• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Enhancing the strain hardening and ductility of Mg-Y alloy by introducing stacking faults

    2021-01-04 04:55:52KangWeiLirongXiaoBoGaoLeiLiYiLiuZhigangDingWeiLiuHaoZhouYonghaoZhao
    Journal of Magnesium and Alloys 2020年4期

    Kang Wei,Lirong Xiao,Bo Gao,Lei Li,Yi Liu,Zhigang Ding,Wei Liu,Hao Zhou,Yonghao Zhao

    Nano and Heterogeneous Materials Center,School of Materials Science and Engineering,Nanjing University of Science and Technology,Nanjing 210094,China

    Received 24 July 2019;received in revised form 16 September 2019;accepted 19 September 2019 Available online 30 June 2020

    Abstract Due to the insufficient slip systems,Mg and its alloys exhibit poor ductility during plastic deformation at room temperature.To solve this problem,alloying is considered as a most effective method to improve the ductility of Mg alloys,which attracts wide attentions of industries.However,it is still a challenge to understand the ductilization mechanism,because of the complicated alloying elements and their interactions with Mg matrix.In this work,pure Mg and Mg-Y alloys were comparatively studied to investigate the effect of Y addition on microstructure evolution and mechanical properties.A huge increase of uniform elongation,from 5.3% to 20.7%,was achieved via only 3wt% addition of yttrium.TEM results revealed that the only activated slip system in pure Mg was basalslip,led to its poor ductility at room temperature.In contrast,a large number of stacking faults and non-basal dislocations withcomponent were observed in the deformed Mg-Y alloy,which was proposed as the main reason for significant improvement of strain hardening and ductility.High resolution TEM indicated that most of the stacking faults were I1 and I2 intrinsic faults,which played a critical role in improving the ductility of Mg-Y alloy.Addition of Y into Mg alloy decreased the stacking fault energy,which induced high density stacking faults in the grain interior.

    Keywords:Magnesium alloys;Ductility;Stacking faults;Non-basal slip;Transmission electron microscopy.

    1.Introduction

    As the lightest metallic materials,magnesium and its alloys have great potential for structural applications in many fields,such as automotive,aerospace,and electronic industries[1–3].However,the activable slip systems in hexagonal close-packed(hcp)structural materials are not enough for the uniform plastic deformation at room temperature,which limits the commercial applications of wrought magnesium alloys[4].The most popular strategy to solve this problem was to introduce more slip systems in Mg alloys.Especially,the introduction of pyramidalslips provided five more independent slip systems required for homogeneous deformation of polycrystals,which played a critical role in enhancing the crystal plasticity of Mg alloys[5,6].It has been reported that there are several methods to activateslips in Mg,such as grain refinement[7],alloying design[8,9],and hot deformation[10–12].Among them,alloying was considered as the most convenient method because of its low technical demand and production cost.Addition of Rare earth(RE)elements into Mg alloys was found to not only promote the weakening of texture,but also increase the activation of nonbasal slips,which improved their ductility at room temperature remarkably[13,14].

    However,the mechanism of ductilization is complicated,because it is difficult to obtain direct evidence of interaction between alloying elements and Mg matrix.Wang et al.[15]performed an in-situ tensile experiments on Mg-3Y alloy using three dimensional X-ray diffraction.They found that the addition of Y element promoted the activity of prismatic and pyramidal slip systems.Additionally,RE addition was proposed to reduce the basal plane stacking fault energy(SFE)of Mg,which was coincident with the results of density functional theory(DFT)simulations[16–18].Sandl?bes et al.[14,16]found that a large number of I1 stacking faults generated in a deformed Mg-RE alloys.They believed that the I1 stacking faults acted as heterogeneous sources for nucleation of pyramidalslips.However,a minority controversial views claimed that there was no direct relationship between theslips and stacking faults[19,20].Zhang et al.[20]investigated the tensile and compressive behaviors of the fine-grained Mg-Y alloy.Instead ofdislocations,many stacking faults were observed in the deformed samples,which was believed to play negative roles in impeding nonbasal slips,and consequently to deteriorate the formability of Mg alloys[5,21,22].In order to solve this controversy,more detailed investigations on the deformation mechanism of Mg-RE alloys were carried out in this work.The microstructure evolution and mechanical properties of pure Mg and Mg-Y alloy were comparatively studied,which revealed the effect of Y addition on the deformation mechanism of Mg alloys.

