (Gφ)φ-1=G.

    Proposition6 LetO1is a 1-product overlap function. Then an overlap functionOisO1-bimigrativeif and only if it isO1-migrative.

    ProofIfOisO1-bimigrative, then for allx,y,α∈[0, 1], one can has

    O(xα,y)=O(O1(x,α),O1(1,y)=

    O(O1(x, 1),O1(α,y)=O(x,αy).

    ThereforeOisO1-migrative.

    Conversely, ifOisO1-migrative, then for allx,y,a,b∈[0, 1], one can has

    O(O1(x,a),O1(b,y))=O(xa,by)=

    O(xab,y)=O(xb,ay)=

    O(O1(x,b),O1(a,y)).

    ThereforeOisO1-bimigrative.

    Example2 LetO1is a 1-product overlap function andOpis ap-product overlap function. The overlap functionOpisO1-bimigrative.

    Proposition7 LetO*be an overlap function with neutral element 1. If an overlap functionOisO*-bimigrative, then it is alsoO*-migrative.

    ProofIfOisO*-bimigrative, then for allx,y,α∈[0, 1], it holds that

    O(O*(x,α),y)=O(O*(x,α),O*(1,y))=

    O(O*(x, 1),O*(α,y))=O(x,O*(α,y)).

    ThereforeOisO*-migrative.

    Lemma1 (See Gómezetal.[12]) Letφ: [0,1]→[0,1] be an automorphism. Then, for every overlap functionO,φ° andO(φ(x),φ(y)) are also overlap functions.

    In this paper, the overlap functionO(φ(x),φ(y)) will be denoted byOφ(x,y).

    Proposition8 AnyO-bimigrative overlap functionO*is alsoOφ-bimigrative.

    ProofIfO*isO-bimigrative, then for allx,y,a,b∈[0, 1], we have

    O*(Oφ(x,a),Oφ(b,y))=

    O*(O(φ(x),φ(a)),O(φ(b),φ(y)))=

    O*(O(φ(x),φ(b)),O(φ(a),φ(y)))=

    O*(Oφ(x,b),Oφ(a,y)).

    ThereforeO*isOφ-bimigrative.

    Proposition9 LetO,O*:[0,1]2→[0,1] be two overlap functions with neutral element 1.OisO*-bimigrative if and only ifO=O*.

    ProofThe sufficiency is obvious. In the following, we only prove the necessity.

    IfOisO*-bimigrative, then for anyx,y∈[0, 1],

    O(x,y)=O(O*(1,x),O*(1,y))=

    O(O*(1,1),O*(x,y))=

    O(1,O*(x,y))=O*(x,y).

    ThereforeO=O*.

    In a similar way, one can has the following proposition.

    Proposition10 LetG,G*: [0,1]2→[0,1] be two grouping functions with neutral element 0.GisG*-bimigrative if and only ifG=G*.

    Proposition11 LetO,O*: [0,1]2→[0,1] be any two overlap functions.Ois always (0,0)-O*-bimigrative. If 1 is the neutral element ofO*, thenOis always (1,1)-O*-bimigrative.

    By Definition 2 and Definition 4, the following proposition holds.

    Proposition12 LetG,G*: [0,1]2→[0,1] be any two overlap functions.Gis always (1,1)-G*-bimigrative. If 0 is the neutral element ofG*, thenGis always (0,0)-G*-bimigrative.

    Proposition13 LetObe an overlap function with 1 as neutral element andb∈[0, 1], ifOis (1,b)-Op-bimigrative, then it follows that

    O(xp,bp)=xpbp

    for anyx∈[0,1].

    ProofIfOis (1,b)-Op-bimigrative, then for anyx∈[0,1], we have

    O(xp,bp)=O(xp1p,bp1p)=

    O(xpbp, 1p1p)=

    O(xpbp, 1)=xpbp.

    3 Bimigrativity of uninorms over overlap and grouping functions

    In this section, we discuss the bimigrativity of uninorms over overlap and grouping functions.

    3.1 Bimigrativity of uninorms over overlap functions

    Definition18 Considerα,β∈[0,1] and a given overlap functionO. A uninormU:[0,1]2→[0,1] is said to be (α,β)-O-bimigrative if

    U(O(x,α),O(β,y))=U(O(x,β),O(α,y))

    (12)

    for allx,y∈[0, 1].

    Clearly, for any overlap functionOandα∈[0,1], a uninormUis (α,α)-O-bimigrative.

    Definition19 Consider a given overlap functionO. A uninormU:[0,1]2→[0,1] is said to beO-bimigrative if

    U(O(x,α),O(β,y))=U(O(x,β),O(α,y))

    (13)

    for allx,y,α,β∈[0,1].

    Proposition14 LetObe an overlap function with neutral element 1 andα∈[0,1]. A uninormUis (α,1)-O-bimigrative if and only ifUis (α,O)-migrative.

    ProofUis (α, 1)-O-bimigrative

    ?U(O(x,α),O(1,y))=U(O(x, 1),O(α,y))

    ?U(O(x,α),y)=U(x,O(α,y))

    ?Uis(α,O)-migrative.

    Proposition15 LetObe an overlap function with neutral element 1 andUbe a uninorm with neutral elemente∈[0, 1]. IfUis (0,e)-O-bimigrative, thenU(O(x,e), 0)=0 for anyx∈[0,1].

    ProofIf a uninormUis (0,e)-O-bimigrative, then for anyx∈[0, 1], we have

    U(O(x,e), 0)=U(O(x,e),O(0,1))=

    U(O(x, 0),O(e,1))=U(0,e)=0.

    Proposition16 LetObe an overlap function with neutral element 1 andUbe a uninorm with neutral elemente∈[0,1]. IfUis (1,e)-O-bimigrative, thenU(O(x,e), 1)=xfor anyx∈[0,1].

