馬一方 周曉慧
1 北京市地震局,北京市蘇州街28號,100080 2 武漢大學(xué)測繪學(xué)院,武漢市珞喻路129號,430079
GNSS成果歸算時一般利用Helmert七參數(shù)轉(zhuǎn)換將無基準(zhǔn)約束解或松弛約束解轉(zhuǎn)換到指定參考框架下。研究表明,GNSS技術(shù)類誤差以及地表負(fù)載等地球物理效應(yīng)均會影響七參數(shù)中的平移參數(shù)和尺度參數(shù)估值,進(jìn)而影響GNSS測站坐標(biāo)的計(jì)算[1]。以往多數(shù)研究針對平移參數(shù)(地心運(yùn)動)進(jìn)行,主要包括GNSS軌道誤差、環(huán)境負(fù)載以及測站分布對地心運(yùn)動的影響分析[1-3],而針對尺度參數(shù)的研究較少。在地球物理效應(yīng)影響方面,文獻(xiàn)[1]結(jié)果表明,地表負(fù)載及GPS測站的不均勻分布能夠解釋約30%的GPS尺度參數(shù)周年變化。在GNSS技術(shù)類誤差影響方面,Springer[4]結(jié)果表明,GPS衛(wèi)星天線相位中心Z方向(即星固坐標(biāo)系中衛(wèi)星至地心方向)偏差(z-PCOs)與尺度參數(shù)高度相關(guān)。在此基礎(chǔ)上,Zhu等[5]研究給出GPS衛(wèi)星z-PCOs的平均誤差δz與尺度參數(shù)變化δs之間的近似關(guān)系為δs=7.8 δz;Ge等[6]研究表明,衛(wèi)星星座的變化會導(dǎo)致z-PCOs模型的不完善,從而影響尺度參數(shù)。因此,如果GNSS原始數(shù)據(jù)處理過程中采用不同的衛(wèi)星z-PCOs改正模型,將會影響成果歸算時框架轉(zhuǎn)換中尺度參數(shù)的估值。
自2017-01-29起,IGS采用天線相位中心改正模型igs14.atx取代先前的igs08.atx[7],igs08.atx和igs14.atx均為ANTEX(antenna exchange format)格式文件,提供各衛(wèi)星以及不同型號接收機(jī)的天線相位中心改正信息。文獻(xiàn)[7]研究了igs08.atx和igs14.atx的衛(wèi)星z-PCOs對IGS 第二次重新處理單天合并解與IGb08之間尺度參數(shù)的影響,結(jié)果表明,基于igs08.atx的尺度參數(shù)的殘差比基于igs14.atx的結(jié)果更為離散,驗(yàn)證了igs14.atx中衛(wèi)星z-PCOs改正模型的改善。除此之外,目前其他關(guān)于衛(wèi)星z-PCOs對GNSS參考框架轉(zhuǎn)換中尺度參數(shù)影響的研究還較少。
因此,本文分別基于igs08.atx和igs14.atx提供的衛(wèi)星z-PCOs改正模型,計(jì)算了7個IGS分析中心(AC, analysis center)第二次重新處理單天解與IGS最新采用的參考框架(IGS14)之間的尺度參數(shù)序列,并比較分析兩種衛(wèi)星天線改正模型對尺度參數(shù)的噪聲模型、平均偏移量、速度及季節(jié)性信號的影響。本文的主要目的是:1)對比igs08.atx和igs14.atx的衛(wèi)星z-PCOs改正模型對尺度參數(shù)的影響;2)基于最優(yōu)噪聲模型,確定更為真實(shí)的尺度參數(shù)速度、季節(jié)性信號及其不確定度,從而詳細(xì)了解7個AC單獨(dú)解與IGS14之間的尺度參數(shù)現(xiàn)狀。
本文利用7個AC提供的單天解SINEX文件,分別計(jì)算各AC基于igs08.atx和igs14.atx的尺度參數(shù)序列。針對每個單天解SINEX文件,具體的計(jì)算方法為:1)檢查并修正IGS基準(zhǔn)站的相關(guān)信息,包括DOMES和階躍信息等;2)將單天解SINEX文件中的衛(wèi)星z-PCOs參數(shù)固定為igs08.atx或igs14.atx提供的相應(yīng)值;3)去除原始法方程中的先驗(yàn)約束,恢復(fù)無約束法方程;4)對無約束法方程進(jìn)行估計(jì),其中,引入的坐標(biāo)基準(zhǔn)為測站先驗(yàn)坐標(biāo)的參考框架;5)利用51個全球均勻分布的IGS14核心站,將步驟4)所得結(jié)果與IGS14結(jié)果進(jìn)行Helmert七參數(shù)轉(zhuǎn)換,從而得到基于igs08.atx或igs14.atx的尺度參數(shù)。表1列出了計(jì)算的尺度參數(shù)序列的詳細(xì)信息,包括名稱、時間跨度、采樣率以及SINEX文件來源。