    2.Material and methods

    Ingots of Mg-3Y(wt%)alloy were prepared from a high purity Mg(99.99%)metal and a Mg-25Y(wt%)master alloy in an electric-resistant furnace under a mixed protective gas of Ar and SF6that has a volume ratio of 100:1(The details of alloy preparation have been reported in Ref.[23]).The ascast ingots of pure Mg and Mg-3Y were homogenized in a vacuum furnace at 450°C for 20h and at 530°C for 12h,respectively,which were followed by water quenching to room temperature.Rolling deformation was performed on the two materials to eliminate the casting defects,which deformed the samples to a thickness reduction of 10%.The rolled samples were fully annealed for recrystallization at 325°C(pure Mg)and at 500°C(Mg-3Y)alloy,respectively.Dog-bone shaped specimens with a gauge length of 10mm and width of 2.5mm were cut from the annealed samples for tensile testing.The uniaxial tensile testing was performed on a walter+bai mechanical testing machine(LFM-20kN)with a strain rate of 2×10?3s?1at room temperature.The samples for TEM observations were obtained from the tensile specimens which interrupt at an engineering strain of~4%.The samples for optical microscopy observation were ground with sandpaper of 320,800,1200 and 2000 grits,and then polished by woolen cloth to a mirror finish.To observe microstructure under optical microscope,samples were etched by lab-prepared solution comprised of 95ml ethyl alcohol and 5ml nitric acid.

    Cross-sectional TEM specimens were cut perpendicular to the tensile direction and gently polished to a thickness of~25μm.Perforation by ion milling(Gatan PIPS 691)was carried out on a cold stage(~?50°C)with low angle(5°)and low energy ion beam(4KeV).TEM observations were conducted on an FEI-Tecnai G2 20 LaB6 microscope operated at an accelerating voltage of 200kV,and the high-resolution TEM(HRTEM)observations were carried out on a Titan G2 60-300 at 300kV.

    3.Results and discussions

    As shown in Fig.1a and b,the annealed samples of pure Mg and Mg-3Y alloy exhibit similar microstructure,which have average grain sizes of~196μm and~199μm,respectively.Equivalent densities of annealing twins exist in some grains of both specimens as marked by the white arrows.Twins are frequently observed in many Mg alloys,which is an important deformation mode to improve ductility similar to dislocations[24].However,the contribution of twinning to plasticity is very limited,because it only allows simple shear in one direction[25].Fig.1c shows the tensile stress–strain curves of the annealed pure Mg and Mg-Y alloy.The yield stress(YS,0.2% proof stress)and ultimate tensile strength(UTS)of the materials are very close to each other,which are~50MPa and~130MPa,respectively.Interestingly,the Mg-3Y alloy exhibits a four times higher uniform elongation(~21±1.2%)than that of pure Mg(~5±0.5%).Note that,pure Mg and Mg-3Y alloy specimens contain almost identical grain size and twinning density.Thus,it is reasonable to propose that such significant ductilization of Mg-Y alloy is mainly due to the addition of Y element.Fig.1d shows that the strain-hardening rate of the pure Mg decreased drastically after 5%of tensile strain.While,it is also found that the work hardening capability increased with addition of Y,which helps with retaining ductility of Mg.Previous researches believed that the ductilization of Mg-RE alloys were resulted from the weakening of basal plane texture,which was beneficial to activate non-basal slip systems in Mg-RE alloys[14,26].It indicated that dislocation type was the most fundamental issue for improving ductility of Mg alloys[13].Therefore,the types and configurations of dislocations in grain interior of pure Mg and Mg-Y alloy were investigated intensively.

    To explore the underlying ductilization mechanism of Mg-Y alloy,detailed TEM characterizations(more than 30 grains for each sample)were performed on the pure Mg and Mg-Y samples subjected to a same strain of~4%.According to the“g?b”criterion,dislocations are invisible wheng?b=0,wheregandbrepresent diffraction vectors and Burgers vectors,respectively.In other words,dislocations withb=1/3<11-20>are invisible if the two beam condition is set asg=0002,and thedislocations withb=<0001>are mostly unable to be observed in the condition ofg=0-110.If the dislocations can be observed in the images of above two beam conditions,they will be determined as thedislocations withb=1/3<11-23>[27,28].

    Fig.2a–c show the microstructures of a deformed pure Mg observed near the[2-1-10]zone axis.The two-beam diffraction conditions were set asg=0002 andg=0-110,as shown in Fig.2a and b,respectively.A twin marked by the white pentagram is selected as the label structure to determine the accurate positions of observation area.All the dislocations can only be observed in the condition ofg=0-110(Fig.2b and c),which indicates that these dislocations in pure Mg are mostly basaltype dislocations,as marked by yellow arrows.It is generally accepted that basal slip system is easier to be activated than other slip systems in pure Mg,because the resolved shear stress(CRSS)of basal slip is much lower than that of non-basal slips[29].Therefore,basal slip is dominated in the tensile deformation of pure Mg,resulting in poor ductility at room temperature.

    Fig.1.Microstructures and mechanical properties of as-received samples:(a)and(b)Optical microscopy images of Pure Mg and Mg-3Y,respectively.The insets are grain size distribution charts;(c)Tensile curves of nominal stress vs.strain;and(d)True stress–strain and strain hardening curves from tensile tests.