    ProofIf a uninormUis (1,e)-O-bimigrative, then for anyx∈[0,1], we have

    U(O(x,e),1)=U(O(x,e),O(1,1))

    =U(O(x,1),O(e,1))=U(x,e=x.

    Proposition17 LetObe an overlap function with neutral element 1 andUbe a uninorm with neutral elemente∈[0,1].Uis (0,1)-O-bimigrative if and only ifUis conjunctive.

    ProofIfUis (0,1)-O-bimigrative, then

    U(0,1)=U(O(0,0),O(1,1))=

    U(O(0,1),O(0,1))=U(0,0)=0.

    HenceUis conjunctive.

    Conversely, ifUis conjunctive,i.e.,U(0,1)=0, then for anyx∈[0,1],U(0,x)=0 by the monotonicity ofU. For anyx,y∈[0,1],U(O(x,0),O(1,y))=U(0,y)=0,U(O(x,1),O(0,y))=U(x,0)=0. HenceU(O(x,0),O(1,y))=U(O(x,1),O(0,y)),i.e.Uis (0,1)-O-bimigrative.

    Proposition18 LetO1is a 1-product overlap function. Then a uninormUisO1-bimigrative if and only ifUisO1-migrative.

    ProofThe proof is similar to Proposition 6.

    Proposition19 LetObe an overlap function with neutral element 1. If a uninormUisO-bimigrative,then it is alsoO-migrative.

    ProofThe proof is similar with Proposition 7.

    Proposition20 AnyO-bimigrative uninormUis alsoOφ-bimigrative.

    ProofThe proof is similar to Proposition 8.

    Proposition21 LetObe an given overlap function andUbe a uninorm with neutral elemente∈[0, 1].

    If for anyα∈[0,1],Uis (α,1)-O-bimigrative, thenU(0, 1)=0.

    ProofTakex=0 andy=1 in Eq. (12). Assume thatU(0, 1)=1. Then, it follows that

    1=U(0, 1)=U(O(0,α),O(1, 1))

    =U(O(0, 1),O(α, 1))=U(0,O(α, 1))

    ≤U(e,O(α, 1))=O(α, 1).

    Thus, one gets thatO(α,1)=1. Moreover, from item (O3) of Definition 1, one can get thatα=1,which is a contradiction.

    By Proposition 1 and Definition 18, the following proposition holds.

    Proposition22 LetObe an given overlap function with neutral element 1,α∈[0,1] andUbe a uninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (α,1)-O-bimigrative;

    (ii)O(α,x)=U(O(α,e),x) for allx∈[0,1].

    Then (i)?(ii).

    Proposition23 LetUis conjunctive and locally internal on the boundary. If, for a givenα∈[0,1] and an overlap functionOwith neutral element 1,Uis a (α,1)-O-migrative uninorm with neutral elemente∈[0, 1], then the following statements hold

    (i)O(α, 1)=O(α,e) ande>0;

    (ii)O(α,1)

    ProofBy Eq. (12), we have

    O(α,1)=U(O(α,1),e)=

    U(O(1,α),O(1,e))=

    U(O(1,1),O(α,e))=

    U(1,O(α,e)) ∈{1,O(α,e)}.

    Sinceα<1, by item (O3) of Definition 1, it follows thatO(α,1)<1. Thus, one has thatO(α,1)=O(α,e).

    Moreover, ife=0, thenO(α,1)=O(α,e)=0. Thus, by item (O2) of Definition 1, we get thatα=0, which is a contradiction. Thereforee>0.

    (ii) Suppose thatO(α, 1)≥e, then, by item (i), it follows that

    O(α,1)=U(O(α,1),e)=

    U(O(1,α),O(1,e))=

    U(O(1,1),O(α,e))=

    U(1,O(α,e))=

    U(1,O(α,1))≥U(1,e)=1.

    But, from the proof of item (i), we know thatO(α, 1)<1. Hence, one get thatO(α, 1)

    From Proposition 22 and item (i) of Proposition 23, one can immediately obtain the followingconclusion.

    Proposition24 LetObe a given overlap function with neutral element 1,α∈[0,1] andUbe auninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (α,1)-O-bimigrative;

    (ii)O(α,x)=U(O(α,1),x) for allx∈[0,1].

    Then (i)?(ii).

    3.2 Bimigrativity of uninorms over grouping functions

    Definition20 Considerα∈[0,1] and a given grouping functionG. A uninormU:[0,1]2→[0,1] is said to be (a,b)-G-bimigrative if

    U(G(x,α),G(α,y))=U(G(x,β),G(α,y))

    (14)

    for allx,y∈[0,1].

    Clearly, for any grouping functionGandα∈[0,1], a uninormUis (α,α)-G-bimigrative.

    Definition21 Consider a given grouping functionG. A uninormU:[0,1]2→[0,1] is said to beG-bimigrative if

    U(G(x,α),G(β,y))=U(G(x,β),G(α,y))

    (15)

    for allx,y,α,β∈[0, 1].

    Proposition25 LetGbe a grouping functions with neutral element 0 andα∈[0,1]. A uninormUis (α, 0)-G-bimigrative if and only ifUis (α,G)-migrative.

    ProofIt can be proven in a similar way as Proposition 14.

    Proposition26 LetGbe a grouping functions with neutral element 0 andUbe a uninorm with neutral elemente∈[0, 1]. IfUis (1,e)-G-bimigrative, thenU(G(x,e), 1)=1 for anyx∈ [0, 1].

    ProofIt can be proven in a similar way as Proposition 15.

    Proposition27 LetGbe a functions with neutral element 1 andUbe a uninorm with neutral elemente∈ [0,1]. IfUis (0,e)-G-bimigrative, thenU(O(x,e), 0)=xfor anyx∈[0, 1].