表1 尺度參數(shù)信息Tab.1 Summary of scale parameters
利用Lomb-Scargle周期圖法[8]計(jì)算了各組尺度參數(shù)的功率譜密度(PSD,power spectrum density),圖1和圖2給出尺度參數(shù)時間序列及其PSD。其中,圖1和圖2中(a)、(b)兩個圖的同一顏色曲線代表相同的AC。為了更好地顯示結(jié)果,圖中序列進(jìn)行了平移,圖(a)的單位平移量為2 ppb,圖(b)的單位平移量為15 ppb2/cpy。圖(b)中黑色豎線表示1 cpy×n(n=1,2),灰色豎線表示1.04 cpy×n(n=1,2,…,8)。由圖可知,1996年以前,各組尺度參數(shù)均較為離散;不同AC的尺度參數(shù)表現(xiàn)出相似的變化,其中,周年信號最為顯著,半周年信號相對較弱。
圖1 基于igs08.atx的尺度參數(shù)時間序列及其PSDFig.1 Scale parameters time series and their PSD based on igs08.atx
圖2 基于igs14.atx的尺度參數(shù)時間序列及其PSDFig.2 Scale parameters time series and their PSD based on igs14.atx
基于功率譜分析結(jié)果,本文選取了相應(yīng)的參數(shù)模型和噪聲模型進(jìn)行后續(xù)分析。參數(shù)模型包括常數(shù)項(xiàng)、線性速度、周年及半周年信號;噪聲模型共選取了5類:白噪聲(wh)、白噪聲加閃爍噪聲(wh+fl)、白噪聲加冪律噪聲(wh+pl)、白噪聲加廣義高斯馬爾可夫噪聲(wh+GGM)及白噪聲加一階自回歸噪聲(wh+AR(1))。
為了分析尺度參數(shù)時間序列的隨機(jī)特性,本文選取Hector軟件[9],利用極大似然方法對所選的5種噪聲模型進(jìn)行測試,并采用貝葉斯信息量準(zhǔn)則(BIC,Bayesian information criterion)進(jìn)行噪聲模型的評價,選取得到最小BIC值的噪聲模型作為最優(yōu)模型。表2給出各組尺度參數(shù)基于igs08.atx和igs14.atx的隨機(jī)特性統(tǒng)計(jì)結(jié)果。由表可知,基于igs08.atx的各組尺度參數(shù)的隨機(jī)特性均可由白噪聲加冪律噪聲較好地描述,譜指數(shù)值約為-0.8;采用igs14.atx后,除em2的譜指數(shù)變化較大外,其他序列的隨機(jī)特性并未發(fā)生明顯改變。除em2和jp2外,其他5個AC基于igs14.atx獲取的尺度參數(shù)WRMS略小于基于igs08.atx的結(jié)果,在一定程度上表明,igs14.atx較igs08.atx的衛(wèi)星z-PCOs模型精度有所提高。需要說明的是,表2中的WRMS單位為mm,在赤道上,1 ppb約為6.3 mm[10]。如無特殊說明,下文分析均基于表2所列噪聲模型。
表2 尺度參數(shù)時間序列隨機(jī)特性統(tǒng)計(jì)Tab.2 Stochastic characteristics of scale parameters
圖3對比各AC尺度參數(shù)的線性部分(偏移量+速度),圖中虛線和實(shí)線分別對應(yīng)igs08.atx和igs14.atx的結(jié)果,單位平移量為1 ppb。由圖可知,不同衛(wèi)星天線相位中心改正模型對尺度參數(shù)的平均偏移影響較大,而對尺度參數(shù)的長期速度影響較小。表3列出了各組尺度參數(shù)在2010.0歷元處的偏移量、速度及其不確定度。在2010.0歷元,基于igs08.atx的尺度參數(shù)偏移量最大值為3.53 mm,結(jié)合不確定度的大小,各組序列的偏移量較為相近;尺度參數(shù)速度范圍處于-0.15~-0.22 mm/a之間,各組尺度參數(shù)速度整體一致。除em2和gf2外,基于igs14.atx的尺度參數(shù)序列在2010.0歷元的偏移量值可近似為0;基于igs14.atx的尺度參數(shù)速度與基于igs08.atx的結(jié)果相比,兩者變化趨勢一致,整體相差較小,表明不同衛(wèi)星天線相位中心改正模型對尺度參數(shù)的長期速度影響較小。
