• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Effect of long-period stacking ordered phase on hot tearing susceptibility of Mg–1Zn–xY alloys

    2021-01-04 04:55:32YeZhouPingliMaoLeZhouZhiWangFengWangZhengLiu
    Journal of Magnesium and Alloys 2020年4期

    Ye Zhou,Pingli Mao,?,Le Zhou,Zhi Wang,Feng Wang,Zheng Liu

    a School of Materials Science and Engineering,Shenyang University of Technology,Shenyang 110870,China

    b Key Laboratory of Magnesium Alloys and the Processing Technology of Liaoning Province,China

    Received 19 July 2019;received in revised form 13 March 2020;accepted 19 March 2020 Available online 24 June 2020

    Abstract The effect of long-period stacking ordered(LPSO)phase on hot tearing susceptibility of Mg–1Zn–xY serial alloys were investigated experimentally using a home-made T-type hot tearing mold.The characteristic parameters related to HTS during the solidification process were calculated by thermal analysis.The microstructure and morphology of the crack zone were characterized by optical microscope(OM),scanning electron microscopy(SEM)and electron dispersive spectrometer(EDS),and the phases of the alloys were analyzed by X-ray diffraction(XRD).The result showed that the long-period stacking ordered(LPSO)phase formed when m(Zn)/m(Y)<1,and the LPSO content increased with increasing of Y.The presence of the LPSO phase in Mg–1Zn–xY alloys could benefit the hot tearing refilling and decrease the HTS of the alloys.With increasing the content of LPSO phase,the HTS of the alloys decreased.LPSO phase increased the skeleton strength,and reduced the HTS of Mg–1Zn–xY alloys.

    Keywords:Mg–Zn–Y alloys;Hot tearing susceptibility;Thermal analysis;LPSO phase;Numerical simulation.

    1.Introduction

    Owing to low density,high specific stiffness,and corrosion resistance,magnesium(Mg)alloys have been widely used in aerospace,automobile,and electronics industry[1–3].However,their industrial and commercial applications have been restricted by the wide solidification temperature range and a considerable tendency to hot tearing.Hot tearing,also known as hot crack,has been thought as a major defect during solidification.And it usually occurs in the mushy zone,where the solid fraction is within the range of 0.9 and 0.99[4].The solidification process can be divided into four stages:(1)mass feeding,where the liquid can move freely and then the hot tearing hardly can form;(2)interdendritic feeding,where the dendrites start to contact with each other forming a solid network,the liquid must flow through the network.(3)interdendritic separation,where the solid network is torn in some area due to the contraction force causing by solidification shrinkage;(4)interdendritic bridging,where the solid network structure develops moderate strength.The last two stages play a major role in the occurrence of hot tearing[5,6].

    Up to now,extensive research efforts have been devoted to the investigation of the hot tearing phenomenon during solidification of Mg alloys by using theoretical and experimental methods[7–9].Several factors influenced the severity of hot tearing,such as cooling rate of the alloy,properties of phases,the evolution of local stress and strain rate,and mold geometry[10–12].

    Magnesium–zinc(Mg–Zn)based alloys exhibit high potential application as a high-temperature structural material in the automobile industry due to their preferable hyperthermia stability.However,the high hot tearing susceptibility(HTS)of Mg–Zn binary alloys limited their practical applications.Zhou et al.[13]reported that the HTS of Mg–Zn binary alloy followed the so-called“l(fā)ambda”shape curve,which was that the HTS of Mg–Zn binary alloy increased with increasing Zn content and then decreased with further addition of Zn.Effect of Ca content on the HTS of Mg–Zn alloys was also studied[14,15].The results indicated that element Ca played a significant role in HTS behavior of Mg–Zn–Ca ternary alloys.It exhibited that the increase of Ca content could reduce HTS of the alloys.

    Recently,Mg–Zn–Y ternary alloys attracted intensive attention owing to the variety of the second phases generated in the alloy according to the Zn/Y ratio[16].In the meanwhile,it was found that the content of Zn,Y,and Zn/Y ratio were the important factors to affect the HTS of Mg–Zn–Y ternary alloys[16,17].The type of the second phase was closely related to the Zn/Y ratio.When Zn/Y>1,Zn/Y≈1,and Zn/Y<1,the second phase of the alloy is I phase(or I phase and W phase),W phase(or W phase and small amount of I phase),and LOPS phase(or small amount of W phase),respectively[18].LPSO phase as a specific strengthen phase has been investigated by many researchers in high Y content alloys[19].However,HTS of Mg–Zn–Y system alloys with LPSO phase was not reported so far.In this study,the effect of the LPSO phase on hot tearing susceptibility of Mg–Zn–Y system alloys was investigated by the experimental and numerical methods.

    2.Experimental procedure

    2.1.Hot tearing tests

    HTS of ternary Mg–Zn–Y alloys was evaluated in a Constrained Rod Casting(CRC,hereafter)mold,which was designed to capture the hot tearing in the corner between the sprue and the constrained rod.The details of the apparatus could be found elsewhere[20,21].The chemical compositions of Mg–Zn–Y alloys were measured using an Inductively Coupled Plasma(ICP)and the results are given in Table 1.

    Table 1Chemical composition of the investigated alloys in weight percentage.