    ProofIt can be proven in a similar way as Proposition 16.

    Proposition28 LetGbe a grouping functions with neutral element 0 andUbe a uninorm with neutral elemente∈[0,1].Uis (0,1)-G-bimigrative if and only ifUis conjunctive.

    ProofIt can be proven in a similar way as Proposition 17.

    Proposition29 A uninormUisG1-bimigrative if and only ifUisG1-migrative.

    ProofThe proof is similar to Proposition 6.

    Proposition30 Let G be a grouping function with neutral element 0. If A uninormUisG-bimigrative, then it is alsoG-migrative.

    ProofThe proof is similar to Proposition 7.

    Proposition31 LetGbe a given grouping function andUbe a uninorm with neutral elemente∈[0,1]. If for anyα∈[0,1],Uis (0,α)-G-bimigrative, thenU(0,1)=1.

    ProofTakex=0 andy=1 in Eq. (14). Assume thatU(0, 1)=0. Then, it follows that

    0=U(0,1)=

    U(G(0,0),G(α,1))=

    U(O(0,α),G(0,1))=

    U(G(0,α), 1)≥

    U(G(0,α),e)=G(0,α).

    Thus, one gets thatG(0,α)=0. Moreover, from item (G2) of Definition 2, one can get thatα=0,which is a contradiction.

    By Proposition 2 and Definition 20, the following proposition holds.

    Proposition32 LetGbe a given grouping function with neutral element 0,α∈[0,1] andUbe a uninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (0,α)-G-bimigrative;

    (ii)G(α,x)=U(G(α,e),x) for allx∈[0, 1].

    Then (i)?(ii).

    Proposition33 LetUis disjunctive and locally internal on the boundary. If, for a givenα∈[0,1] and a grouping functionGwith neutral element 0,Uis a (0,α)-G-migrative uninorm with neutral elemente ∈[0,1], then the following statements hold

    (i)G(α,0)=O(α,e) ande<1;

    (ii)G(α,0)>e.

    ProofIt can be proven in a similar way as Proposition 23.

    From Proposition 32 and item (i) of Proposition 33, one can immediately obtain the following conclusion.

    Proposition34 Let G be a given grouping function with neutral element 0,α∈[0,1] andUbe auninorm with neutral elemente∈[0,1]. Consider the following statements:

    (i)Uis (α,0)-G-bimigrative;

    (ii)G(α,x)=U(G(α,0),x) for allx∈[0, 1].

    Then (i)?(ii).

    4 Bimigrativity of nullnorms over overlap and grouping functions

    Similarly to the case of uninorms, we study the bimigrativity of nullnorms over overlap and grouping functions in this section.

    4.1 Bimigrativity of nullnorms over overlap functions

    Definition22 Considerα,β∈[0,1] and a given overlap functionO. A nullnormF:[0,1]2→[0,1] is said to be (α,β)-O-bimigrative if

    F(O(x,α),O(β,y))=F(O(x,β),O(α,y))

    (16)

    for allx,y∈[0,1].

    Clearly, for any overlap functionOandα∈ [0, 1], a nullnormFis (α,α)-O-bimigrative.

    Definition23 Consider a given overlap functionO. A nullnormF:[0,1]2→[0,1] is said to beO-bimigrative if

    F(O(x,α),O(β,y))=F(O(x,β),O(α,y))

    (17)

    for allx,y,α,β∈[0, 1].

    Proposition35 LetObe a given overlap function with neutral element 1 andFbe a nullnorm with absorbing elementk∈[0,1]. ThenFis not (0,1)-O-bimigrative.

    ProofSuppose thatFis not (0,1)-O-bimigrative, then for allx,y∈[0,1],

    F(O(x,0),O(1,y))=F(O(x,1),O(0,y))?

    F(0,y)=F(x, 0)

    Takex=0 andy=k, we havek=F(0,k)=F(0,0)=0, which is a contradiction.

    Proposition36 LetObe an overlap function with neutral element 1 andα∈[0,1]. An nullnormFis (α, 1)-O-bimigrative if and only ifFis (α,O)-migrative.

    ProofIt can be proven in a similar way as Proposition 14.

    Proposition37 LetObe an overlap function andFbe a nullnorm with absorbing elementk∈[0, 1]. IfFis (0,k)-O-bimigrative, thenF(O(x,k), 0)=0 for anyx∈[0, 1].

    ProofIf F is (0,k)-O-bimigrative, then for anyx∈[0, 1], one has that

    F(O(x,k), 0)=F(O(x,k),O(0,0))

    =F(O(x,0),O(k,0))=F(0,0)=0.

    Proposition38 LetObe an overlap function with neutral element 1 andFbe a nullnorm with absorbing elementk∈[0, 1]. IfFis (k,1)-O-bimigrative, thenF(O(x,k), 1)=kfor anyx∈[0,1].

    ProofIfFis (k, 1)-O-bimigrative, then for anyx∈[0, 1], one has that

    F(O(x,k), 1)=F(O(x,k),O(1,1))

    =F(O(x,1),O(k,1))=F(x,k)=k.

    4.2 Bimigrativity of nullnorms over grouping functions

    Definition24 Considerα,β∈[0,1] and a given grouping functionG. A nullnormF: [0,1]2→[0,1] is said to be (α,β)-G-bimigrative if

    F(G(x,α),G(β,y))=F(G(x,β),G(α,y))

    (18)

    for allx,y∈[0, 1].

    Clearly, for any overlap functionGandα∈[0,1], a nullnormFis (α,α)-G-bimigrative.

    Definition25 Consider a given grouping functionG. A nullnormF:[0,1]2→[0,1] is said to beG-bimigrative if

    F(G(x,α),G(β,y))=F(G(x,β),G(α,y))

    (19)

    for allx,y,α,β∈[0,1].