    Fig.2d–f show the TEM images of the Mg-Y alloy near the direction of[2-1-10]zone axis.A grain boundary marked by a white pentagram pattern is selected as the label structure.Besides basaldislocations shown in Fig.2e,numerous non-basal dislocations withcomponent were observed in the image withg=0002(Fig.2d).The enlarged image in Fig.2f shows that these visibletype dislocations are distributed randomly as marked by the blue arrows.Previous experimental and computational studies have revealed that thedislocations can be dissociated into perfectdislocations andpartials during the deformation of Mg-RE alloys[5,13,17,30,31].Thus,most of non-basaldislocations shown in Fig.2f are decomposed from pyramidaldislocations.Solute-enhancedslip activity accommodates thec-axis strain of hexagonal crystals,providing enough independent deformation systems to satisfies the Von Mises criteria,and improves the ductility of Mg-Y alloy significantly[13].Moreover,it should be noted that there are many straight lines parallel to the basal plane trace in Fig.2f,which are most likely nano-spaced I1 stacking faults(I1 SFs,marked by the red dashed ellipses)bounded by1/6<20-23>Frank partials.The combined microstructural features oftype dislocations and I1 faults have been reported in other magnesium-rare earth alloys,such as in Ref.[16,30].It indicates that non-basaldislocations and I1 stacking faults are observed in most grains(more than 90%),co-existing with basaldislocations.The related DFT calculation results showed that the intrinsic I1 SFE was significantly decreased due to the addition of Y,which promoted the generation of I1 SFs.It was also proposed that I1 faults acted as heterogeneous nucleation source for the non-basal slip[16].Moreover,Ding et al.[17]proposed that alloying with Y element could increase the range of the potential-energy surface and decrease both unstable and stable SFE,which reasonably explained the high amount of non-basaldislocations and remarkable improvement of ductility in Mg-Y alloy.

    HRTEM observations were performed to investigate the detailed structure of stacking faults(SFs).As shown in Fig.3a and b,a high density of basal SFs(marked by the yellow arrows)are observed in the grain interior of Mg-3Y alloy.The spacing of SFs is in the range of 3–10nm.Meanwhile,some bright streaks(indicated by the white arrows)appear in the fast Fourier transform(FFT)pattern(Insert in Fig.3b),which is consistent with the diffraction shape effect of SFs on the basal plane.In order to identify the accurate types of SFs and their bounding dislocations,atomic-scaled observations were carried out on the aberration-corrected TEM operated at 300kV.Interestingly,all of the SFs observed in Mg-Y alloy are intrinsic faults,while no extrinsic faults are found in the alloy.Fig.3c and d show the atomic scaled TEM images of I1 faults,in which a Burgers circuit is drawn around the dislocation core.The start point D does not overlap with the finish point E,which indicates that vector DE(marked by the red arrow heads in Fig.3d)is the Burgers vector of Frank partial dislocation(b=1/6<20-23>).Similarly,the atomicscaled structures of I2 faults are also characterized,as shown in Fig.3e and f.The Burgers vector of its partial dislocation is1/3<10-10>,as illustrated by the Burgers circuit in Fig.3f.

    Fig.2.TEM images in two-beam condition near the[2-1-10]zone axis:(a)and(b)Pure Mg viewed under g=0002 and g=0-110,respectively;(d)and(e)Mg-Y alloy viewed under g=0002 and g=0-110,respectively;(c)and(f)Enlarged images of selected area in(b)and(d),respectively;The white straight lines highlight the trace of(0001)basal plane.

    As shown in Fig.4,the atomic models of I1 and I2 faults are established according to the experimental results.It is clear that I1 and I2 faults introduce a thin three-layer and four-layer of face-center cubic(fcc)stacking structure into the hcp matrix,respectively.The 2D atomic model in Fig.4b shows that the stacking sequence of I1 faults is ABABABCBCBCB.I1 intrinsic faults can be produced through the convergence of vacancies or interstitials on the basal plane,combined with the shear process of Shockley partial dislocations,thus resulting in I1 faults bounded by1/6<20-23>Frank partials[32].The corresponding dislocation reaction is described in Eq.(1).I1 stacking faults act as heterogeneous nucleation sources for perfectdislocations[16].Agnew et al.[33]proposed that the source mechanism was energetically conceivable for a wide range of fault geometries.Moreover,the glissile pyramidaldislocations were proposed to generate from interactions between sessile Frank partials bounding I1 SFs on basal plane,which enhanced the capacity for plastic flow of the HCP crystal materials[34].Consequently,I1 SFs have a positive contribution on improving the ductility of Mg-Y alloy in this work.

    Fig.3.Microstructures of a deformed grain in Mg-3Y alloy obtained from[2-1-10]axis:(a)and(b)the HRTEM images and corresponding fast Fourier transform(FFT)pattern of stacking faults;(c)and(d)the atomic scaled TEM images of I1 faults bounded by 1/6<20-23>Frank partials;(e)and(f)the atomic scaled TEM images of I2 faults bounded by 1/3<10-10>Shockley partials.Insets in(d)and(f)are the enlarged images of the corresponding square regions denoted by the dash lines,respectively,and red arrow heads highlight the Burgers vectors of the partials.(For interpretation of the references to color in this figure legend,the reader is referred to the web version of this article.)