    Resistance furnace with Si temperature controller was used for melting the alloys.Melting and pouring process was covered with the mixed gas of SF6(0.2%)and nitrogen with the flow rate of 1.6L min?1.Before melting,the inner surface of the stainless-steel crucible was sprayed with boron nitride(BN)coatings.Pure Mg was firstly melted,and then pure Zn and Mg–25%Y master alloy were put into the molten metal.The molten metal was mechanically stirred for 1min in order to homogenize the alloying elements and then held at 700°C for 30min to ensure complete dissolution and diffusion of the alloying elements.The molten metal was poured at 700°C into a“T-shaped”permanent mold,which was preheated to 250°C.

    2.2.Differential thermal analysis

    Thermal analysis was carried out based on the twothermocouple method.One of the thermocouples was placed close to the wall and the other at the center of the graphite crucible to measure the temperature difference between the center(Tc)and edge(Te)of molten metal during solidification.The thermal analysis experimental setup is illustrated in Fig.1[8].The top and the bottom graphite crucible were insulated with an insulating material to ensure Newton heat transfer.The first maximum temperature difference between the two thermocouples is defined as dendrite coherent temperature(Tcoh),which is considered as a key parameter to measure the feeding mechanism of casting Mg alloys.

    2.3.Microstructure observation

    The microstructure of the casting alloys was observed on the longitudinal section of the rod samples near the location of the hot spot(an area where hot tears were easy to occur).The samples were ground with SiC paper(from 600 grit up to 2000 grit)followed by mechanical polishing and then were chemically etched in a solution of nitric acid alcohol(4%).The microstructural observations were carried out by using an optical microscope(OM,ZEISS)and a scanning electron microscope(SEM,HITACHI S-3400N)equipped electron dispersive spectrometer(EDS)operated at 20kV.The phases of the investigated alloys were verified by X-ray diffraction(XRD,SHIMADZU-7000)with a scanning angle from 20° to 80° with a scanning speed of 2° per min.

    Fig.1.Schematic illustration of thermal analysis setup[8].

    Fig.2.Meshing results of(a)the casting sample and(b)hot tearing mold.

    2.4.Numerical simulation

    The ProCAST software was used to analyze the hot tearing behavior of the investigated Mg–Zn–Y system alloys,which is widely used for casting simulation to explain the phenomena occurring during the solidification process.The simultaneous operation of the thermal fluid flow and stress modules,as well as the hydrodynamic calculation of the stress and strain formation in the crystallization and cooling castings of casting operations are carried out simultaneously in accordance with international standards,and the solid fraction field and hot tearing indicator(HTI,hereafter)of the temperature field are displayed by a post-processor.The results of the field can be used to analyze the formation of hot cracks.

    Before the beginning of the simulation,the grid generator MeshCAST module in ProCAST was used to divide the computational grid of casting and die models.Fig.2 is the result of meshing of the casting samples and hot tearing mold.

    3.Results and discussion

    3.1.Solidification analysis

    Fig.3 illustrates the cooling curves recorded with the center thermocouple during the solidification process of Mg–1Zn–xY(x=1,2,3)alloys.It can be seen that there are two distinct cooling rate changes appearing in the cooling curves,as indicated by arrow“a”and“b”,implying the heat change caused by phase transformation during the solidification.The phase transformation during the solidification of Mg–1Zn–xY(x=1,2,3)alloys was verified by the first derivative of the cooling curves(dT/dt),as shown in Fig.4(a–c).

    Fig.3.Cooling curves for Mg–1Zn–xY(x=1,2,3).

    The baseline in Fig.4 is the first derivative of the cooling curve which assumed having no phase transformation during solidification.The peak of the first derivative of the cooling curves is the sign of the phase transformation.For Mg–1Zn–1Y alloy,the cooling and first derivative curves in Fig.4(a)show two well-defined peaks at 642 and 532°C,respectively.Combining the analysis of XRD results in Fig.4(d)and Mg–Zn–Y ternary phase diagram in Fig.4(e),it can be deduced that the corresponding phases of those two peaks are belonging toα-Mg and W phase.It is further confirmed by the microstructure observation shown in Fig.5(a).The phase transformation reactions of the two peaks are theα-Mg formation and the non-equilibrium eutectic reaction:L→α-Mg+W[22],respectively.The cooling and first derivative curves of Mg–1Zn–2Y alloy are shown in Fig.4(b).It can be seen that three obvious peaks appear at 635,538 and 530°C,respectively.Similarly,it can be concluded that the three peaks areα-Mg,W phase and LPSO phase according to the XRD results in Fig.4(d)and Mg–Zn–Y ternary phase diagram in Fig.4(e),and corresponding microstructure observation shows in Fig.5(b).The corresponding reactions areα-Mg formation,L→α-Mg+W,and L→α-Mg+LPSO eutectic transformations[23].A new phase of LPSO precipitates in the alloy due to the increment of Y(m(Zn)/m(Y)<1).The thermal analysis result for Mg–1Zn–3Y alloy is shown in Fig.4(c).It can be observed that three peaks showing in the first derivative curve,indicating three-phase transformation reactions.The corresponding temperature of the three peaks is 631,540,and 531°C,respectively.According to the XRD result in Fig.4(d)and the microstructure observation in Fig.5(c)that the reactions are the same as Mg–1Zn–2Y alloy.However,the amount of LPSO phase increases with increasing of Y content,as shown in the microstructure of the LPSO phase in Fig.5(c).