    Proposition39 LetGbe a given grouping function with neutral element 0 andFbe a nullnorm with absorbing elementk∈[0, 1]. ThenFis not (0,1)-G-bimigrative.

    ProofIt can be proven in a similar way as Proposition 35.

    Proposition40 LetGbe a grouping function with neutral element 0 andα∈[0,1]. An nullnormFis (α, 0)-G-bimigrative if and only ifFis (α,G)-migrative.

    ProofIt can be proven in a similar way as Proposition 14.

    Proposition41 LetGbe a grouping function andFbe a nullnorm with absorbing elementk∈[0,1]. IfFis (1,k)-G-bimigrative, thenF(G(x,k), 1)=1 for anyx∈[0,1].

    ProofIt can be proven in a similar way as Proposition 37.

    Proposition42 LetGbe a grouping function with neutral element 0 andFbe a nullnorm with absorbing elementk∈[0,1]. IfFis (k, 0)-O-bimigrative, thenF(O(x,k), 0)=kfor anyx∈[0,1].

    ProofIt can be proven in a similar way as Proposition 38.

    5 Bimigrativity of overlap and grouping functions over uninorms (resp. nullnorms)

    In section 3 and section 4, the bimigrativity of uninorms and nullnorms over overlap and grouping functions are discussed respectively. For simplicity, in this section, we highlight only the bimigrativity of overlap and grouping functions over uninorms (resp. nullnorms), but no proofs are provided.

    5.1 Bigrativity of overlap functions over uninorms

    Definition26 Considerα,β∈[0,1] and a given uninormU. An overlap functionOis said to be (α,β)-U-bimigrative if

    O(U(x,α),U(β,y)=O(U(x,β),U(α,y))

    (20)

    for allx,y∈[0, 1].

    Clearly, for any uninormUandα∈[0, 1], an overlap functionOis (α,α)-U-bimigrative.

    Definition27 Consider a given uninormU. An overlap functionOis said to beU-bimigrative if

    O(U(x,α),U(β,y)=O(U(x,β),U(α,y))

    (21)

    for allx,y,α,β∈[0, 1].

    Proposition43 LetObe an overlap function andUbe a uninorm with neutral elemente∈[0,1].Ois (α,e)-U-bimigrative if and only ifOis (α,U)-migrative.

    Proposition44 LetObe an overlap function andUbe a uninorm with neutral elemente∈[0, 1].ThenUis conjunctive if and only ifOis (0,e)-U-bimigrative.

    Proposition45 LetObe an overlap function with neutral element 1,Ube a uninorm with neutral elemente∈[0, 1]. IfOis (α,e)-U-bimigrative, thenO(U(1,α),e)=α.

    Proposition46 LetObe an overlap function with neutral element 1,Ube a uninorm with neutral elemente∈[0, 1]. IfUis disjunctive, thenOis (α,e)-U-bimigrative if and only ifα=e.

    Proposition47 LetObe an overlap function with neutral element 1,U∈CLIB with neutral elemente ∈[0, 1], andα=e. IfOis (α,e)-U-bimigrative, thenO(α,x)=U(α,x) for allx∈[0,1].

    Proposition48 LetUbe a uninorm with neutral elemente∈[0,1]. If an overlap functionOisU-bimigrative, then it is alsoU-migrative.

    ProofThe proof is similar with Proposition 7.

    5.2 Bigrativity of grouping functions over uninorms

    Definition28 Considerα,β∈[0,1] and a given uninormU. A grouping functionGis said to be(α,β)-U-bimigrative if

    G(U(x,α),U(β,y)=G(U(x,β),U(α,y))

    (22)

    for allx,y∈[0,1].

    Clearly, for any uninormUandα∈[0,1], a grouping functionGis (α,α)-U-bimigrative.

    Definition29 Consider a given uninormU. A grouping functionGis said to beU-bimigrative if

    G(U(x,α),U(β,y)=G(U(x,β),U(α,y))

    (23)

    for allx,y,α,β∈[0,1].

    Proposition49 LetGbe a grouping function andUbe a uninorm with neutral elemente∈[0,1].Gis (α,e)-U-bimigrative if and only ifGis (α,U)-migrative.

    ProofThe proof is similar with Proposition 43.

    Proposition50 LetGbe a grouping function andUbe a uninorm with neutral elemente∈[0,1].ThenUis disjunctive if and only ifGis (1,U)-migrative.

    By Proposition 49 and Proposition 50, the following proposition holds.

    Proposition51 LetGbe a grouping function andUbe a uninorm with neutral elemente∈[0,1].ThenUis disjunctive if and only ifGis (1,e)-U-bimigrative.

    Proposition52 LetGbe a grouping function with neutral element 0,Ube a uninorm with neutral elemente∈[0, 1]. IfGis (α,e)-U-bimigrative, thenG(U(0,α),e)=α.

    Proposition53 LetGbe a grouping function with neutral element 0,Ube a uninorm with neutralelemente∈[0,1]. IfUis conjunctive, thenOis (α,e)-U-bimigrative if and only ifα=e.

    Proposition54 LetGbe a grouping function with neutral element 0,U∈DLIB with neutralelemente∈[0, 1], andα=e. IfGis (α,e)-U-bimigrative, thenO(α,x)=U(α,x) for allx∈[0, 1].

    Proposition55 LetUbe a uninorm with neutral elemente∈[0,1]. If a grouping functionGisU-bimigrative, then it is alsoU-migrative.

    5.3 Bigrativity of overlap functions over nullnorms

    Definition30 Considerα,β∈[0,1] and a given nullnormF. An overlap functionOis said to be (α,β)-F-bimigrative if

    O(F(x,α),F(β,y))=O(F(x,β),F(α,y))

    (24)

    for allx,y∈[0, 1].

