• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Multi-scale Set-valued Information System and Its Optimal Scale Selection

    2021-01-08 03:58:14CHENYanHUJunZHANGQinghuaWANGGuoyin

    CHEN Yan,HU Jun,ZHANG Qinghua,WANG Guoyin

    (Chongqing Key Laboratory of Computational Intelligence,Chongqing University of Posts and Telecommunications,Chongqing 400065, China)

    Abstract:The multi-scale information system is often studied as a special information system. The existing researches only discuss the information system that each object only takes a single value at all scales of an attribute. However, in some real-world data sets, the attribute value of an object is not limited to a single-value, but may take multiple values, namely a set-value. We propose the concept of multi-scale set-valued information system. The rough approximation at different scales and its related properties can be obtained via the similarity relation between objects in a multi-scale set-valued information system. In addition, the definition of optimal scale is proposed based on the generalized decision, upper approximation distribution, lower approximation distribution, and positive region in a multi-scale set-valued decision system. The relationships among these optimal scales based on different criterions are further analyzed from the perspectives of consistency and inconsistency.

    Key words: multi-scale set-value information system; rough approximation;similarity relation; optimal scale

    0 Introduction

    Multi-scale analysis has been widely applied in many fields[1-4]. In a multi-scale information system, the data is represented on multiple levels of scale and has the information granule transformation process from the fine to the coarse scale. The optimal scale selection is a significant issue in multi-scale information systems. Wu and Leung discussed optimal scale selection and rule acquisition problems in multi-scale decision systems based on the classical rough sets and dual probabilistic rough sets[5-6]. From the perspective of consistency of decision systems, Xuetal.[7]and Wuetal.[8]respectively characterized optimal scale selections of consistent and inconsistent multi-scale decision systems by the belief and plausibility functions in the Dempster-Shafer theory of evidence. Considering the change of information systems, Chenetal.[9]studied the optimal scale selection of dynamic multi-scale decision systems when adding/deleting objects by using three-way decision. These studies are based on the assumptions that all attributes have the same scale level, and the selection of optimal scale is at the same scale. For different attributes have different levels of scale, Lietal.[10]introduced generalized multi-scale decision systems and proposed two new methods about the optimal scale combination in generalized multi-scale decision systems, and then proposed a stepwise optimal scale selection method that can effectively reduce time loss[11]. Then, Wu and Leung[12]discussed the relationship between several optimal scale combinations in generalized multi-scale decision systems. Luoetal.[13]studied three decision updating problems based on multi-scale information systems.

    The present studies only consider that each object takes a single value at all scales of an attribute in multi-scale information systems. However, it may happen that some of the attributes have multiple values for an object. For example, when we evaluate the language ability of a student, the value under this attribute is a set-value because the student can speak several languages. In recent years, there are many researches about knowledge discovery and attribute reduction of set-valued information systems[14-19]. However, none of these studies have studied set-valued information systems from a multi-scale perspective. As the example mentioned above, if several groups of experts are asked to assess students from different stan-dards, then the results can be regarded as evaluating students’ language ability from different scale. In addition, the attribute value of it may be a set value. To address this kind of problem, the multi-scale set-valued information system is firstly proposed and the selection of the optimal scale of a multi-scale set-valued information system is discussed in this paper.

    Some basic concepts of multi-scale information systems are introduced. In Section 1, the definition of multi-scale set-valued information system is proposed and the related concepts are introduced. Then we propose four functions of a multi-scale set-valued decision system and discuss their relationship among different scales in Section 2. Section 3 investigates the selection of optimal scale in multi-scale set-valued decision systems based on different constraint functions and discuss the relationship between them from the perspective of consistency and inconsistency. Finally, we summarize the paper and outlook the further research in Section 4.

    1 Preliminaries

    This section reviews some basic concepts of Pawlak’s rough set[20]and multi-scale information systems[5,21].

    1.1 Pawlak’s rough set

    Definition1[20]Let (U,R) be a Pawlak approximate space andXbe an arbitrary subset ofU. Then one can characterizeXby a pair of upper and lower approximations which are defined as follows:

    The accuracy ofXin (U,R) is defined as follows:

    Where |·| indicates the cardinality of the set. Clearly,0≤αR(X)≤1. IfXis definable, thenαR(X)=1.