表3 尺度參數(shù)時間序列的偏移量(2010.0歷元)及速度Tab.3 The offsets (at 2010.0 epoch) and rates of scale parameters
由于GNSS軌道模型(地球輻射壓模型和天線推力)的變化,從igs08.atx到igs14.atx,衛(wèi)星z-PCOs的平均變化約為-6 cm[7],根據(jù)文獻(xiàn)[5]中的公式δs=7.8δz,引起的尺度變化約為0.5 ppb(約3 mm)。在2010.0歷元,本文基于兩組衛(wèi)星天線相位中心改正模型獲得的尺度參數(shù)偏移量差異為2.41~3.24 mm,與利用文獻(xiàn)[5]計(jì)算的尺度變化量相近,表明不同衛(wèi)星天線相位中心改正模型會顯著影響尺度參數(shù)的偏移量。
由圖1和圖2可知,各組尺度參數(shù)序列中均存在非線性信號,主要表現(xiàn)為季節(jié)性信號。圖4和圖5給出了各組尺度參數(shù)的周年、半周年振幅和相位及其不確定度。由圖4和圖5可知,各組尺度參數(shù)的周年信號顯著,半周年信號相對較弱;不同衛(wèi)星天線相位中心模型對尺度參數(shù)的季節(jié)性信號的影響可以忽略。
圖4 尺度參數(shù)序列周年振幅和相位及其不確定度Fig.4 The annual amplitudes and phases and their uncertainties of scale parameters
圖5 尺度參數(shù)半周年振幅和相位及其不確定度Fig.5 The semi-annual amplitudes and phases and their uncertainties of scale parameters
GNSS測站坐標(biāo)的單天解中包含地表質(zhì)量重新分布引起的負(fù)載形變,而IGS14下的測站坐標(biāo)中并不包含負(fù)載形變,因此,兩者進(jìn)行Helmert七參數(shù)轉(zhuǎn)換時,部分負(fù)載形變會被轉(zhuǎn)換參數(shù)吸收,該影響的大小與GNSS地面觀測網(wǎng)的分布相關(guān),通常稱之為“網(wǎng)效應(yīng)”[11-13]。尺度參數(shù)的非線性部分一般來源于兩個方面[6,12]:一是“網(wǎng)效應(yīng)”的影響,二是GNSS衛(wèi)星星座的變化使得衛(wèi)星天線相位中心改正模型并不完善。盡管igs14.atx更新了衛(wèi)星天線相位中心改正模型,其尺度參數(shù)的季節(jié)性信號仍與igs08.atx結(jié)果一致,表明各組尺度參數(shù)的季節(jié)性信號主要來源于“網(wǎng)效應(yīng)”的影響。
本文得到的主要結(jié)論如下:1)各組尺度參數(shù)的隨機(jī)特性均可由白噪聲加冪律噪聲較好地描述,不同衛(wèi)星天線相位中心改正模型對其隨機(jī)特性影響較小;2)不同衛(wèi)星天線相位中心改正模型對尺度參數(shù)的平均偏移量影響較大,最大差值可達(dá)3.24 mm,約為0.5 ppb;3)不同AC的尺度參數(shù)速度值在-0.15~-0.22 mm/a之間變化,衛(wèi)星天線相位中心改正模型的改變并未影響尺度參數(shù)速度;4)各組尺度參數(shù)周年信號顯著,半周年信號相對較弱,季節(jié)性信號主要來源于與負(fù)載相關(guān)的“網(wǎng)效應(yīng)”影響,而衛(wèi)星天線相位中心改正模型的變化影響較小。
由于衛(wèi)星鐘差、天頂方向?qū)α鲗友舆t、測站高程與GNSS衛(wèi)星z-PCOs之間的強(qiáng)相關(guān)性,利用GNSS觀測值直接計(jì)算的衛(wèi)星z-PCOs存在較大誤差(最大可達(dá)m級)。衛(wèi)星z-PCOs改正模型誤差是GNSS定義地球參考框架尺度的主要誤差來源之一。目前,利用GRACE、TOPEX/Poseidon等低軌衛(wèi)星建立GNSS衛(wèi)星天線相位中心改正模型可有效提高GNSS定義地球參考框架尺度的精度,具有較好的應(yīng)用前景,這將是今后的重點(diǎn)研究方向。