    Definition31 Consider a given nullnormF. An overlap functionOis said to beF-bimigrative if

    O(F(x,α),F(β,y))=O(F(x,β),F(α,y))

    (25)

    for allx,y,α,β∈[0, 1].

    Proposition56 LetObe an overlap function andFbe a nullnorm with absorbing elementk∈[0,1].IfOis (0,k)-F-bimigrative, thenO(F(x, 0),k)=0 for anyx∈[0,1].

    Proposition57 LetObe an overlap function with neutral element 1 andFbe a nullnorm with absorbing elementk∈[0,1]. IfOis (1,k)-F-bimigrative, thenO(F(x,1),k)=kfor anyx∈[0,1].

    5.4 Bigrativity of grouping functions over nullnorms

    Definition32 Considerα,β∈[0,1] and a given nullnormF. A grouping functionGis said to be (α,β)-F-bimigrative if

    G(F(x,α),F(β,y))=G(F(x,β),F(α,y))

    (26)

    for allx,y∈[0,1].

    Definition33 Consider a given nullnormF. A grouping functionGis said to beF-bimigrative if

    G(F(x,α),F(β,y))=G(F(x,β),F(α,y))

    (27)

    for allx,y,α,β∈[0,1].

    Proposition58 LetGbe a grouping function andFbe a nullnorm with absorbing elementk∈[0,1].IfGis (1,k)-F-bimigrative, thenG(F(x,1),k)=1 for anyx∈[0,1].

    Proposition59 LetGbe a grouping function with neutral element 0 andFbe a nullnorm with absorbing elementk∈[0,1]. IfGis (0,k)-F-bimigrative, thenG(F(x, 0),k)=kfor anyx∈[0,1].

    6 Conclusions

    In this paper, we mainly devote to characterizing the bimigrativity between overlap functions,grouping functions and uninorms or nullnorms. We also discuss the relationship between the bimigrativity and migrativity overlap functions, grouping functions and uninorms or nullnorms. In the further work, we will investigate the bimigrativity of other aggregation functions.