    Fig.4.Thermal analysis results and XRD results of Mg–1Zn–xY alloys:(a)x=1,(b)x=2,(c)x=3[wt%],(d)XRD results and(e)phases in as-cast alloys.

    For Mg–1Zn–3Y alloy,EDS mapping of the LPSO phase is measured and shown in Fig.5(d).It shows obviously that Mg element enriches in the matrix,and Zn,Y elements enrich in LPSO phase.Two adjacent grains are crossed by LPSO phase(Fig.5d)[24],which act as the bridging effect between the adjacent grains,resulting in the enhanced intergranular cohesion between two grains.At the later stage of solidification,the high strength of dendrites between two grains could resist the solidification contraction force.LPSO phase increases the strength of dendrites,and hinders dendrite separation,as a result,it reduces HTS of the alloy.

    The phase reaction temperatures of Mg–1Zn–xY alloys(x=1,2,3)are summarized in Fig.6 according to the solidification curves.It shows that with the increasing of Y content,the formation temperature ofα-Mg decreases,the precipitation temperature of the LPSO phase slightly increases,and that of W phase seems stable.The temperature range from the reaction ofα-Mg to the precipitation of W phase are 110,105 and 100°C,respectively,which becomes smaller with increasing content of Y according to Fig.6.

    The temperature of dendrite coherent(Tcoh)could be calculated through the data measured by thermal analysis during theα-Mg formation(Fig.7a)[25].Fig.7b shows the coherent temperature of Mg–1Zn–xY(x=1,2,3)alloys.The results show thatTcohdecreases with the increasing of Y content.

    Fig.6.The phase reaction temperature of Mg–1Zn–xY alloys(x=1,2,3).

    Fig.7.Cooling curve of the center and the edge of the temperature difference(T=Te?Tc)for(a)Mg–1Zn–2Y alloy,and(b)the dendrite coherent temperature for Mg–1Zn–xY alloys(x=1,2,3).

    Hou et al.[26]found that if the solidification structure was in a small equiaxed crystal with short dendritic arms then the alloy would have lowTcoh,which can be proved by Fig.8(g–i).In contrast,if the alloy had highTcohthe well-developed dendrites would form a dendrite network and segment the liquid into isolated molten bath at an early stage of solidification,resulting in the hard of refilling the hot tears.According to theTcohanalysis result,it can be predicted that the HTSs of the three alloys are in the following order:Mg–1Zn–1Y>Mg–1Zn–2Y>Mg–1Zn–3Y.

    3.2.Experimental and numerical simulation results of hot tearing test

    The variation of contraction force curves and corresponding macroscopic samples of Mg–1Zn–xY(x=1,2,3)alloys are shown in Fig.8.The red line represents solidification temperature,and the black line represents the contraction force.In these force curves,the contraction force increases steeply at the beginning of the solidification,then suddenly drops or forms a plateau at a certain level.The appearance of the force dropping or the plateau indicates the initiation and propagation of hot tearing.The force curves exclusively show the formation of hot tears under all the experimental conditions.Fig.8(a)shows the contraction force of Mg–1Zn–1Y alloy,it indicates that the hot tearing initiates at the later stage of the solidification,and the propagation lasted for a period of time,implying high HTS of the alloy.It is consistent with the macroscopic observation of hot spot section of the Mg–1Zn–1Y alloy(Fig.8(d)).The contraction curve of Mg–1Zn–2Y alloy exhibits short period propagation after hot tearing initiation,indicating lower HTS than Mg–1Zn–1Y alloy,as shown in Fig.8(b)and(e).Fig.8(c)shows the contraction force curve of Mg–1Zn–3Y alloy,which exhibits a sudden decrease and then straight increases until the solidification completed.There is virtually no hot tear propagation in Fig.8(c),and there are no visible hot tears with naked eyes on the casting surface in Fig.8(f).The hot crack volumes of Mg–1Zn–xY(x=1,2,3)alloys are measured by the paraffin permeation method[20],which is 102.5,51.7 and 14.8mm3,respectively.The microstructures of Mg–1Zn–xY(x=1,2,3)alloys at the hot spot show in Fig.8(g–i).It is clear that the LPSO phase precipitates at grain boundary at Y content of 2 and 3wt%and the grain size decreases with increase of Y,which is 110,74,and 56μm,respectively.

    The hot tearing simulation results are presented in Fig.9.When the alloy composition and boundary conditions are input into the software,the thermal physical parameters of the alloy are automatically adjusted,and the HTS of the experimental alloy is simulated by the hot tearing indicator module.The HTI is a strain-driven model based on the total strain that develops during the solidification process.The model computes the elastic and plastic strain,and it is based on Gurson’s constitutive model[27].Fig.9(a–c)shows the HTI results and the color labels show on the left,which indicated the level of the HTS at the hot spot of the alloy.The simulated hot spot of Mg–1Zn–1Y alloy displays a large area of red and the HTI is 0.0298,which exhibits high HTS.For Mg–1Zn–2Y alloy(Fig.9b),the red area of hot spot decreases,and corresponding HTI decreases.Meanwhile,the hot tearing sensitive area decreases.When the amount of Y increases to 3wt%,the HTI is only about 0.0199.As far as the simulation results are concerned,the increase of Y content has a great influence on the HTS of Mg–1Zn–xY alloys,that is,increasing Y content will reduce the HTS of Mg–1Zn–xY alloys.

