• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Ground state parameters,electronic properties and elastic constants of CaMg3:DFT study

    2021-01-04 04:55:30RkbDjbriMnlAbusSlmDouDrifGurmitLouhibiFsl
    Journal of Magnesium and Alloys 2020年4期

    H.Rkb-Djbri,Mnl M.Abus Slm,S.Dou,M.Drif,Y.Gurmit,S.Louhibi-Fsl

    a Laboratory of Micro and Nanophysics(LaMiN),National Polytechnic School Oran,ENPO-MA,BP 1523,El M’Naouer,31000 Oran,Algeria

    b Faculty of Nature and Life Sciences and Earth Sciences,Akli Mohand-Oulhadj University,10000 Bouira,Algeria

    cDepartment of Applied Physics,Taflia Technical University,Tafila 66110,Jordan

    dLaboratory of Materials and Electronic Systems,Mohamed El Bachir El Ibrahimi University of Bordj Bou Arreridj,Bordj BouArreridj 34000,Algeria

    e Laboratoire des Matériaux Magnétiques,Département de Physique,Facultédes Sciences,UniversitéDjilali LIABES de Sidi-Bel-Abbès,Sidi Bel Abbes 22000,Algeria

    Received 24 February 2020;received in revised form 4 June 2020;accepted 17 June 2020 Available online 18 September 2020

    Abstract The present study aims to investigate the equation of state(EOS)parameters of CaMg3 inαReO3(D09),AlFe3(D03),Cu3Au(L12)and CuTi3(L60)structures,using full potential linear muffin-tin orbitals(FP-LMTO)approach based on the density functional theory(DFT).The local density approximation(LDA)and the generalized gradient approximation(GGA)were both applied for the exchange-correlation potential term.The calculated equation of state parameters at equilibrium,in general,agreed well with the available data of the literature.The calculations showed that under compression CaMg3 transforms from D03 to D09 at about 29.96GPa,and 25.1GPa using LDA and GGA,respectively.

    Keywords:CaMg3 compound;Electronic properties;Phase transition;Elastic constants;FP-LMTO.

    1.Introduction

    Magnesium(Mg)is an abundant element in the world compared with other commonly used metals;it is one of the lightest among several commonly used structural metals.One of its major advantages is the low density,it is about one quarter that of steels and two thirds that of aluminum[1].Furthermore,Mg-based alloys,like the binary systems of Mg–Cu and Mg–Ca,have gained more attention in the last decade.These materials have several applications in engineering,especially in aerospace manufacturing field and automotive industry[2–6].The binary system of Mg-Ca is potentially used as biomaterial and has been a subject of research by many investigators in recent years[7],[8].

    Zhou and Gong[8]have studied the electronic properties,mechanical moduli,chemical bonding and many other parameters of Mg-Ca system in different configurations.Their calculations showed that both BCC(AlFe3-type structure(D03))and FCC(Cu3Au-type structure(L12)phases of CaMg3are mechanically stable at equilibrium.Also,they investigated phase transition and found that both AlFe3-type structure(D03)and Cu3Au-type structure(L12)transform to the hexagonal close packed HCP-type structure(A3)at pressures around 29.47GPa and 26.44GPa,respectively.Actually,it is known that under the effect of hydrostatic compression,the crystal often transforms from the most energetic stable phase to another crystallographic configuration[9],[10].

    Table 1Plane wave number NPLW,muffin-tin radius(RMT)(in a.u.)and the energy cut-off(in Ry)used in our calculation.

    Groh[11]has investigated several physical,mechanical,and thermal properties of pure Calcium(Ca)and Mg–Ca binary system,in the framework of the second nearestneighbors modified embedded-atom method(MEAM).His results showed also that both AlFe3-type structure(D03)and Cu3Au-type structure(L12)of CaMg3are mechanically stable at equilibrium.

    Furthermore,to the best of our knowledge,the CaMg3phases of Mg–Ca binary system is not synthesized until now,and it is very difficult to obtain the physical properties of all phases by using the experimental measurement.Under this situation,the first-principles calculations can be applied to compute various physical properties of different phases based on the crystal structural information.In order to further improve the properties of Mg-Ca alloys,a systematic investigation and accurate information on the mechanical properties of some other structures in binary Mg-Ca system is the prerequisite.In the present study,we investigate the equation of state(EOS)parameters,pressure-induced phase transition,elastic constants and electronic properties of CaMg3compound using first-principles total energy calculations in the framework of density functional theory(DFT),within both the local density approximation(LDA)[12]and the generalized gradient approximation(GGA)[13].