    国产精品永久免费网站| 免费播放大片免费观看视频在线观看 | 国模一区二区三区四区视频| 亚洲av成人精品一二三区| 亚洲第一区二区三区不卡| kizo精华| 国产在视频线在精品| 欧美3d第一页| 乱系列少妇在线播放| 亚洲av熟女| www.色视频.com| 亚洲av二区三区四区| 午夜精品国产一区二区电影 | 丰满少妇做爰视频| 乱人视频在线观看| 亚洲av.av天堂| 亚洲精品日韩av片在线观看| 欧美激情久久久久久爽电影| 亚洲欧美精品综合久久99| 欧美成人a在线观看| 久久精品影院6| 一区二区三区高清视频在线| 亚洲在线观看片| 亚洲精品影视一区二区三区av| 嘟嘟电影网在线观看| 舔av片在线| av播播在线观看一区| 国产精品福利在线免费观看| 亚洲欧美精品自产自拍| 九草在线视频观看| 国产精品电影一区二区三区| 别揉我奶头 嗯啊视频| 成人鲁丝片一二三区免费| 女人十人毛片免费观看3o分钟| 婷婷色综合大香蕉| 老司机影院毛片| 两性午夜刺激爽爽歪歪视频在线观看| 十八禁国产超污无遮挡网站| 蜜桃久久精品国产亚洲av| 国产乱来视频区| 日本欧美国产在线视频| 免费看美女性在线毛片视频| 少妇的逼好多水| 中文欧美无线码| 插逼视频在线观看| 美女被艹到高潮喷水动态| 成人二区视频| 欧美丝袜亚洲另类| 久久久国产成人免费| 日本一二三区视频观看| 嫩草影院精品99| a级毛片免费高清观看在线播放| 精品久久国产蜜桃| 国产精品人妻久久久影院| 草草在线视频免费看| 免费观看a级毛片全部| 国产精品无大码| 村上凉子中文字幕在线| 国产极品天堂在线| 人妻夜夜爽99麻豆av| 成人亚洲欧美一区二区av| 国产精品国产高清国产av| 天天一区二区日本电影三级| 少妇人妻精品综合一区二区| 高清av免费在线| 精品久久久久久久久av| 高清av免费在线| 97在线视频观看| 狂野欧美激情性xxxx在线观看| 97在线视频观看| 美女xxoo啪啪120秒动态图| 久久久精品94久久精品| 久久久精品94久久精品| 成人特级av手机在线观看| 听说在线观看完整版免费高清| 国产黄色小视频在线观看| 亚洲av一区综合| 国产黄色小视频在线观看| 免费搜索国产男女视频| 国模一区二区三区四区视频| 最后的刺客免费高清国语| 亚洲四区av| 亚洲成人久久爱视频| 国产69精品久久久久777片| 免费看日本二区| 午夜福利成人在线免费观看| 欧美成人午夜免费资源| 99久久成人亚洲精品观看| 午夜久久久久精精品| 国产亚洲av片在线观看秒播厂 | 久久久久久国产a免费观看| 狂野欧美激情性xxxx在线观看| 国产精品人妻久久久影院| 哪个播放器可以免费观看大片| 国产一级毛片七仙女欲春2| 中文天堂在线官网| 国产私拍福利视频在线观看| 国产黄片美女视频| 国产伦一二天堂av在线观看| 黄色欧美视频在线观看| 中文字幕人妻熟人妻熟丝袜美| 国产乱来视频区| 久久精品国产亚洲网站| 国产精华一区二区三区| 国产在视频线精品| 国产精品久久久久久精品电影小说 | 欧美激情国产日韩精品一区| 免费一级毛片在线播放高清视频| 老师上课跳d突然被开到最大视频| 中文资源天堂在线| 高清午夜精品一区二区三区| 村上凉子中文字幕在线| 亚洲熟妇中文字幕五十中出| 亚洲av成人av| 国产一区亚洲一区在线观看| 丰满人妻一区二区三区视频av| 一边亲一边摸免费视频| 成人特级av手机在线观看| 亚洲av一区综合| 九九热线精品视视频播放| 亚洲美女视频黄频| 成人毛片60女人毛片免费| www.av在线官网国产| 特级一级黄色大片| 久久鲁丝午夜福利片| 色综合色国产| 在线天堂最新版资源| 大话2 男鬼变身卡| 国产极品天堂在线| 欧美bdsm另类| 少妇丰满av| 亚洲怡红院男人天堂| 亚洲精品成人久久久久久| 只有这里有精品99| 午夜福利在线在线| 22中文网久久字幕| 欧美精品一区二区大全| 三级国产精品欧美在线观看| 在线天堂最新版资源| 亚洲电影在线观看av| 精品国产露脸久久av麻豆 | 大香蕉97超碰在线| 中文乱码字字幕精品一区二区三区 | 国产av在哪里看| 亚洲欧美日韩无卡精品| av又黄又爽大尺度在线免费看 | 国产精品美女特级片免费视频播放器| 桃色一区二区三区在线观看| 女人被狂操c到高潮| 亚洲图色成人| 免费一级毛片在线播放高清视频| 91狼人影院| 免费av不卡在线播放| 欧美一区二区精品小视频在线| 国产精品福利在线免费观看| 亚州av有码| 一级毛片电影观看 | 精品久久久久久久末码| 国产精品永久免费网站| 又黄又爽又刺激的免费视频.| 亚洲精品一区蜜桃| 天堂av国产一区二区熟女人妻| 欧美高清成人免费视频www| 秋霞伦理黄片| 亚洲天堂国产精品一区在线| 亚洲美女搞黄在线观看| 亚洲一区高清亚洲精品| 老司机福利观看| 久久久精品大字幕| 伦精品一区二区三区| 欧美三级亚洲精品| 国产女主播在线喷水免费视频网站 | 中文字幕亚洲精品专区| 欧美97在线视频| 亚洲av中文字字幕乱码综合| 两性午夜刺激爽爽歪歪视频在线观看| 波野结衣二区三区在线| 国产高潮美女av| 日本与韩国留学比较| 免费播放大片免费观看视频在线观看 | 婷婷色综合大香蕉| 亚州av有码| 免费搜索国产男女视频| 日本黄色片子视频| 午夜福利成人在线免费观看| 老师上课跳d突然被开到最大视频| 免费人成在线观看视频色| 亚洲性久久影院| 欧美不卡视频在线免费观看| 亚洲精品aⅴ在线观看| 亚洲精品,欧美精品| 美女国产视频在线观看| 亚洲av成人av| 国产高清国产精品国产三级 | 日日干狠狠操夜夜爽| 久久久久九九精品影院| 水蜜桃什么品种好| 晚上一个人看的免费电影| 十八禁国产超污无遮挡网站| 国产伦在线观看视频一区| 寂寞人妻少妇视频99o| 亚洲乱码一区二区免费版| 日本色播在线视频| 七月丁香在线播放| 亚洲国产欧美在线一区| 综合色丁香网| 超碰av人人做人人爽久久| 丰满乱子伦码专区| 