    1.2 Multi-scale information systems

    Multi-scale information system is a kind of system where objects can take different values under an attribute according to different measurement scales. In this section we review some basic concepts of multi-scale information systems.

    Definition3[6]LetUbe a nonempty set, andψ1,ψ2be two partitions ofU. For eachφ1∈ψ1, if there existsφ2∈ψ2such thatφ1?φ2, then we say thatψ1is finer thanψ2orψ2is coarser thanψ1, and is denoted asψ1?ψ2.

    RA1?RA2?…?RAI,

    ForX?U, a nested sequence of rough set approximations ofXcan be obtained:

    Hence, a sequence of accuracies ofXunder different scales can be obtained:

    αAI(X)≤αAI-1(X)≤…≤αA2(X)≤αA1(X).

    It shows that the finer scale, the higher approximation accuracy ofX.

    2 Multi-scale set-valued information systems

    In some practical problems, an object may take multiple values at some scales of an attribute. To address this kind of problem, we propose the concept of multi-scale set-valued information systems in this section.

    ?a∈Ak}.

    it shows the relationship about similarity relations under different scales, and we can obtain that the coarser the scale is, the coarser covering ofUis.

    Moreover, the accuracy of rough set approximation is defined as follow:

    Therefore, a sequence of accuracies ofXat different scales can be obtained:

    That is, the finer the scale is, the higher approximation accuracy ofXis inS.

    3 Multi-scale set-valued decision systems

    Decision system is a special information system which has both conditional and decision attri-bute. Here are some basic concepts and definitions about a multi-scale set-valued decision system.

    HA1(d)?HA2(d)?…?HAI-1(d)?HAI(d)

    LAI(d)?LAI-1(d)?…?LA2(d)?LA1(d)

    POSAI(d)?POSAI-1(d)?…

    ?POSA2(d)?POSA1(d).

    It indicated that as the scale becomes coarser, the upper approximation distribution becomes finer, the lower approximation distribution becomes finer, and the positive domain becomes smaller.

    ?A1(x)??A2(x)?…??AI-1(x)??AI(x).

    It shows that the coarser the scale is, the larger the generalized decision value ofxis.

    Example1 Table 1 is an example of a multi-scale set-valued decision systemS=(U,A,V,F), whereU={x1,x2,…,x10},A={a1,a2,a3}. The system has three levels of scale, so it can be decomposed into three single-scale set-valued decision systems. We can calculate at the first level of scaleS1(as shown in Table 2):

    Meanwhile, at the 2nd level of scaleS2(as shown in Table 3):

    At the 3rd level of scale S3(as shown in Table 4):

    LetX={x2,x3,x8,x9}, then

    4 Optimal scale selection in multi-scale set-valued decision systems

    It can be found from the above discussion that the approximation accuracy is the highest at the finest scale in a multi-scale set-valued decision system. However, the finer scale of data means the higher cost. Thus, it is a main issue to select the optimal scale such that the objective result obtained at that scale is consistent with the finest scale and the cost is relatively lower. Next, we give several optimal scale definitions based on different criterions.

    Table 1 A multi-scale set-valued decision system S

    Table 2 The 1st scale set-valued decision system S1

    Table 3 The 2nd scale set-valued decision system S2

    Table 4 The 3rd scale set-valued decision system S3

    (1)MAk(x)=MA1(x),

    (2)MAk+1(x)≠MA1(x).

    whereMAkis a kind of constraint function in a multi-scale set-valued decision system. The definition means that the objective result at thekth scale is consistent with the finest scale, and the objective result at thek+1 th scale is inconsistent with the finest scale. Namely,kis optimal scale ofSif and only if it is the coarsest scale in which the result of the constraint functionMAkinSkis consistent with the finest scaleS1.

    The constraint functionMAkcan be the generalized decision function ?Ak, upper approximation distribution functionHAk, lower approximation distribution functionLAk, or positive region functionPOSAk. Meanwhile,kis called the generalized decision optimal scalek?, upper approximate optimal scalekH, lower approximate optimal scalekL, and positive region optimal scalekP.

    Next, the relationship between these optimal scales mentioned above are discussed in consistent and inconsistent multi-scale set-valued decision systems.

    4.1 Optimal scale selection in consistent multi-scale set-valued decision systems

    k?=kH=kL=kP.

    That is, the generalized decision optimal scale, the upper approximate optimal scale, the lower approximate optimal scale, and the positive region optimal scale are the same in a consistent multi-scale set-valued decision system.