    Fig.8.The contraction force curves,macroscopic samples and microstructure of Mg–1Zn–xY alloys:(a),(d)and(g)x=1;(b),(e)and(h)x=2;(c),(f)and(i)x=3.

    Fig.9(d–i)shows the solid fraction and corresponding effective stress of a point in the hot spot,where exhibits high HTI.According to previous study that hot tears occurs at the later stage of solidification when the solid fraction range is 0.9–0.99.Fig.9(d)clearly shows that the mushy zone(0.9

    3.3.Fracture surface morphology

    Fig.10 shows the fracture surface morphology of Mg–1Zn–1Y and Mg–1Zn–2Y alloys.The bubble-like protrusions are the dendrites covered with liquid film before final solidification.The traces of the liquid flow can be seen among the dendrites in the fracture surface,which are caused by the dendrites separation and residual liquid shrinkage in the mushy zone.Fig.10(a)shows the fracture surface morphology of Mg–1Zn–1Y alloy,a lot of torn bridge can be seen on the surface indicating the torn of the dendrite due to the solidification contraction and the bridge enriches Mg element,indicating that the dendrite skeleton forms earlier in the solidification stage and the solidification stage changes from mass feeding to interdendritic feeding prematurely,which will cause high HTS.Fracture surface morphology of Mg–1Zn–2Y alloy is exhibited in Fig.10(b).It can be seen that a lot of liquid flow evidence can be found in the fracture surface.It means the liquid flow with certain strength can resist contraction force at the last stage of solidification,implying that the dendrites have certain strength before hot tearing,resulting in decreasing of HTS with high Y element content.

    Fig.9.Numerical simulation results of Mg–1Zn–xY(x=1,2,3)alloys:HTI results(a)x=1,(b)x=2,(c)x=3;Solid fraction of hot spot(d)x=1,(f)x=2,(h)x=3;Effective stress of hot spot(e)x=1,(g)x=2,(i)x=3.

    The typical microstructures of longitudinal cross-section near the hot crack region of Mg–1Zn–1Y and Mg–1Zn–2Y alloy are shown in Fig.11.It is clear that the hot tears are not rapidly refilled in Mg–1Zn–1Y alloy.While in Mg–1Zn–2Y alloy,the refilling races are clearly presented,which insure as LPSO phase(Fig.11b).Fig.12 shows the liquid fraction(fL)curves of Mg–1Zn–xY(x=1,2,3)alloys during the solidification.ThefLof the hot tearing initiation moment is marked on the curves,which was 3%,8% and 27%,respectively.ThefLincreases with the increase of Y content,i.e.,the remaining eutectic liquid increases,which is believed to be capable of refill the hot tear.Hence,a large amount of liquid effectively promotes the crack healing and the LPSO phase refilling in Mg–1Zn–2Y alloy guarantees the low HTS of the alloy.As the addition of Y increase to 3wt%,the HTS of the alloy is low enough so that there is no hot crack can be found with the naked eye near the hot spot(Fig.8f).LPSO phase plays an important role in refilling at the later stage of solidification,which can reduce the HTS.

    Fig.10.Fracture surfaces of hot tearing in(a)Mg–1Zn–1Y and(b)Mg–1Zn–2Y.

    Fig.11.The typical microstructures near the hot crack region of(a)Mg–1Zn–1Y and(b)Mg–1Zn–2Y alloys.

    Fig.12.The liquid fraction curves of Mg–1Zn–xY(x=1,2,3)alloys:(a)x=1,(b)x=2,(c)x=3.

    4.Conclusions

    In the present study,the effects of long-period stacking ordered(LPSO)phase on hot tearing susceptibility(HTS)of Mg–1Zn–xY(x=1,2,3)alloys were investigated.The main conclusions can be summarized as follows:

    (1)Whenm(Zn)/m(Y)<1,LPSO phase formed in the Mg–1Zn–xY alloys,and the content of the LPSO phase increased with increasing of the Y element.

    (2)The experimental results show that the HTS decreases with the increasing of Y,and the temperature of dendrite coherent(Tcoh)also decrease.Corresponding hot crack volume is 102.5,51.7 and 14.8mm3,respectively.

    (3)The simulation results have the same trend as the experimental results,that is,with the increasing of Y content,the hot tearing indication(HTI)decreased.The effective stress of the hot spot during the solidification also decrease with the increase of Y.

    (4)LPSO phase benefited to the liquid flow with a certain strength and increased refilling traces at a later stage of solidification.

    Declaration of Competing Interest

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgements

    The authors would like to acknowledge the financial support from High Level Innovation Team of Liaoning Province(XLYC1908006).Innovation Talent Program in Science and Technology for Young and Middle-aged Scientists of Shenyang(No.RC.180111),Project of Liaoning Education Department(Nos.LQGD2019002 and LJGD2019004),Liaoning nature fund guidance plan(No.2019-ZD-0210),and Liaoning Revitalization Talents Program(Nos.XLYC1807021 and 1907007).