久久精品综合一区二区三区| 搡老妇女老女人老熟妇| 国产精品一区www在线观看| 如何舔出高潮| 国产激情偷乱视频一区二区| 中文字幕久久专区| 日韩国内少妇激情av| 精品国产露脸久久av麻豆 | 99热这里只有是精品在线观看| 成人鲁丝片一二三区免费| 99热这里只有精品一区| videos熟女内射| 成人午夜精彩视频在线观看| 国产伦一二天堂av在线观看| 免费无遮挡裸体视频| 免费观看在线日韩| 国产爱豆传媒在线观看| 亚洲精品,欧美精品| 日韩大片免费观看网站 | 乱系列少妇在线播放| 欧美成人精品欧美一级黄| 夜夜爽夜夜爽视频| 精品酒店卫生间| 欧美日本亚洲视频在线播放| 日日撸夜夜添| 日韩强制内射视频| 亚洲高清免费不卡视频| 国内精品宾馆在线| 欧美色视频一区免费| 美女高潮的动态| 国产在视频线在精品| 国产伦在线观看视频一区| 亚洲欧美精品自产自拍| 美女大奶头视频| 色综合站精品国产| 久久午夜福利片| 麻豆av噜噜一区二区三区| 国产av一区在线观看免费| 免费看光身美女| 久久欧美精品欧美久久欧美| 欧美精品国产亚洲| 少妇猛男粗大的猛烈进出视频 | 国产成人午夜福利电影在线观看| 黄色配什么色好看| 一区二区三区高清视频在线| 久久99热这里只有精品18| 97在线视频观看| av国产久精品久网站免费入址| 日韩一区二区三区影片| 日韩欧美国产在线观看| 精品久久久久久成人av| 99热全是精品| 成人欧美大片| 老司机影院毛片| 日韩av不卡免费在线播放| 99久久中文字幕三级久久日本| 国产精品精品国产色婷婷| 日日干狠狠操夜夜爽| 亚洲四区av| 国产 一区 欧美 日韩| 夫妻性生交免费视频一级片| 91久久精品电影网| eeuss影院久久| 欧美一区二区国产精品久久精品| 秋霞在线观看毛片| 看片在线看免费视频| 国产av在哪里看| 日本猛色少妇xxxxx猛交久久| 禁无遮挡网站| 女人被狂操c到高潮| 国产一区有黄有色的免费视频 | 两个人视频免费观看高清| 久久久色成人| 国产乱人偷精品视频| 欧美人与善性xxx| 精品人妻视频免费看| 久久人人爽人人爽人人片va| 亚洲av熟女| 成年av动漫网址| 99久久九九国产精品国产免费| 国产精品无大码| av又黄又爽大尺度在线免费看 | av在线天堂中文字幕| 一本久久精品| 直男gayav资源| 精品国产露脸久久av麻豆 | 日本免费一区二区三区高清不卡| 久久久久精品久久久久真实原创| 国产 一区精品| 久久久久久大精品| 久久99热6这里只有精品| 熟妇人妻久久中文字幕3abv| 村上凉子中文字幕在线| 卡戴珊不雅视频在线播放| 亚洲人成网站高清观看| 日日啪夜夜撸| 噜噜噜噜噜久久久久久91| 免费观看的影片在线观看| 国产在线一区二区三区精 | 只有这里有精品99| 亚洲精品国产成人久久av| 久久国内精品自在自线图片| 亚洲精品一区蜜桃| 亚洲成人av在线免费| 五月伊人婷婷丁香| 国产亚洲午夜精品一区二区久久 | 热99在线观看视频| 日韩av在线大香蕉| 中文字幕人妻熟人妻熟丝袜美| av天堂中文字幕网| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 精品久久久噜噜| 波多野结衣高清无吗| 日韩av在线大香蕉| 亚洲人成网站高清观看| 久久精品人妻少妇| 91在线精品国自产拍蜜月| 午夜久久久久精精品| 国产乱人视频| 免费观看性生交大片5| 日本一本二区三区精品| 日产精品乱码卡一卡2卡三| 少妇猛男粗大的猛烈进出视频 | 嫩草影院入口| 联通29元200g的流量卡| 日本与韩国留学比较| 欧美成人一区二区免费高清观看| 美女被艹到高潮喷水动态| 国产精品无大码| 一级毛片我不卡| 欧美变态另类bdsm刘玥| 亚洲欧美成人综合另类久久久 | 1000部很黄的大片| 岛国在线免费视频观看| 日韩国内少妇激情av| 国产精品精品国产色婷婷| 成人午夜精彩视频在线观看| 色综合站精品国产| 久久这里有精品视频免费| 国产欧美另类精品又又久久亚洲欧美| 中文在线观看免费www的网站| 国产一区二区三区av在线| 18禁裸乳无遮挡免费网站照片| 免费观看精品视频网站| 国内少妇人妻偷人精品xxx网站| 一级二级三级毛片免费看| 如何舔出高潮| 看十八女毛片水多多多| 国产不卡一卡二| 69av精品久久久久久| 欧美97在线视频| 国产不卡一卡二| 国产黄片视频在线免费观看| 人妻少妇偷人精品九色| 看片在线看免费视频| 国产精品国产三级专区第一集| 一级二级三级毛片免费看| 极品教师在线视频| 日本-黄色视频高清免费观看| 激情 狠狠 欧美| 人妻系列 视频| 成年版毛片免费区| 中文精品一卡2卡3卡4更新| 99热这里只有是精品在线观看| 欧美不卡视频在线免费观看| 久久久久精品久久久久真实原创| 六月丁香七月| 成年av动漫网址| 欧美+日韩+精品| 精品人妻偷拍中文字幕| 国产午夜精品久久久久久一区二区三区| 免费不卡的大黄色大毛片视频在线观看 | 久久精品夜夜夜夜夜久久蜜豆| 欧美性猛交╳xxx乱大交人| 色视频www国产| 久久精品熟女亚洲av麻豆精品 | 亚洲av电影不卡..在线观看| 亚洲中文字幕一区二区三区有码在线看| a级毛片免费高清观看在线播放| 免费观看性生交大片5| av线在线观看网站| 国产精品综合久久久久久久免费| 青青草视频在线视频观看| 日韩欧美国产在线观看| 亚洲精品亚洲一区二区| 午夜亚洲福利在线播放| 蜜桃亚洲精品一区二区三区| 成年版毛片免费区| 精品午夜福利在线看| 人妻少妇偷人精品九色| 亚洲在久久综合| 最近最新中文字幕免费大全7| 亚洲欧美一区二区三区国产| 久久亚洲国产成人精品v| 日本-黄色视频高清免费观看| 亚洲欧美成人综合另类久久久 | 观看免费一级毛片| 亚洲成色77777| 男人舔女人下体高潮全视频| av视频在线观看入口| 亚洲精品一区蜜桃| 欧美一区二区精品小视频在线| 日本爱情动作片www.