    From the similarity class calculated by example 1, at the 1st scaleS1(as shown in Table 2):

    ?A1(x1)=?A1(x2)=?A1(x4)=

    ?A1(x6)=?A1(x9)={1}

    ?A1(x3)=?A1(x5)=?A1(x7)=

    ?A1(x8)=?A1(x10)={0},

    HA1(d)=LA1(d)=({x1,x2,x4,x6,x9},

    {x3,x5,x7,x8,x10}),POSA1(d)=U.

    At the 2nd scaleS2(as shown in Table 3):

    ?A2(x1)=?A2(x2)=?A2(x4)=

    ?A2(x6)=?A2(x9)={1}

    ?A2(x3)=?A2(x5)=?A2(x7)=

    ?A2(x8)=?A2(x10)={0}

    HA2(d)=LA2(d)=({x1,x2,x4,x6,x9},

    {x3,x5,x7,x8,x10}),

    POSA2(d)=U.

    At the 3rd scaleS3(as shown in Table 4):

    ?A3(xi)={1,2},i=1,2,…,10.

    HA3(d)=(U,U),LA3(d)=(?,?),POSA3(d)=?.

    4.2 Optimal scale selection in inconsistent multi-scale set-valued decision systems

    In an inconsistent multi-scale set-valued decision systemS, it can be observed that the finest scale set-valued decision systemS1is inconsistent, we cannot get the maximum scale which keeps the classification or decision making consistent withSor obtain the equivalence relation with other optimal scales as above. However, there is still a correlation between the generalized decision optimal scalek?, the upper approximate optimal scalekH, the lower approximate optimal scalekL, and the positive domain optimal scalekP.

    k?=kH≤kL=kP.

    It shows that the generalized decision optimal scale is the same with the upper approximate optimal scale; the lower approximate optimal scale is the same with the positive domain optimal scale, and the former is not more than the latter.

    It shows that ifSkis upper approximate distribution consistent toS1then it must be lower approximation distribution consistent toS1. More-over, ifk1is the upper approximation optimal scale ofSandk2is the lower approximation optimal scale ofSthenk1≤k2, alternatively, the lower approximation optimal scale ofSis, in general, not less than the upper approximation optimal scale ofS. It can be proved by example 3.

    (3)kL=kP: The conclusions can be directly proved by the definition of the lower approximation distribution and the positive domain.

    Example3 Table 5 is an example of an inconsistent multi-scale set-valued decision systemS, which have two attributes and each attribute has two scales.

    Table 5 An inconsistent multi-scale set-valued decision system S

    At the 1st scaleS1:

    ?A1(x1)=?A1(x7)={0,2},

    ?A1(x2)=?A1(x4)={1},

    ?A1(x3)=?A1(x5)=?A1(x6)={0,1},

    then, we haveHA1(d)=({x1,x3,x5,x6,x7},{x2,x3,x4,x5,x6},{x1,x7})LA1(d)=(?,{x2,x4},?),POSA1(d)={x2,x4}.

    At the 2nd scaleS2:

    ?A2(x1)={0,1,2},?A2(x2)=?A2(x4)={1},

    ?A2(x3)=?A2(x5)=?A2(x6)={0,1},

    ?A2(x7)={0,2},

    then, we haveHA2(d)=({x1,x3,x5,x6,x7},{x1,x2,x3,x4,x5,x6},{x1,x7}),LA2(d)=(?,{x2,x4},?),POSA2(d)={x2,x4}.

    Through analysis, ?x∈Usuch that ?A2(x)≠?A1(x); and for all decision class we haveHA2(d)≠HA1(d),LA2(d)=LA1(d),POSA2(d)=POSA1(d). So,k=1 is the generalized decision optimal scale, the upper approximate optimal scale, andk=2 is the lower approximate optimal scale and the positive domain optimal scale of the inconsistent multi-scale set-valued decision systemS.