    Fig.4d reveals the 2D atomic structure of I2 faults yielding the sequence of ABABABCACACA.It is generally accepted that I2 faults are dissociated from the perfect basaldislocations.Its intrinsic dislocation reaction is represented in Eq.(2).Basically,I2 faults are bounded by Shockley partials(b=1/3<10-10>),which remain glissile on basal planes to accommodate the basal strain.Meanwhile,the basal partials provide Shockley shear for nucleation of perfectdislocations,as illustrated by Eq.(1),leading to a higher activity of pyramidal dislocation slip.Thus,both the I1 and I2 faults are beneficial to improve the ductility of Mg-Y alloy.

    Fig.4.Atomic models of stacking faults in Mg-Y alloy:(a)and(b)the 3D and 2D models of I1 faults,respectively;(c)and(d)the 3D and 2D models of I2 faults,respectively.

    Based on the experimental results,the corresponding SFE ofγ,can be calculated by the following formula[16,35]:

    WhereGrepresents the shear modulus,νthe Poisson’s ratio,βthe angle between the partial dislocations;bis the magnitude of the Burgers vector of the partials,anddis the measured width of the stacking faults.The values used for pure Mg(G=17GPa,ν=0.35,b=0.186nm for Shockley partials;b=0.320nm for Frank partials)were also adopted for the solid solution Mg-Y alloys[36].

    The average I1 and I2 SFE of Mg-3Y determined via formula(3)amounts to 3.7±0.5 mJ m?2and 3.4±0.6 mJ m?2,respectively,which are distinctly lower than the basal SFEs(experimental measurements,by TEM analysis:>50 mJ m?2)of pure Mg[16].Recently,extensive DFT studies have been carried out to investigate the effect of alloying RE elements on the SFEs of binary Mg alloys[37–40].The calculated results further reveal that slight additions of Y into Mg can reduce the SFEs significantly(I1 SFE:from 18–21 to 4–9 mJ m?2,I2 SFE:from 30–38 to 14–23 mJ m?2),which are qualitatively coincide with the experimental results in our study.Physical features controlling the SFE with alloying Y element have been considered in previous works.Wu et al.[37]suggested that solute Y atoms led to charge redistribution of matrix Mg atoms,and the disturbance of the pseudo-atom bonds in the pristine lattice of Mg-Y caused the reduction of SFE.In addition,Zhang et al.[38]pointed out that changing of the SFE was expected to be related to the ionization energy and atomic radius of solute atoms.Substituting Mg atom by alloying Y atom with lower 1st ionization energy and bigger atomic radius tended to induce lattice expansion,which led to reducing of SFE.

    4.Conclusions

    The microstructure evolution and mechanical properties of pure Mg and Mg-Y have been comparatively studied.A huge enhancement of uniform elongation,from 5.3%to 20.7%,was achieved via only 3wt% of Y addition.The key findings are summarized as follows:

    (1)Basal slip is dominated in the tensile deformation of pure Mg,resulting in poor ductility at room temperature.In contrast,besides basaldislocations,numerous SFs and non-basal dislocations withcomponent exist in the Mg-Y alloy,which provides sufficient slip systems to achieve a homogeneous plastic deformation.

    (2)All of the SFs observed in Mg-Y alloy are I1 and I2 intrinsic faults,while no extrinsic faults are found in the alloy.The I1 and I2 faults are bounded by Frank partials(b=1/6<20-23>)and Shockley partials(b=1/3<10-10>),respectively.The significant decrease of SFE is proposed as the main reason for the formation of high density SFs.

    Acknowledgments

    This work was supported by the National Key R&D Program of China(2017YFA0204403),National Natural Science Foundation of China(51601003,51901103),and the Fundamental Research Funds for the Central Universities(30918011342).The authors wish to express their appreciation to the Jiangsu Key Laboratory of Advanced Micro&Nano Materials and Technology.TEM experiments were performed at the Materials Characterization and Research Center of Nanjing University of Science and Technology.