    日韩不卡一区二区三区视频在线| 又黄又粗又硬又大视频| 欧美另类一区| 青草久久国产| 在线亚洲精品国产二区图片欧美| 十八禁人妻一区二区| 国产色婷婷99| 亚洲精品日本国产第一区| 国产亚洲欧美精品永久| 只有这里有精品99| 亚洲av电影在线进入| 男男h啪啪无遮挡| 国产av精品麻豆| 中文字幕另类日韩欧美亚洲嫩草| 久久久久久久国产电影| 欧美人与性动交α欧美软件| 国产视频首页在线观看| 香蕉国产在线看| 国产有黄有色有爽视频| 51午夜福利影视在线观看| 丁香六月天网| 亚洲av综合色区一区| 国产一区二区 视频在线| 亚洲国产中文字幕在线视频| 一边亲一边摸免费视频| 只有这里有精品99| 一本一本久久a久久精品综合妖精| 欧美日韩av久久| 欧美久久黑人一区二区| 国产精品一区二区在线不卡| 国产精品人妻久久久影院| 成年人免费黄色播放视频| 午夜免费观看性视频| 一个人免费看片子| 极品少妇高潮喷水抽搐| 秋霞在线观看毛片| 香蕉国产在线看| 亚洲国产av影院在线观看| 免费黄频网站在线观看国产| 国产一区有黄有色的免费视频| 中文字幕亚洲精品专区| av卡一久久| 成人漫画全彩无遮挡| 丝袜人妻中文字幕| 女人久久www免费人成看片| 国产探花极品一区二区| 亚洲男人天堂网一区| 日日爽夜夜爽网站| 超色免费av| 国产又色又爽无遮挡免| 啦啦啦啦在线视频资源| 国产免费视频播放在线视频| 午夜免费男女啪啪视频观看| 老司机深夜福利视频在线观看 | 99香蕉大伊视频| 精品国产乱码久久久久久男人| 国产精品国产av在线观看| 欧美日韩亚洲高清精品| 青春草亚洲视频在线观看| 国产视频首页在线观看| 国产熟女午夜一区二区三区| 国产精品久久久久久精品电影小说| 亚洲,一卡二卡三卡| 午夜激情久久久久久久| 国产国语露脸激情在线看| 母亲3免费完整高清在线观看| 国产在线免费精品| 一区二区日韩欧美中文字幕| 免费黄色在线免费观看| 国产免费一区二区三区四区乱码| 欧美另类一区| 亚洲一级一片aⅴ在线观看| 美女主播在线视频| 欧美亚洲 丝袜 人妻 在线| 黄频高清免费视频| 久久久欧美国产精品| 亚洲国产毛片av蜜桃av| 国产亚洲精品第一综合不卡| 一本久久精品| 欧美日韩福利视频一区二区| 国产一区二区激情短视频 | 国产精品av久久久久免费| 美女高潮到喷水免费观看| 国产探花极品一区二区| 黄色一级大片看看| 成年动漫av网址| 国产片内射在线| 日本av免费视频播放| 国产免费福利视频在线观看| 黄频高清免费视频| 久久女婷五月综合色啪小说| 又黄又粗又硬又大视频| 亚洲 欧美一区二区三区| 精品午夜福利在线看| 男女边摸边吃奶| 亚洲人成电影观看| av免费观看日本| 国产熟女午夜一区二区三区| 久久精品国产综合久久久| 国产精品av久久久久免费| 亚洲精品美女久久久久99蜜臀 | 成人三级做爰电影| 日本一区二区免费在线视频| 欧美精品一区二区免费开放| 制服丝袜香蕉在线| 国产av码专区亚洲av| 人人妻人人澡人人爽人人夜夜| 国产精品二区激情视频| av国产久精品久网站免费入址| 青春草亚洲视频在线观看| 久久这里只有精品19| 91国产中文字幕| 久久99一区二区三区| 人体艺术视频欧美日本| a级片在线免费高清观看视频| av在线app专区| 熟妇人妻不卡中文字幕| 妹子高潮喷水视频| 黄色视频在线播放观看不卡| 色婷婷久久久亚洲欧美| 亚洲人成电影观看| 最近中文字幕2019免费版| 在线看a的网站| 国产精品二区激情视频| 国产亚洲av高清不卡| av一本久久久久| 亚洲一级一片aⅴ在线观看| 亚洲国产欧美在线一区| 精品一区在线观看国产| 色视频在线一区二区三区| 国产精品 国内视频| 人妻一区二区av| 亚洲一区中文字幕在线| 国产 一区精品| 亚洲欧美成人综合另类久久久| 看非洲黑人一级黄片| 母亲3免费完整高清在线观看| 久久久久久人妻| 亚洲欧美精品综合一区二区三区| 欧美 亚洲 国产 日韩一| 国产乱来视频区| 涩涩av久久男人的天堂| 丝袜喷水一区| 国产精品香港三级国产av潘金莲 | 美女扒开内裤让男人捅视频| 中文字幕亚洲精品专区| 最近最新中文字幕大全免费视频 | 亚洲少妇的诱惑av| 欧美变态另类bdsm刘玥| 久久人人爽人人片av| av卡一久久| 色播在线永久视频| 99九九在线精品视频| 无限看片的www在线观看| 免费在线观看视频国产中文字幕亚洲 | 如日韩欧美国产精品一区二区三区| 香蕉丝袜av| 