    5 Conclusions

    In this paper, we introduce the concept of multi-scale set-value information systems. Then, we defined different optimal scales based on different criteria. In a consistent multi-scale set-valued decision system, these optimal scales are equivalent; in an inconsistent multi-scale set-valued decision system, the generalized decision and upper approximate optimal scale are always not more than the lower approximate and positive domain optimal scale. In the paper, we only study multi-scale set-valued information systems in the context of conjunctive semantics.For further study, the multi-scale set-valued information system in the context of disjunctive semantics will be studied. And the current work is only based on theory which assumed that all attributes have the same scale, we will further consider the generalized multi-scale set-valued information system with different scales for different attributes and applying them to practical problems

    精品一区二区三区av网在线观看 | 亚洲视频免费观看视频| 成人18禁高潮啪啪吃奶动态图| 在线精品无人区一区二区三| 一区二区三区四区激情视频| 看免费成人av毛片| 精品国产国语对白av| 亚洲欧美一区二区三区黑人| 九色亚洲精品在线播放| 观看av在线不卡| 欧美av亚洲av综合av国产av| 免费av中文字幕在线| 中文字幕人妻丝袜一区二区| 亚洲欧美清纯卡通| 1024视频免费在线观看| 啦啦啦 在线观看视频| 国产精品久久久久久精品电影小说| 欧美精品一区二区免费开放| 丝袜在线中文字幕| 色综合欧美亚洲国产小说| 91精品三级在线观看| 久久精品亚洲熟妇少妇任你| 成年人黄色毛片网站| 亚洲成人免费av在线播放| 久久影院123| 精品国产乱码久久久久久男人| 国产亚洲av高清不卡| 国产麻豆69| 蜜桃在线观看..| 女人爽到高潮嗷嗷叫在线视频| 日韩大码丰满熟妇| 丝袜喷水一区| 脱女人内裤的视频| 国产福利在线免费观看视频| 狠狠精品人妻久久久久久综合| 免费av中文字幕在线| 国产精品av久久久久免费| 建设人人有责人人尽责人人享有的| 亚洲成国产人片在线观看| 99re6热这里在线精品视频| 最近手机中文字幕大全| 免费观看a级毛片全部| 日韩精品免费视频一区二区三区| 国产成人精品久久二区二区免费| 国产黄色免费在线视频| 在线亚洲精品国产二区图片欧美| 国产成人欧美在线观看 | bbb黄色大片| 成年动漫av网址| 久久久久国产精品人妻一区二区| 久久影院123| 丝袜美腿诱惑在线| 亚洲视频免费观看视频| 亚洲精品一二三| 建设人人有责人人尽责人人享有的| 9热在线视频观看99| 成年人午夜在线观看视频| 亚洲精品成人av观看孕妇| 自线自在国产av| 