    久久久精品欧美日韩精品| 啦啦啦 在线观看视频| 久久久久久久精品吃奶| 人人妻人人澡人人看| 中文字幕最新亚洲高清| www日本在线高清视频| 男人舔女人的私密视频| 亚洲男人天堂网一区| 日日干狠狠操夜夜爽| 国产色视频综合| 精品日产1卡2卡| 咕卡用的链子| 亚洲国产欧美日韩在线播放| 日韩欧美一区二区三区在线观看| 欧美成人性av电影在线观看| 很黄的视频免费| 一级毛片女人18水好多| 午夜两性在线视频| 欧美黑人精品巨大| 男女之事视频高清在线观看| 久久这里只有精品19| 精品国内亚洲2022精品成人| 女同久久另类99精品国产91| 国产又色又爽无遮挡免费看| 久热这里只有精品99| 久久中文字幕人妻熟女| bbb黄色大片| 亚洲情色 制服丝袜| 一二三四在线观看免费中文在| 免费少妇av软件| 国产一区二区在线av高清观看| 日韩大码丰满熟妇| 欧美中文综合在线视频| 不卡av一区二区三区| 国产av在哪里看| 久久久久久久午夜电影 | 久久久久久久久中文| 国产成人欧美| 欧美黄色片欧美黄色片| 又大又爽又粗| 成人三级做爰电影| 无限看片的www在线观看| 国产av在哪里看| 国产精品自产拍在线观看55亚洲| 国产精品美女特级片免费视频播放器 | 99久久精品国产亚洲精品| 可以在线观看毛片的网站| 亚洲一区二区三区色噜噜 | 久久久久国产一级毛片高清牌| 欧美日韩国产mv在线观看视频| 欧美一区二区精品小视频在线| 91精品三级在线观看| 中文欧美无线码| 国产精品一区二区在线不卡| 亚洲精品成人av观看孕妇| 国产主播在线观看一区二区| 日韩av在线大香蕉| 成人亚洲精品av一区二区 | 香蕉国产在线看| 国产在线精品亚洲第一网站| 亚洲五月色婷婷综合| 一区二区日韩欧美中文字幕| 51午夜福利影视在线观看| 首页视频小说图片口味搜索| 香蕉久久夜色| 亚洲成人精品中文字幕电影 | 成人精品一区二区免费| 日本免费一区二区三区高清不卡 | 国产精品美女特级片免费视频播放器 | 在线国产一区二区在线| 男人舔女人的私密视频| 久久精品人人爽人人爽视色| 操出白浆在线播放| 亚洲 欧美一区二区三区| 悠悠久久av| 亚洲熟妇熟女久久| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲情色 制服丝袜| 身体一侧抽搐| 啦啦啦 在线观看视频| 日韩有码中文字幕| 日日摸夜夜添夜夜添小说| 午夜激情av网站| 欧美日韩亚洲高清精品| 国产xxxxx性猛交| 国产精品一区二区三区四区久久 | 免费不卡黄色视频| 人妻久久中文字幕网| 亚洲情色 制服丝袜| 免费日韩欧美在线观看| 一二三四在线观看免费中文在| av免费在线观看网站| 欧美一区二区精品小视频在线| 国产精品香港三级国产av潘金莲| 一二三四社区在线视频社区8| 亚洲av第一区精品v没综合| 欧美精品一区二区免费开放| 久久精品国产99精品国产亚洲性色 | 国产一区二区在线av高清观看| 狠狠狠狠99中文字幕| 视频在线观看一区二区三区| 亚洲人成伊人成综合网2020| 色尼玛亚洲综合影院| 欧美乱码精品一区二区三区| 香蕉久久夜色| 久久中文字幕人妻熟女| 欧美老熟妇乱子伦牲交| 国产精品久久久av美女十八| 巨乳人妻的诱惑在线观看| 人人妻,人人澡人人爽秒播| 免费av毛片视频| 露出奶头的视频| 欧美在线一区亚洲| 视频区图区小说| 美女 人体艺术 gogo| 日本三级黄在线观看| 91九色精品人成在线观看| 99国产极品粉嫩在线观看| 在线免费观看的www视频| 91精品三级在线观看| 性色av乱码一区二区三区2| 性色av乱码一区二区三区2| 可以免费在线观看a视频的电影网站| 免费在线观看日本一区| 国产精品98久久久久久宅男小说| 嫩草影视91久久| av中文乱码字幕在线| 欧美日本亚洲视频在线播放| 女人高潮潮喷娇喘18禁视频| 在线观看免费视频日本深夜| 亚洲美女黄片视频| 久久天堂一区二区三区四区| 99热国产这里只有精品6| 一区二区日韩欧美中文字幕| 色综合站精品国产| 久久人妻福利社区极品人妻图片| 国产精品成人在线| 精品一区二区三区四区五区乱码| 精品国内亚洲2022精品成人| 国产精品国产高清国产av| 亚洲精品国产区一区二| 涩涩av久久男人的天堂| 午夜福利,免费看| 一二三四社区在线视频社区8| 啪啪无遮挡十八禁网站| 日本一区二区免费在线视频| 99在线视频只有这里精品首页| 久久久国产成人精品二区 | 午夜激情av网站| 最好的美女福利视频网| 免费av毛片视频| 国产精品九九99| 久久久国产精品麻豆| av网站免费在线观看视频| 