午夜福利网站1000一区二区三区| 黄色一级大片看看| 19禁男女啪啪无遮挡网站| 国产伦理片在线播放av一区| 亚洲精品一二三| 国产精品国产av在线观看| 久久久精品免费免费高清| 人妻 亚洲 视频| 午夜福利一区二区在线看| 赤兔流量卡办理| avwww免费| 久热这里只有精品99| 国产av一区二区精品久久| 午夜福利一区二区在线看| 午夜福利一区二区在线看| 亚洲人成网站在线观看播放| 成人午夜精彩视频在线观看| 久久天堂一区二区三区四区| 亚洲熟女毛片儿| 久久97久久精品| 日日爽夜夜爽网站| 曰老女人黄片| 亚洲精品,欧美精品| 午夜福利网站1000一区二区三区| 波野结衣二区三区在线| 母亲3免费完整高清在线观看| 免费日韩欧美在线观看| 久久性视频一级片| 国产欧美日韩综合在线一区二区| 国产亚洲欧美精品永久| 大片电影免费在线观看免费| 午夜老司机福利片| 精品免费久久久久久久清纯 | 亚洲精品日韩在线中文字幕| 男女高潮啪啪啪动态图| 国产一区二区 视频在线| 我要看黄色一级片免费的| 一区二区三区激情视频| videos熟女内射| 色播在线永久视频| 国产精品女同一区二区软件| 2021少妇久久久久久久久久久| 国产精品久久久久久精品古装| 国产欧美日韩一区二区三区在线| 黑人猛操日本美女一级片| 久久久久人妻精品一区果冻| 最近中文字幕高清免费大全6| 卡戴珊不雅视频在线播放| 国产精品熟女久久久久浪| 在线观看www视频免费| 久久精品国产a三级三级三级| 免费少妇av软件| 麻豆乱淫一区二区| 99久久99久久久精品蜜桃| 侵犯人妻中文字幕一二三四区| 老司机深夜福利视频在线观看 | 亚洲少妇的诱惑av| 国产精品国产三级国产专区5o| 悠悠久久av| 日韩 欧美 亚洲 中文字幕| 久久精品国产a三级三级三级| 午夜免费鲁丝| 国产日韩一区二区三区精品不卡| 亚洲四区av| 国产亚洲av高清不卡| 久久久久国产一级毛片高清牌| 国产精品免费大片| 一区在线观看完整版| 亚洲熟女精品中文字幕| 亚洲成国产人片在线观看| 欧美日韩亚洲国产一区二区在线观看 | 久久久久久人人人人人| 一区二区av电影网| 黄片无遮挡物在线观看| 国产女主播在线喷水免费视频网站| 久久这里只有精品19| 激情五月婷婷亚洲| 日韩欧美精品免费久久| 久久精品亚洲熟妇少妇任你| 下体分泌物呈黄色| 欧美日韩亚洲高清精品| 亚洲精品国产区一区二| 999久久久国产精品视频| 尾随美女入室| 国产免费福利视频在线观看| 又大又黄又爽视频免费| a级片在线免费高清观看视频| avwww免费| 国产淫语在线视频| 深夜精品福利| 欧美日韩综合久久久久久| 日韩精品免费视频一区二区三区| 女的被弄到高潮叫床怎么办| 欧美日韩亚洲高清精品| 午夜福利乱码中文字幕| 五月开心婷婷网| 免费观看av网站的网址| 成人手机av| 色综合欧美亚洲国产小说| 亚洲伊人久久精品综合| 免费高清在线观看日韩| 国产福利在线免费观看视频| 欧美日韩成人在线一区二区| 操美女的视频在线观看| 欧美国产精品一级二级三级| 国产免费视频播放在线视频| 亚洲国产精品成人久久小说| 久久久久久免费高清国产稀缺| av在线app专区| 久久亚洲国产成人精品v| 夫妻性生交免费视频一级片| 婷婷色麻豆天堂久久| 国产麻豆69| 国产高清国产精品国产三级| 亚洲国产最新在线播放| 黄网站色视频无遮挡免费观看| videos熟女内射| 亚洲,欧美,日韩| 国产免费福利视频在线观看| 成人黄色视频免费在线看| 久久这里只有精品19| 久久综合国产亚洲精品| 久久久精品94久久精品| 人妻人人澡人人爽人人| 精品少妇一区二区三区视频日本电影 | 亚洲欧洲日产国产| √禁漫天堂资源中文www| 十八禁人妻一区二区| 中文字幕色久视频| 大片免费播放器 马上看| 日韩制服丝袜自拍偷拍| 久久久久精品人妻al黑| 欧美日韩亚洲高清精品| av有码第一页| 欧美日韩视频精品一区| 黄色怎么调成土黄色| 婷婷色av中文字幕| 日本黄色日本黄色录像| 精品免费久久久久久久清纯 | 亚洲精品视频女| 久久免费观看电影| 欧美另类一区| 一二三四在线观看免费中文在| 久久97久久精品| 欧美 亚洲 国产 日韩一| 中文字幕制服av| 国产精品麻豆人妻色哟哟久久| avwww免费| 亚洲av电影在线进入| 日本vs欧美在线观看视频| 中文字幕av电影在线播放| 中文字幕亚洲精品专区| 久久久欧美国产精品| 女性被躁到高潮视频| 一本大道久久a久久精品| 