欧美av亚洲av综合av国产av| 国产欧美亚洲国产| 欧美精品人与动牲交sv欧美| 国产精品秋霞免费鲁丝片| 日本猛色少妇xxxxx猛交久久| 成人国产av品久久久| 女人高潮潮喷娇喘18禁视频| 超碰成人久久| a级毛片黄视频| 2021少妇久久久久久久久久久| 久久久久国产精品人妻一区二区| 亚洲精品日本国产第一区| 麻豆乱淫一区二区| 久久精品国产a三级三级三级| 成年av动漫网址| 国产真人三级小视频在线观看| 黄色一级大片看看| 国产成人一区二区在线| xxx大片免费视频| 日韩大片免费观看网站| 久久精品亚洲熟妇少妇任你| 国产一级毛片在线| 久久av网站| 满18在线观看网站| 日韩制服骚丝袜av| 久久久国产欧美日韩av| 9191精品国产免费久久| 天天躁日日躁夜夜躁夜夜| 一区二区三区四区激情视频| 啦啦啦视频在线资源免费观看| 一区二区三区乱码不卡18| 丰满少妇做爰视频| 亚洲精品一卡2卡三卡4卡5卡 | 91老司机精品| 免费在线观看视频国产中文字幕亚洲 | 欧美成狂野欧美在线观看| 久久久久视频综合| 国产成人av激情在线播放| 国产精品久久久久成人av| 久久久久久人人人人人| 91麻豆精品激情在线观看国产 | 一级毛片黄色毛片免费观看视频| 午夜久久久在线观看| 亚洲欧美精品综合一区二区三区| av视频免费观看在线观看| 一区二区三区精品91| 50天的宝宝边吃奶边哭怎么回事| 亚洲伊人色综图| 成年美女黄网站色视频大全免费| 国产精品免费大片| 欧美成人精品欧美一级黄| 女性生殖器流出的白浆| 日韩制服丝袜自拍偷拍| 黄频高清免费视频| 美女扒开内裤让男人捅视频| 蜜桃国产av成人99| 国产精品.久久久| 日韩制服骚丝袜av| 一二三四在线观看免费中文在| 亚洲第一青青草原| 日韩制服骚丝袜av| 又紧又爽又黄一区二区| 91精品三级在线观看| 亚洲av成人精品一二三区| 人妻人人澡人人爽人人| 国产又色又爽无遮挡免| 亚洲av成人精品一二三区| 最近手机中文字幕大全| 人人妻人人爽人人添夜夜欢视频| 日韩一卡2卡3卡4卡2021年| 2021少妇久久久久久久久久久| 一区二区日韩欧美中文字幕| 女警被强在线播放| 午夜福利影视在线免费观看| 亚洲男人天堂网一区| 女警被强在线播放| 欧美 亚洲 国产 日韩一| 久热这里只有精品99| 欧美日韩成人在线一区二区| 国产av国产精品国产| 91成人精品电影| 亚洲一码二码三码区别大吗| 看免费av毛片| 97在线人人人人妻| 丝袜人妻中文字幕| 99九九在线精品视频| 国产淫语在线视频| 最黄视频免费看| 中文字幕精品免费在线观看视频| 久久毛片免费看一区二区三区| 后天国语完整版免费观看| 亚洲国产欧美网| 天天影视国产精品| 麻豆av在线久日| 午夜免费鲁丝| 日本欧美视频一区| 在线观看免费日韩欧美大片| 夜夜骑夜夜射夜夜干| 两个人免费观看高清视频| 亚洲天堂av无毛| 99九九在线精品视频| 亚洲精品久久成人aⅴ小说| 青草久久国产| www日本在线高清视频| 免费看不卡的av| 日本一区二区免费在线视频| 国产精品熟女久久久久浪| 蜜桃在线观看..| 亚洲欧洲国产日韩| 久久人人爽人人片av| 女人久久www免费人成看片| 一区二区av电影网| 亚洲av电影在线观看一区二区三区| 无限看片的www在线观看| 狂野欧美激情性xxxx| 国产国语露脸激情在线看| 欧美久久黑人一区二区| 亚洲精品成人av观看孕妇| 国产欧美日韩一区二区三 | videos熟女内射| 色网站视频免费| 操美女的视频在线观看| 99九九在线精品视频| 久久久国产欧美日韩av| 国产av精品麻豆| 超色免费av| 国产国语露脸激情在线看| 国产99久久九九免费精品| 亚洲欧美激情在线| 国产av一区二区精品久久| 国产福利在线免费观看视频| 亚洲成国产人片在线观看| 无限看片的www在线观看| 免费黄频网站在线观看国产| 黑丝袜美女国产一区| 午夜老司机福利片| 高清不卡的av网站| 欧美 日韩 精品 国产| 亚洲精品美女久久久久99蜜臀 | 超碰97精品在线观看| 