    In Section 2 we introduce a brief description of the method used in this work.Then,we present,in Section 3 our obtained results of the structural parameters,high-pressure induced phase transitions,elastic constants as well as the electronic properties of CaMg3compound.Finally,a brief conclusion is given in Section 4.

    2.Computational details

    The chemical and physical properties of system are determined by the inter-atomic interactions,which can be described by the inter-atomic interaction potential.The calculations in the present work were made using the all-electron full potential linear muffin-tin orbital(FP-LMTO)augmented by a plane-wave basis(PLW)[14]within the framework of density functional theory(DFT).Unlike the previous LMTO methods,the present version treats both the interstitial regions and the core regions on the same footing[14].The exchange correlation energy of electrons is described using both the local density approximation(LDA)[12]and the generalized gradient approximation(GGA)as parameterized by Perdew et al.[13].

    In FP-LMTO approach,the non-overlapping muffin tin spheres MTS potential is expanded in terms of spherical harmonics inside the spheres of radius RMTS,while in the interstitial region,the s,p and d basis functions are expanded in a number(NPLW)of plane waves determined automatically by the cut-off energies.The details of calculations are as follows:the charge density and the potential are represented inside the muffin-tin(MT)spheres by spherical harmonics up tolmax=6.The self-consistent calculations are considered to be converged when total energy of the system in stable within 10?4Ry,while self consistent convergence of forces was achieved to within 2×10?3Ry/bohr in ionic minimization.A total energy convergence tests are performed by varying both:plane waves’number PW and cut-off energyEcut.The number of plane waves(NPLW),total cutoff energies,and the muffin-tin radius(RMT)values used in our calculation for our material of interest are summarized in Table 1.

    The structures with cubic symmetry(αReO3-type(D09),AlFe3-type(D03),which is described as cubic close packed(CCP)cell and Cu3Au-type(L12)which is described as an ordered CCP cell),have only one structural parameter(the lattice constanta)that is used to describe the unit cell,while the CuTi3-type(L60)having tetragonal symmetry,two structural parameters(aandc/aratio)are used to describe the unit cell.

    The locations of atoms for each crystallographic configuration are also presented in Fig.1,while the positions of different atoms,as well as the space group for each of the considered structures of CaMg3are summarized in Table 2.From Fig.1,we can observe that the unit cell contains four molecules of CaMg3in D03structure,while in all other phases(D09,L12and L60)only one molecule was observed.

    Table 2Location of different atoms and space group of each type of structure of CaMg3 compound.Pm?3m:Cubic Primitive(cP),Fm?3m:Face-centered cubic(FCC),P4/mmm:Tetragonal Primitive(tP).

    Fig.1.Cubic and tetragonal crystal structures of CaMg3:Ca atoms in red,and Mg atoms in green.

    From Fig.1,we can observe that in D03structure,the Ca atoms occupy the positions of the CCP structure and the Mg atoms fill all of the octahedral voids;while in L12structure the Ca atoms occupy the cell vertices,while the Mg atoms occupy the face centers.The L12structure is just that of cubic Perovskite(CaTiO3(E21))without the Titanium atoms,and replacing the atoms of Oxygen O per those of Magnesium Mg.

    The L60structure(a=b=c)is a tetragonal distortion of L12structure(a=b=c),so whenc=a,the atoms are at the positions of a face centered cubic lattice,and with consequence L60structure becomes that of L12.

    3.Results and discussion

    3.1.Equation of state parameters

    In order to investigate the ground state parameters,the total energy at different volumes(E-V)around the equilibrium one is usually determined[15]–[17],and this is how we obtained the structural parameters of different phases of CaMg3compound in the present work.These parameters can be also predicted fromab-initiocalculation of the pressure versus unit cell volume(P-V)data[18].The equilibrium lattice volumeV0,bulk modulusB0and the pressure derivative of the bulk modulusB0have been computed by minimizing the total energy by means of Murnaghan’s equation of state(EOS),which can be expressed as[15]:

    Fig.2.Total energy versus volume for different structures of CaMg3 compound using LDA.