国产精品美女特级片免费视频播放器 | 又紧又爽又黄一区二区| 国产av在哪里看| 久久精品国产亚洲av香蕉五月| 国产精品久久久人人做人人爽| 精品久久久久久久毛片微露脸| 亚洲精品国产精品久久久不卡| videosex国产| 日韩欧美免费精品| 超色免费av| 女人被狂操c到高潮| 亚洲精品国产色婷婷电影| 99久久99久久久精品蜜桃| 激情视频va一区二区三区| 亚洲欧美日韩无卡精品| 91精品三级在线观看| 亚洲黑人精品在线| 亚洲欧美激情综合另类| 99国产精品99久久久久| 不卡一级毛片| 黑丝袜美女国产一区| 欧美一级毛片孕妇| 国产精品免费视频内射| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| 一本综合久久免费| 精品一品国产午夜福利视频| 成人手机av| 国产精品野战在线观看 | 国产高清国产精品国产三级| 免费在线观看影片大全网站| 精品国产乱码久久久久久男人| 91麻豆av在线| 久久精品91蜜桃| 久久精品人人爽人人爽视色| 欧美日韩亚洲国产一区二区在线观看| 一边摸一边做爽爽视频免费| 女生性感内裤真人,穿戴方法视频| 女人精品久久久久毛片| 欧美精品亚洲一区二区| 99国产精品免费福利视频| av片东京热男人的天堂| 欧美日韩精品网址| www.999成人在线观看| x7x7x7水蜜桃| 9热在线视频观看99| 精品乱码久久久久久99久播| av片东京热男人的天堂| 变态另类成人亚洲欧美熟女 | 女警被强在线播放| 757午夜福利合集在线观看| 宅男免费午夜| 国产麻豆69| 美女国产高潮福利片在线看| 亚洲久久久国产精品| 极品人妻少妇av视频| 亚洲一区中文字幕在线| 中文字幕人妻丝袜一区二区| 亚洲一区高清亚洲精品| 欧美成人午夜精品| 亚洲中文av在线| 亚洲第一欧美日韩一区二区三区| 亚洲 欧美 日韩 在线 免费| 国产精品自产拍在线观看55亚洲| 亚洲精品国产一区二区精华液| 色哟哟哟哟哟哟| 亚洲精品中文字幕一二三四区| 精品第一国产精品| 亚洲美女黄片视频| 亚洲色图 男人天堂 中文字幕| 91九色精品人成在线观看| 一进一出好大好爽视频| 两人在一起打扑克的视频| 一级a爱视频在线免费观看| 久久精品影院6| 自拍欧美九色日韩亚洲蝌蚪91| 丰满饥渴人妻一区二区三| 日韩视频一区二区在线观看| 黄色丝袜av网址大全| 亚洲国产欧美日韩在线播放| 最近最新中文字幕大全免费视频| 怎么达到女性高潮| 丁香欧美五月| 国产精品偷伦视频观看了| 99久久99久久久精品蜜桃| 免费av毛片视频| 性少妇av在线| 国产精品亚洲一级av第二区| 天天添夜夜摸| 中文字幕最新亚洲高清| 国产野战对白在线观看| 嫁个100分男人电影在线观看| 看片在线看免费视频| 男女下面进入的视频免费午夜 | 天堂√8在线中文| 精品欧美一区二区三区在线| 12—13女人毛片做爰片一| 精品国产乱码久久久久久男人| 制服人妻中文乱码| 午夜视频精品福利| 一个人观看的视频www高清免费观看 | 成年女人毛片免费观看观看9| 日韩中文字幕欧美一区二区| 亚洲av成人av| 18禁黄网站禁片午夜丰满| 老司机在亚洲福利影院| 欧美日韩中文字幕国产精品一区二区三区 | 成人黄色视频免费在线看| www日本在线高清视频| 黄色视频不卡| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一区av在线观看| 超色免费av| 国产免费男女视频| 五月开心婷婷网| 国产av一区在线观看免费| 国产亚洲精品第一综合不卡| tocl精华| 岛国在线观看网站| 久久香蕉国产精品| √禁漫天堂资源中文www| 国产成人欧美| 亚洲精华国产精华精| 久久久久久久久中文| 午夜福利,免费看| 美女扒开内裤让男人捅视频| 97碰自拍视频| 男人的好看免费观看在线视频 | 国产成人影院久久av| 欧美乱色亚洲激情| 久久香蕉国产精品| 久久影院123| 国产xxxxx性猛交| 精品一区二区三区四区五区乱码| 妹子高潮喷水视频| 99国产精品一区二区蜜桃av| 色播在线永久视频| 黄片小视频在线播放| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲 国产 在线| 日韩高清综合在线| 国产亚洲精品一区二区www| 长腿黑丝高跟| 丰满人妻熟妇乱又伦精品不卡| 亚洲少妇的诱惑av| 真人一进一出gif抽搐免费| 水蜜桃什么品种好| 中文字幕人妻丝袜制服| 窝窝影院91人妻| 他把我摸到了高潮在线观看| 亚洲一区高清亚洲精品| 好男人电影高清在线观看| 