99国产精品99久久久久| 日本欧美视频一区| 操出白浆在线播放| 热99国产精品久久久久久7| 国产91精品成人一区二区三区 | 日韩大码丰满熟妇| 在线 av 中文字幕| 90打野战视频偷拍视频| 色视频在线一区二区三区| videos熟女内射| 亚洲人成电影观看| 国产精品熟女久久久久浪| 中文字幕人妻丝袜一区二区| 别揉我奶头~嗯~啊~动态视频 | 日韩欧美一区视频在线观看| 欧美黑人欧美精品刺激| 啦啦啦 在线观看视频| 精品福利永久在线观看| 99热网站在线观看| 99九九在线精品视频| 18禁观看日本| 美女高潮到喷水免费观看| 日本av免费视频播放| 久久久久久久精品精品| 妹子高潮喷水视频| www.999成人在线观看| 亚洲天堂av无毛| xxxhd国产人妻xxx| 欧美日韩黄片免| 九草在线视频观看| 18禁黄网站禁片午夜丰满| 国产成人a∨麻豆精品| 国产爽快片一区二区三区| 黄色一级大片看看| 日韩制服骚丝袜av| av不卡在线播放| 国产又色又爽无遮挡免| 午夜老司机福利片| 日本欧美国产在线视频| 考比视频在线观看| 色综合欧美亚洲国产小说| 午夜精品国产一区二区电影| 久久99精品国语久久久| 午夜激情av网站| 久久国产精品大桥未久av| 亚洲av电影在线观看一区二区三区| 一个人免费看片子| 国产成人av教育| 国产亚洲av高清不卡| 你懂的网址亚洲精品在线观看| 欧美久久黑人一区二区| 国产欧美日韩一区二区三 | www.精华液| 日韩制服丝袜自拍偷拍| 别揉我奶头~嗯~啊~动态视频 | 国产一卡二卡三卡精品| av网站在线播放免费| 亚洲av综合色区一区| 午夜福利免费观看在线| 如日韩欧美国产精品一区二区三区| 国产亚洲精品第一综合不卡| 黄色视频不卡| 黑丝袜美女国产一区| 亚洲综合色网址| 黄色 视频免费看| www.av在线官网国产| 日本wwww免费看| 国产在视频线精品| 国产不卡av网站在线观看| 久久性视频一级片| 91九色精品人成在线观看| 国产xxxxx性猛交| 在线观看免费日韩欧美大片| netflix在线观看网站| 蜜桃在线观看..| 欧美成狂野欧美在线观看| 一本大道久久a久久精品| 国产成人系列免费观看| 色精品久久人妻99蜜桃| 我的亚洲天堂| 精品亚洲成国产av| 久久久久久久久久久久大奶| 一区二区三区四区激情视频| 精品视频人人做人人爽| 观看av在线不卡| 亚洲欧美中文字幕日韩二区| 老汉色av国产亚洲站长工具| 日本wwww免费看| 国产黄色视频一区二区在线观看| 十八禁网站网址无遮挡| 亚洲综合色网址| 久热爱精品视频在线9| 欧美激情 高清一区二区三区| 又大又黄又爽视频免费| 欧美日韩精品网址| 啦啦啦 在线观看视频| 成人手机av| 啦啦啦中文免费视频观看日本| 亚洲精品一区蜜桃| 日韩熟女老妇一区二区性免费视频| 国产精品秋霞免费鲁丝片| www日本在线高清视频| 欧美黄色片欧美黄色片| 亚洲欧美成人综合另类久久久| 老司机影院成人| 国产91精品成人一区二区三区 | 日韩中文字幕欧美一区二区 | 久久国产亚洲av麻豆专区| 午夜福利视频在线观看免费| 免费看十八禁软件| 免费一级毛片在线播放高清视频 | 人妻人人澡人人爽人人| 99精国产麻豆久久婷婷| 女人爽到高潮嗷嗷叫在线视频| 大香蕉久久网| 99国产精品99久久久久| 久久精品人人爽人人爽视色| 啦啦啦视频在线资源免费观看| 男女床上黄色一级片免费看| 50天的宝宝边吃奶边哭怎么回事| www.999成人在线观看| 中文字幕最新亚洲高清| 91麻豆精品激情在线观看国产 | 亚洲三区欧美一区| 亚洲五月婷婷丁香| 久久久久久免费高清国产稀缺| 国产精品 国内视频| 久久久久网色| 国产成人精品久久二区二区91| 无限看片的www在线观看| 国产欧美亚洲国产| 啦啦啦视频在线资源免费观看| 精品少妇黑人巨大在线播放| 人人妻人人添人人爽欧美一区卜| 欧美黑人欧美精品刺激| 亚洲精品久久午夜乱码| 欧美日韩亚洲高清精品| 麻豆国产av国片精品| 国产亚洲av高清不卡| 日韩av不卡免费在线播放| 