在线观看| 真实男女啪啪啪动态图| 日韩欧美 国产精品| 嫩草影院精品99| 亚洲av电影不卡..在线观看| 天堂中文最新版在线下载 | 国产亚洲精品久久久com| 国产午夜精品一二区理论片| 婷婷色麻豆天堂久久 | 久久久a久久爽久久v久久| 国产免费一级a男人的天堂| or卡值多少钱| 在线播放国产精品三级| 国产免费一级a男人的天堂| 超碰av人人做人人爽久久| 国产精品久久电影中文字幕| 国产熟女欧美一区二区| 亚洲国产欧洲综合997久久,| 最近的中文字幕免费完整| 老女人水多毛片| 亚洲自拍偷在线| 亚洲av一区综合| 亚洲久久久久久中文字幕| 网址你懂的国产日韩在线| 国产不卡一卡二| 天天躁日日操中文字幕| 美女被艹到高潮喷水动态| 村上凉子中文字幕在线| 男人的好看免费观看在线视频| 久久亚洲国产成人精品v| 亚洲欧洲国产日韩| 男人和女人高潮做爰伦理| 久久久久免费精品人妻一区二区| 精品久久久久久久久亚洲| 毛片女人毛片| 久久久精品大字幕| 亚洲精华国产精华液的使用体验| 99热精品在线国产| 亚洲第一区二区三区不卡| 乱人视频在线观看| 国产精品伦人一区二区| 精品国产一区二区三区久久久樱花 | 日日啪夜夜撸| 床上黄色一级片| 成人性生交大片免费视频hd| 一个人看视频在线观看www免费| 日本与韩国留学比较| 一级毛片久久久久久久久女| 亚洲av成人精品一区久久| 亚洲精品久久久久久婷婷小说 | 国产黄片视频在线免费观看| 亚洲欧美中文字幕日韩二区| 内射极品少妇av片p| 身体一侧抽搐| av在线蜜桃| 亚洲内射少妇av| 久久久久久久久久久丰满| 国产精品一区二区在线观看99 | 国产成人精品婷婷| 最后的刺客免费高清国语| 欧美日本视频| 亚洲国产精品sss在线观看| 亚洲熟妇中文字幕五十中出| 人妻系列 视频| 亚洲在久久综合| 久久婷婷人人爽人人干人人爱| av国产久精品久网站免费入址| 成人一区二区视频在线观看| 亚洲成人精品中文字幕电影| 亚洲高清免费不卡视频| 十八禁国产超污无遮挡网站| 婷婷色麻豆天堂久久 | 日韩欧美 国产精品| 嫩草影院新地址| 一级毛片aaaaaa免费看小| 黄片wwwwww| 日韩av在线大香蕉| 99久久成人亚洲精品观看| 欧美日本亚洲视频在线播放| 卡戴珊不雅视频在线播放| 啦啦啦韩国在线观看视频| 亚洲成av人片在线播放无| 国产一区二区在线观看日韩| 成人av在线播放网站| 18+在线观看网站| 亚洲精品日韩在线中文字幕| 春色校园在线视频观看| 中文资源天堂在线| 国产一区二区在线av高清观看| 少妇人妻精品综合一区二区| 1000部很黄的大片| 男女边吃奶边做爰视频| 久久久色成人| 伦精品一区二区三区| 久久精品国产自在天天线| 国产片特级美女逼逼视频| av在线亚洲专区| 亚洲自拍偷在线| 国产高清有码在线观看视频| 精品人妻一区二区三区麻豆| 国产三级中文精品| 欧美性猛交╳xxx乱大交人| 免费人成在线观看视频色| 国产成人一区二区在线| 身体一侧抽搐| 我的女老师完整版在线观看| 午夜亚洲福利在线播放| 啦啦啦啦在线视频资源| 国产探花极品一区二区| 有码 亚洲区| 超碰97精品在线观看| 国产伦理片在线播放av一区| 亚洲国产欧美在线一区| 久久草成人影院| 国产免费一级a男人的天堂| 国产精品精品国产色婷婷| 成人一区二区视频在线观看| 久久国产乱子免费精品| 亚洲aⅴ乱码一区二区在线播放| 欧美人与善性xxx| 国产高清视频在线观看网站| 尤物成人国产欧美一区二区三区| 精品人妻偷拍中文字幕| 国产精品嫩草影院av在线观看| 91精品一卡2卡3卡4卡| 国产私拍福利视频在线观看| 国产成人aa在线观看| 亚洲成人av在线免费| 国产成人精品婷婷| 国产亚洲一区二区精品| 日本-黄色视频高清免费观看| 国产精品女同一区二区软件| 成人一区二区视频在线观看| 五月伊人婷婷丁香| 久久人人爽人人片av| 在线观看66精品国产| 一区二区三区四区激情视频| 成人美女网站在线观看视频| 日韩制服骚丝袜av| 成人无遮挡网站| 久久这里有精品视频免费| 免费av毛片视频| 亚洲五月天丁香| 91精品一卡2卡3卡4卡| 黄片无遮挡物在线观看| 国模一区二区三区四区视频| 麻豆成人av视频| 亚洲国产精品专区欧美| 国产精品伦人一区二区| 欧美日韩综合久久久久久| 国产伦精品一区二区三区视频9| 插阴视频在线观看视频| 一级毛片aaaaaa免费看小| 美女黄网站色视频| 美女高潮的动态| 亚洲精品aⅴ在线观看| 超碰av人人做人人爽久久| 久热久热在线精品观看| 亚洲经典国产精华液单| 一边亲一边摸免费视频| 午夜精品一区二区三区免费看| 汤姆久久久久久久影院中文字幕 | 十八禁国产超污无遮挡网站| 国产伦精品一区二区三区视频9| 日韩亚洲欧美综合| 日日摸夜夜添夜夜添av毛片| 亚洲精品乱久久久久久| 高清毛片免费看| 寂寞人妻少妇视频99o| 乱人视频在线观看| 亚洲欧美精品综合久久99| 日韩欧美 国产精品| 亚洲国产精品成人久久小说| h日本视频在线播放| 亚洲欧洲日产国产| 久久久久久久国产电影| 国产一区二区在线观看日韩| 最近2019中文字幕mv第一页| 男的添女的下面高潮视频| 日韩高清综合在线| 精品国产一区二区三区久久久樱花 | 日本猛色少妇xxxxx猛交久久| videos熟女内射| 精品国产露脸久久av麻豆 | 久久人妻av系列| 村上凉子中文字幕在线| 国产黄色视频一区二区在线观看 | 九九在线视频观看精品| 一个人免费在线观看电影| 免费观看精品视频网站| 床上黄色一级片| 老司机福利观看| 97人妻精品一区二区三区麻豆| 日本欧美国产在线视频| av在线蜜桃| 男女视频在线观看网站免费| 国产精品一区二区在线观看99 | 成人亚洲精品av一区二区| 身体一侧抽搐| 日本av手机在线免费观看| 国产探花极品一区二区| 精品久久国产蜜桃| 欧美高清成人免费视频www| 99久久中文字幕三级久久日本| 国产色爽女视频免费观看|