又大又爽又粗| 欧美不卡视频在线免费观看 | 欧美精品亚洲一区二区| 少妇裸体淫交视频免费看高清 | 久久中文看片网| 美女扒开内裤让男人捅视频| 色在线成人网| 精品国产一区二区久久| 亚洲精品在线美女| 中亚洲国语对白在线视频| 欧美性长视频在线观看| 国产免费现黄频在线看| 人妻丰满熟妇av一区二区三区| 亚洲精品久久成人aⅴ小说| 国产精品亚洲av一区麻豆| ponron亚洲| 香蕉国产在线看| 亚洲五月色婷婷综合| 69av精品久久久久久| 香蕉久久夜色| 国产成人精品在线电影| 久久 成人 亚洲| 男女床上黄色一级片免费看| 国产人伦9x9x在线观看| 在线观看一区二区三区| 99久久精品国产亚洲精品| 免费在线观看影片大全网站| 欧美乱妇无乱码| 中文亚洲av片在线观看爽| 国产精品自产拍在线观看55亚洲| 在线国产一区二区在线| 国产三级黄色录像| 黑人欧美特级aaaaaa片| 欧美黑人精品巨大| 高清av免费在线| 午夜影院日韩av| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲精品在线美女| 一区二区三区精品91| 在线观看免费视频日本深夜| av超薄肉色丝袜交足视频| 亚洲国产欧美网| 欧美日本中文国产一区发布| 怎么达到女性高潮| 亚洲精品美女久久久久99蜜臀| 欧洲精品卡2卡3卡4卡5卡区| 精品一品国产午夜福利视频| 亚洲avbb在线观看| 亚洲第一av免费看| 女人精品久久久久毛片| 精品人妻1区二区| 国产精品秋霞免费鲁丝片| 一进一出抽搐gif免费好疼 | 欧美日本亚洲视频在线播放| 日本vs欧美在线观看视频| 波多野结衣高清无吗| 国产欧美日韩综合在线一区二区| 三上悠亚av全集在线观看| 久久九九热精品免费| 超碰97精品在线观看| 久久性视频一级片| 精品国产超薄肉色丝袜足j| 午夜免费激情av| 久久国产精品影院| 免费看十八禁软件| 女同久久另类99精品国产91| 丝袜人妻中文字幕| 亚洲人成网站在线播放欧美日韩| 中亚洲国语对白在线视频| 97人妻天天添夜夜摸| 精品福利永久在线观看| 国产精品98久久久久久宅男小说| 一级片免费观看大全| 日韩精品中文字幕看吧| 亚洲黑人精品在线| 一二三四在线观看免费中文在| 国产精品 国内视频| 亚洲精品一卡2卡三卡4卡5卡| 久久99一区二区三区| 不卡av一区二区三区| 美女高潮到喷水免费观看| 国产熟女午夜一区二区三区| 国产成人免费无遮挡视频| a级片在线免费高清观看视频| 国产精品永久免费网站| 国产欧美日韩一区二区三| 日本三级黄在线观看| 在线永久观看黄色视频| svipshipincom国产片| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 在线观看免费视频网站a站| 国产成人啪精品午夜网站| 国产高清激情床上av| 夫妻午夜视频| 亚洲视频免费观看视频| 制服人妻中文乱码| 亚洲精品美女久久久久99蜜臀| 亚洲精品久久午夜乱码| 亚洲av成人av| 中文字幕高清在线视频| 亚洲av电影在线进入| 一本综合久久免费| 亚洲国产精品一区二区三区在线| 国产乱人伦免费视频| 久久精品91无色码中文字幕| 丰满饥渴人妻一区二区三| 午夜精品在线福利| 精品一区二区三区视频在线观看免费 | 男女高潮啪啪啪动态图| 黄片小视频在线播放| 50天的宝宝边吃奶边哭怎么回事| 亚洲av成人av| 中文字幕高清在线视频| 免费观看人在逋| 老司机深夜福利视频在线观看| 男女之事视频高清在线观看| 九色亚洲精品在线播放| 久久精品亚洲av国产电影网| 亚洲成人久久性| 黄色片一级片一级黄色片| 国产三级在线视频| 成年女人毛片免费观看观看9| av在线播放免费不卡| 久久久久精品国产欧美久久久| 免费在线观看完整版高清| 久久青草综合色| 国产一区二区三区在线臀色熟女 | 真人一进一出gif抽搐免费| 午夜视频精品福利| 在线观看日韩欧美| 1024香蕉在线观看| 国产精品秋霞免费鲁丝片| 精品人妻1区二区| 久久精品国产99精品国产亚洲性色 | 一进一出抽搐gif免费好疼 | 国产91精品成人一区二区三区| 天堂影院成人在线观看| 亚洲精品国产精品久久久不卡| 精品卡一卡二卡四卡免费| 久久久水蜜桃国产精品网| 国产1区2区3区精品| 天天添夜夜摸| 欧美精品啪啪一区二区三区| 99riav亚洲国产免费| 免费在线观看影片大全网站| av片东京热男人的天堂| av欧美777| 精品第一国产精品| 国产精品爽爽va在线观看网站 | 婷婷丁香在线五月| 国产91精品成人一区二区三区| 亚洲 欧美一区二区三区| 