亚洲欧美中文字幕日韩二区| 久久久亚洲精品成人影院| 亚洲午夜精品一区,二区,三区| 天堂中文最新版在线下载| 国产在视频线精品| 国产免费福利视频在线观看| 一边摸一边抽搐一进一出视频| 最近中文字幕2019免费版| 国产成人精品久久二区二区免费| videosex国产| 一级毛片我不卡| 人妻一区二区av| 国产高清videossex| 国产又爽黄色视频| 免费久久久久久久精品成人欧美视频| 成人午夜精彩视频在线观看| 亚洲欧洲精品一区二区精品久久久| 在线观看免费视频网站a站| 一级片'在线观看视频| 精品国产一区二区三区四区第35| 一边亲一边摸免费视频| 80岁老熟妇乱子伦牲交| 国产日韩一区二区三区精品不卡| 精品少妇黑人巨大在线播放| 啦啦啦视频在线资源免费观看| 啦啦啦 在线观看视频| 啦啦啦中文免费视频观看日本| 日本黄色日本黄色录像| 99国产精品99久久久久| 99精国产麻豆久久婷婷| 久久精品亚洲熟妇少妇任你| 美女大奶头黄色视频| 国产黄色视频一区二区在线观看| 超色免费av| 丰满饥渴人妻一区二区三| a级毛片在线看网站| av电影中文网址| 精品国产超薄肉色丝袜足j| 后天国语完整版免费观看| 91九色精品人成在线观看| 免费在线观看完整版高清| 成人国语在线视频| 丝袜脚勾引网站| 国产精品av久久久久免费| 91精品伊人久久大香线蕉| 亚洲,欧美精品.| 美女扒开内裤让男人捅视频| 午夜精品国产一区二区电影| 久久免费观看电影| 亚洲国产最新在线播放| 亚洲成人国产一区在线观看 | 亚洲精品av麻豆狂野| 男女无遮挡免费网站观看| 少妇人妻 视频| 99热全是精品| 精品国产一区二区三区久久久樱花| 黑人欧美特级aaaaaa片| 在线观看一区二区三区激情| 欧美人与性动交α欧美精品济南到| 亚洲五月色婷婷综合| 午夜福利免费观看在线| 国产日韩一区二区三区精品不卡| 国产又爽黄色视频| 视频区图区小说| 日韩一区二区三区影片| 成年美女黄网站色视频大全免费| 国产av国产精品国产| 久久久欧美国产精品| 免费不卡黄色视频| 国产无遮挡羞羞视频在线观看| 亚洲av日韩在线播放| 真人做人爱边吃奶动态| 免费在线观看完整版高清| 熟女少妇亚洲综合色aaa.| 新久久久久国产一级毛片| 日本午夜av视频| 欧美日韩亚洲高清精品| 桃花免费在线播放| 精品国产一区二区三区四区第35| 多毛熟女@视频| 国产又色又爽无遮挡免| 天堂8中文在线网| 国产一区二区激情短视频 | av在线app专区| 久久久久国产一级毛片高清牌| h视频一区二区三区| 国产高清videossex| 中文字幕人妻丝袜一区二区| 99久久综合免费| 狠狠婷婷综合久久久久久88av| 男人爽女人下面视频在线观看| 久久久久久久久久久久大奶| 超碰97精品在线观看| 国产极品粉嫩免费观看在线| 欧美av亚洲av综合av国产av| 久久久精品94久久精品| 国产在线视频一区二区| 99久久99久久久精品蜜桃| 欧美xxⅹ黑人| 欧美成人午夜精品| 国产极品粉嫩免费观看在线| 欧美精品高潮呻吟av久久| 又粗又硬又长又爽又黄的视频| 亚洲精品久久成人aⅴ小说| 午夜影院在线不卡| 精品一区二区三区四区五区乱码 | 一区二区av电影网| 亚洲国产毛片av蜜桃av| 男女国产视频网站| 精品少妇黑人巨大在线播放| 欧美乱码精品一区二区三区| 电影成人av| 超碰97精品在线观看| 一区二区av电影网| 日韩电影二区| 中国国产av一级| 亚洲国产精品999| 精品欧美一区二区三区在线| 十八禁高潮呻吟视频| 如日韩欧美国产精品一区二区三区| 天天躁日日躁夜夜躁夜夜| videosex国产| 青春草亚洲视频在线观看| 精品视频人人做人人爽| 亚洲成国产人片在线观看| 免费看av在线观看网站| 男的添女的下面高潮视频| 婷婷色综合www| 久久国产精品大桥未久av| 午夜福利视频精品| 国产欧美日韩精品亚洲av| 亚洲国产精品一区三区| 久久久精品免费免费高清| 婷婷丁香在线五月| av在线老鸭窝| 99久久精品国产亚洲精品| www.