国产精品一区二区精品视频观看| 亚洲四区av| 欧美日韩精品网址| 侵犯人妻中文字幕一二三四区| 欧美在线黄色| 久久久久国产精品人妻一区二区| av在线老鸭窝| 国产av码专区亚洲av| 视频区图区小说| 久久 成人 亚洲| 国产精品蜜桃在线观看| 亚洲精品久久成人aⅴ小说| 在线看a的网站| 777米奇影视久久| 老司机深夜福利视频在线观看 | 亚洲欧美精品自产自拍| 国产精品免费大片| 午夜91福利影院| 中文字幕亚洲精品专区| 一本一本久久a久久精品综合妖精| 天天操日日干夜夜撸| 成人国语在线视频| 99九九在线精品视频| 免费黄网站久久成人精品| 男女床上黄色一级片免费看| 国产黄色免费在线视频| 午夜久久久在线观看| 免费在线观看视频国产中文字幕亚洲 | 人妻一区二区av| 91aial.com中文字幕在线观看| 制服人妻中文乱码| 亚洲精品久久午夜乱码| 男人舔女人的私密视频| 午夜福利在线免费观看网站| 久久这里只有精品19| 最近中文字幕高清免费大全6| 热re99久久精品国产66热6| a级片在线免费高清观看视频| 肉色欧美久久久久久久蜜桃| xxx大片免费视频| 亚洲欧美日韩另类电影网站| 99国产精品免费福利视频| 69精品国产乱码久久久| 国产精品一区二区在线不卡| 欧美成人午夜精品| 日本黄色日本黄色录像| 免费不卡黄色视频| 中文乱码字字幕精品一区二区三区| 一区二区日韩欧美中文字幕| av在线观看视频网站免费| 久久久精品94久久精品| 一边摸一边抽搐一进一出视频| av在线老鸭窝| 在线天堂中文资源库| 大香蕉久久成人网| 亚洲国产欧美网| h视频一区二区三区| 日本午夜av视频| 美女福利国产在线| 精品人妻一区二区三区麻豆| 国产高清不卡午夜福利| 国产精品三级大全| 国产亚洲一区二区精品| 高清视频免费观看一区二区| 欧美日韩视频精品一区| 色播在线永久视频| 一区福利在线观看| 成人黄色视频免费在线看| av电影中文网址| 久久毛片免费看一区二区三区| 永久免费av网站大全| 欧美另类一区| 亚洲欧美清纯卡通| 老汉色∧v一级毛片| 久久女婷五月综合色啪小说| 久久久精品国产亚洲av高清涩受| 亚洲精品日本国产第一区| 久久婷婷青草| 精品福利永久在线观看| 日韩中文字幕视频在线看片| 亚洲国产精品成人久久小说| 少妇被粗大的猛进出69影院| 大香蕉久久成人网| 亚洲精品av麻豆狂野| 97在线人人人人妻| 满18在线观看网站| 国产精品一区二区在线不卡| 欧美亚洲日本最大视频资源| 波野结衣二区三区在线| 亚洲成国产人片在线观看| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 一级毛片 在线播放| 校园人妻丝袜中文字幕| 久久久久久久大尺度免费视频| 久久精品人人爽人人爽视色| 操美女的视频在线观看| av不卡在线播放| 人妻 亚洲 视频| 成人手机av| 在线观看免费高清a一片| 亚洲少妇的诱惑av| 满18在线观看网站| 国产人伦9x9x在线观看| 国产精品久久久久久久久免| 国产免费现黄频在线看| av片东京热男人的天堂| 亚洲四区av| 国产精品久久久人人做人人爽| 香蕉丝袜av| 免费av中文字幕在线| 超碰97精品在线观看| 性高湖久久久久久久久免费观看| 亚洲精品乱久久久久久| 老司机深夜福利视频在线观看 | 美女主播在线视频| 97人妻天天添夜夜摸| 岛国毛片在线播放| 日韩一卡2卡3卡4卡2021年| 在现免费观看毛片| 少妇被粗大的猛进出69影院| 国产极品粉嫩免费观看在线| 免费日韩欧美在线观看| 看免费成人av毛片| 一级片'在线观看视频| 熟妇人妻不卡中文字幕| 欧美精品人与动牲交sv欧美| 91老司机精品| 热re99久久精品国产66热6| 大香蕉久久网| 成人国产av品久久久| 中文字幕亚洲精品专区| 亚洲精品一二三| 亚洲免费av在线视频| 少妇人妻精品综合一区二区| av有码第一页| 国产精品亚洲av一区麻豆 | 男人爽女人下面视频在线观看| 久热这里只有精品99| 亚洲天堂av无毛| 热99国产精品久久久久久7| 亚洲第一青青草原| 亚洲三区欧美一区| 老司机靠b影院| 亚洲国产欧美一区二区综合| 午夜福利视频精品| 国产精品久久久人人做人人爽| 日韩大片免费观看网站| 亚洲精品国产区一区二| 亚洲av电影在线进入| 午夜久久久在线观看| 啦啦啦啦在线视频资源| 精品国产一区二区三区久久久樱花| www.