久久久精品欧美日韩精品| 色婷婷久久久亚洲欧美| 成人手机av| 自线自在国产av| 日本vs欧美在线观看视频| 国产真人三级小视频在线观看| 午夜久久久在线观看| 国产蜜桃级精品一区二区三区| 国产精品一区二区免费欧美| 琪琪午夜伦伦电影理论片6080| 91九色精品人成在线观看| 亚洲aⅴ乱码一区二区在线播放 | 日本撒尿小便嘘嘘汇集6| 美女午夜性视频免费| 高清在线国产一区| 女生性感内裤真人,穿戴方法视频| 好看av亚洲va欧美ⅴa在| 久久精品国产亚洲av高清一级| 国产视频一区二区在线看| 制服诱惑二区| 村上凉子中文字幕在线| 搡老乐熟女国产| 亚洲精品美女久久av网站| 女人爽到高潮嗷嗷叫在线视频| av网站免费在线观看视频| 亚洲精品国产区一区二| 久久久久久亚洲精品国产蜜桃av| 国产不卡一卡二| 黄色a级毛片大全视频| 亚洲狠狠婷婷综合久久图片| 亚洲一区中文字幕在线| 真人一进一出gif抽搐免费| 国产男靠女视频免费网站| av网站在线播放免费| 亚洲av美国av| 成人永久免费在线观看视频| av网站免费在线观看视频| 999精品在线视频| 99久久精品国产亚洲精品| 久久亚洲精品不卡| 免费在线观看日本一区| 亚洲精品中文字幕一二三四区| 中文亚洲av片在线观看爽| 99久久国产精品久久久| 一区二区日韩欧美中文字幕| 日日爽夜夜爽网站| 亚洲国产精品一区二区三区在线| 亚洲一区二区三区色噜噜 | 精品电影一区二区在线| 一级片'在线观看视频| www.999成人在线观看| 午夜福利影视在线免费观看| 色精品久久人妻99蜜桃| www.自偷自拍.com| 一级片'在线观看视频| 天堂动漫精品| 国产精品乱码一区二三区的特点 | 50天的宝宝边吃奶边哭怎么回事| 叶爱在线成人免费视频播放| 在线观看免费视频日本深夜| 99久久精品国产亚洲精品| av视频免费观看在线观看| 久久 成人 亚洲| 免费搜索国产男女视频| 国产精品综合久久久久久久免费 | 夜夜躁狠狠躁天天躁| 黄色视频,在线免费观看| 欧美日韩av久久| 麻豆国产av国片精品| 国产野战对白在线观看| 91大片在线观看| 久久中文字幕人妻熟女| 国产亚洲精品久久久久久毛片| 99热国产这里只有精品6| av欧美777| 日日摸夜夜添夜夜添小说| 久久久久久久精品吃奶| 亚洲专区中文字幕在线| 多毛熟女@视频| 国产精品日韩av在线免费观看 | 午夜福利一区二区在线看| 91精品国产国语对白视频| 国产精品久久久久久人妻精品电影| 免费在线观看影片大全网站| 亚洲avbb在线观看| av有码第一页| 亚洲精品一卡2卡三卡4卡5卡| 久久久精品国产亚洲av高清涩受| 久久精品国产亚洲av香蕉五月| 在线观看免费高清a一片| 日韩人妻精品一区2区三区| 久久人人97超碰香蕉20202| 欧美另类亚洲清纯唯美| 国产免费现黄频在线看| 久久国产精品影院| 色婷婷av一区二区三区视频| 亚洲av美国av| 日韩国内少妇激情av| 欧美精品一区二区免费开放| 丁香欧美五月| 国产精品野战在线观看 | 三上悠亚av全集在线观看| 免费久久久久久久精品成人欧美视频| 亚洲精品粉嫩美女一区| 色老头精品视频在线观看| 国产欧美日韩综合在线一区二区| 婷婷六月久久综合丁香| 一级毛片高清免费大全| 99riav亚洲国产免费| 色在线成人网| 怎么达到女性高潮| 啪啪无遮挡十八禁网站| 国产深夜福利视频在线观看| 最近最新中文字幕大全电影3 | 亚洲国产毛片av蜜桃av| 怎么达到女性高潮| 久久久久久久精品吃奶| 国产深夜福利视频在线观看| av天堂久久9| 日本免费a在线| 女人被躁到高潮嗷嗷叫费观| 欧洲精品卡2卡3卡4卡5卡区| 成在线人永久免费视频| 妹子高潮喷水视频| 一级片'在线观看视频| 成人亚洲精品一区在线观看| av免费在线观看网站| 99久久精品国产亚洲精品| 亚洲成av片中文字幕在线观看| 欧美激情久久久久久爽电影 | 咕卡用的链子| 久久午夜亚洲精品久久| 国产一区在线观看成人免费| 成人精品一区二区免费| 十八禁人妻一区二区| 久久国产乱子伦精品免费另类| 91老司机精品| 狠狠狠狠99中文字幕| 亚洲全国av大片| av天堂久久9| 亚洲一码二码三码区别大吗| 欧美+亚洲+日韩+国产| 久久久久精品国产欧美久久久| 日本免费a在线| 国产欧美日韩一区二区三区在线| 久久伊人香网站| 精品国产乱码久久久久久男人| 亚洲成人久久性| 亚洲欧洲精品一区二区精品久久久| 免费观看人在逋| 国产区一区二久久| 久久人人97超碰香蕉20202| xxx96com| 欧美在线一区亚洲| 国产亚洲精品第一综合不卡| 欧美最黄视频在线播放免费 |