自偷自拍.com| 精品国产乱码久久久久久小说| 美女视频免费永久观看网站| 国产黄频视频在线观看| 一边摸一边做爽爽视频免费| 日韩av不卡免费在线播放| 欧美日韩精品网址| 国产女主播在线喷水免费视频网站| 国产精品久久久久成人av| 你懂的网址亚洲精品在线观看| 午夜91福利影院| 久久久国产精品麻豆| 精品高清国产在线一区| 满18在线观看网站| 欧美亚洲日本最大视频资源| 国产成人欧美在线观看 | 丝袜美足系列| 天天躁夜夜躁狠狠久久av| 女人被躁到高潮嗷嗷叫费观| 可以免费在线观看a视频的电影网站| 久久久欧美国产精品| 国产1区2区3区精品| 久久99一区二区三区| 另类精品久久| 女人精品久久久久毛片| 国产主播在线观看一区二区 | 性色av乱码一区二区三区2| 99国产精品一区二区三区| 只有这里有精品99| 极品少妇高潮喷水抽搐| 欧美大码av| 亚洲av电影在线进入| 97人妻天天添夜夜摸| 99香蕉大伊视频| 波多野结衣av一区二区av| 成人影院久久| 成人亚洲欧美一区二区av| 亚洲精品一卡2卡三卡4卡5卡 | 亚洲综合色网址| 亚洲久久久国产精品| 中文字幕精品免费在线观看视频| 在线观看免费日韩欧美大片| 91成人精品电影| 在线观看国产h片| 黑丝袜美女国产一区| 少妇 在线观看| 亚洲av成人精品一二三区| 国产主播在线观看一区二区 | 纵有疾风起免费观看全集完整版| 美女视频免费永久观看网站| 婷婷丁香在线五月| 在线天堂中文资源库| 中文乱码字字幕精品一区二区三区| 亚洲色图 男人天堂 中文字幕| 波多野结衣av一区二区av| 国产精品一区二区免费欧美 | 777米奇影视久久| 深夜精品福利| 国产精品久久久久成人av| 亚洲美女黄色视频免费看| 丝袜喷水一区| 黄色怎么调成土黄色| 肉色欧美久久久久久久蜜桃| 激情视频va一区二区三区| 18禁裸乳无遮挡动漫免费视频| 人妻一区二区av| 我要看黄色一级片免费的| 国产精品偷伦视频观看了| 一个人免费看片子| 黄色怎么调成土黄色| 满18在线观看网站| 亚洲精品国产av蜜桃| 亚洲国产中文字幕在线视频| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 黄色片一级片一级黄色片| 少妇被粗大的猛进出69影院| 咕卡用的链子| 久久九九热精品免费| 日本欧美视频一区| 日日爽夜夜爽网站| 久久天躁狠狠躁夜夜2o2o | 久久性视频一级片| 午夜日韩欧美国产| 黄网站色视频无遮挡免费观看| 波多野结衣一区麻豆| 国产野战对白在线观看| 在线av久久热| 另类亚洲欧美激情| 亚洲 欧美一区二区三区| 免费观看av网站的网址| 国产视频一区二区在线看| 久9热在线精品视频| 无遮挡黄片免费观看| 国产精品三级大全| 免费在线观看完整版高清| 精品少妇内射三级| 天天操日日干夜夜撸| 欧美国产精品va在线观看不卡| 亚洲精品日韩在线中文字幕| 欧美亚洲日本最大视频资源| 国产成人免费观看mmmm| 久热这里只有精品99| 日本av手机在线免费观看| 久久久国产精品麻豆| 亚洲精品日本国产第一区| 国产黄色免费在线视频| 丝袜脚勾引网站| 欧美日韩视频精品一区| 欧美+亚洲+日韩+国产| 十分钟在线观看高清视频www| 在线观看免费视频网站a站| 亚洲国产精品一区三区| a级片在线免费高清观看视频| 久久热在线av| 成人免费观看视频高清| 亚洲中文日韩欧美视频| 欧美激情高清一区二区三区| 国产精品99久久99久久久不卡| 大香蕉久久成人网| 男人舔女人的私密视频| 亚洲成国产人片在线观看| 欧美变态另类bdsm刘玥| 中国国产av一级| 视频区欧美日本亚洲| 女性被躁到高潮视频| 两性夫妻黄色片| 亚洲图色成人| 午夜久久久在线观看| www.999成人在线观看| 99九九在线精品视频| 在线看a的网站| 秋霞在线观看毛片| 欧美日韩一级在线毛片| 亚洲国产毛片av蜜桃av| 欧美大码av| 人人妻人人澡人人爽人人夜夜| www日本在线高清视频| 国产色视频综合| 男女午夜视频在线观看|