精华液| 三上悠亚av全集在线观看| 国产免费福利视频在线观看| 黑人欧美特级aaaaaa片| 午夜福利视频在线观看免费| 国产精品国产三级专区第一集| av国产精品久久久久影院| 久久国产精品男人的天堂亚洲| 成人国产麻豆网| 麻豆乱淫一区二区| 永久免费av网站大全| 咕卡用的链子| 人人妻人人爽人人添夜夜欢视频| 国产一区二区在线观看av| 在线免费观看不下载黄p国产| 午夜福利在线免费观看网站| 久久久久人妻精品一区果冻| tube8黄色片| 午夜av观看不卡| 欧美日韩av久久| 免费观看人在逋| 中文字幕高清在线视频| 另类亚洲欧美激情| 一级毛片 在线播放| 999精品在线视频| 视频在线观看一区二区三区| 久久精品国产综合久久久| 99re6热这里在线精品视频| 日韩av免费高清视频| 九九爱精品视频在线观看| 亚洲av国产av综合av卡| 2021少妇久久久久久久久久久| 国产伦理片在线播放av一区| 国产成人91sexporn| 亚洲五月色婷婷综合| 久久人妻熟女aⅴ| 亚洲色图综合在线观看| 另类亚洲欧美激情| 久久久国产一区二区| 精品亚洲成国产av| 久久久久精品久久久久真实原创| 热re99久久精品国产66热6| 亚洲av日韩在线播放| 国产一区二区 视频在线| 欧美在线黄色| 少妇的丰满在线观看| 国产爽快片一区二区三区| 午夜福利网站1000一区二区三区| 中文字幕av电影在线播放| 久久天堂一区二区三区四区| 熟女少妇亚洲综合色aaa.| 午夜福利视频在线观看免费| 视频区图区小说| 如何舔出高潮| 91国产中文字幕| 亚洲欧美一区二区三区国产| 老司机影院毛片| 国产精品三级大全| 男女午夜视频在线观看| 欧美日韩福利视频一区二区| 97人妻天天添夜夜摸| 国产女主播在线喷水免费视频网站| 国产免费一区二区三区四区乱码| 人人妻人人爽人人添夜夜欢视频| 国产精品免费大片| 日日啪夜夜爽| 日本色播在线视频| 一二三四在线观看免费中文在| 51午夜福利影视在线观看| 嫩草影院入口| 亚洲成av片中文字幕在线观看| 一级毛片电影观看| 欧美97在线视频| 亚洲精品乱久久久久久| 99久久人妻综合| 日韩伦理黄色片| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 一本大道久久a久久精品| 免费高清在线观看日韩| 亚洲精品av麻豆狂野| 欧美黄色片欧美黄色片| svipshipincom国产片| 在线观看一区二区三区激情| 国产精品成人在线| 在现免费观看毛片| 女人久久www免费人成看片| 精品一区二区三区av网在线观看 | 欧美久久黑人一区二区| 秋霞伦理黄片| 亚洲综合色网址| 欧美精品高潮呻吟av久久| av片东京热男人的天堂| 热re99久久精品国产66热6| 午夜日本视频在线| 免费黄色在线免费观看| 中文欧美无线码| 午夜精品国产一区二区电影| 亚洲熟女精品中文字幕| 丰满少妇做爰视频| 男女无遮挡免费网站观看| 日韩不卡一区二区三区视频在线| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 天天躁夜夜躁狠狠躁躁| 国产精品秋霞免费鲁丝片| 女人被躁到高潮嗷嗷叫费观| 国产精品无大码| 亚洲三区欧美一区| 亚洲精品自拍成人| 下体分泌物呈黄色| 男女免费视频国产| 国产黄色视频一区二区在线观看| 母亲3免费完整高清在线观看| 侵犯人妻中文字幕一二三四区| 国产精品偷伦视频观看了| 亚洲精品在线美女| 午夜av观看不卡| 九九爱精品视频在线观看| 国产麻豆69| 国产精品麻豆人妻色哟哟久久| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美在线精品| 亚洲精品乱久久久久久| 国产xxxxx性猛交| 黑人猛操日本美女一级片| 国产成人午夜福利电影在线观看| 中文字幕色久视频| 成年动漫av网址| 国产高清国产精品国产三级| 欧美老熟妇乱子伦牲交| 两个人看的免费小视频| 久久久久精品人妻al黑| 久久97久久精品| 午夜福利免费观看在线| 在线观看免费高清a一片| 成人亚洲精品一区在线观看| 国产1区2区3区精品| 午夜福利在线免费观看网站| 丰满少妇做爰视频| 国产成人精品久久二区二区91 | 极品少妇高潮喷水抽搐| 国产精品亚洲av一区麻豆 | 十分钟在线观看高清视频www| tube8黄色片| 日本猛色少妇xxxxx猛交久久| 久久天堂一区二区三区四区| 日韩成人av中文字幕在线观看| 久久女婷五月综合色啪小说| 在现免费观看毛片|