    Fig.3.Total energy versus volume for different phases of CaMg3 compound using GGA.

    In Eq.(1),E0is the energy of the ground state,corresponding to the equilibrium volumeV0,andB0(B0=?B/?P,atP=0)is the first pressure derivative of the bulk modulusB.The bulk modulusBdetermines the compressibility and is calculated using[16]:

    In fact,the bulk modulusBis quantity that defines the strength of bonds in solids;it is a measure of the solid resistance to external deformation[15].

    The variation of the total energy as a function of the unit cell volume was plotted in Figs.2 and 3 for different phases of CaMg3using LDA and the GGA,respectively.One can notice that CuTi3-type(L60),AlFe3-type(D03)and Cu3Autype(L12)structures have almost the same minimum energy,in both LDA and GGA,while the minimum energy ofαReO3-type(D09)structure is slightly higher in both approximations.Our results of the equilibrium structural parameters,bulk modulus and the pressure derivative of the bulk modulus of CaMg3in D03,L12,L60and B09structures are summarized in Table 3 together with those of the literature[8],[11].

    From Table 3,we can see that the lattice constanta0of both AlFe3-type(D03)and Cu3Au-type(L12)configurations are in very good agreement compared to other theoretical results[8],[11].Our value(7.482?A)obtained with GGA for cubic AlFe3-type(D03)structure overestimates the theoretical value(7.48?A)reported by Zhou and Gong,using PPPAW(GGA)[8]by less than 0.03%,and underestimates the theoretical result(7.494?A)reported by Groh using(MEAM)[11]by about 0.16%;while our obtained value(4.775?A)of cubic Cu3Au-type(L12)phase underestimates the theoretical result(4.78?A)reported by Zhou and Gong[8]by about 0.1%,and overestimates the theoretical value(4.76?A)reported by Groh[11]by about 0.32%.

    The calculated values of the bulk modulusB0of both D03and L12structures,as listed in Table 3,are slightly different from those obtained by other theoretical approaches[8],[11];where for example,our value(33.72GPa)obtained with GGA for D03structure overestimates the theoretical value(29.57GPa)reported by Zhou and Gong using PP-PAW(GGA)[8]by about 14%.To best of our knowledge,there are no other data existing in the literature on the structural parameters,bulk modulus and the pressure derivative of the bulk modulus for CaMg3compound in both L60and D09structures.Our findings regarding the structural parameters of CaMg3in both L60and D09structures phases perhaps can be used to predict most of the physical properties of this material.This is due to the fact that most of the physical quantities of compounds and alloys are related to the bonding of atoms,which is directly related to the structural parameters.

    3.2.Structural phase transition

    It is well known that high pressures influence crystal packing and electronic structure and as a result it plays an important role in materials properties,such as superconducting phenomenon,elastic properties,and structural phase transition[8].In order to get more information about the pressureinduced phase transition of crystals,we have to calculate the Gibbs free energiesGof different considered phases,which can expressed as follows[19]–[22]:

    HereE,P,V,TandSsymbolize the total internal energy,pressure,volume,temperature,and entropy,respectively.Since the present calculations were performed atT=0K,the termTSbecomes null,and with consequence,the Gibbs free energy becomes equal to the enthalpyH[19–22]:H=E+PV.For CaMg3compound,the transition pressure(Pt)between AlFe3-type(D03)configuration andαReO3-type(D09)phase were calculated using the enthalpy difference as a function of the pressure with respect to D03structure.Using both LDA and GGA,the variation of the enthalpy differences as a function of pressure are plotted in Fig.4.

    Fig.4.Variation of the enthalpy differencesH as a function of pressure for CaMg3 compound inαReO3 type(D09)phase using both LDA and GGA.The reference enthalpy in set for D03 phase.

    The transition from AlFe3-type phase(D03)toαReO3-type(D09)may occur at pressures of 29.96GPa(from LDA calculations),and 25.1GPa(from GGA calculations)as shown on Fig.4.At these pressures the enthalpies of both structures become equal;and the enthalpy differences become null.Our results of the transition pressures(Pt)are in consistence with the results of Zhou and Gong[8],which found that both AlFe3-type structure(D03)and Cu3Au-type structure(L12)transform to the hexagonal close packed HCP-type structure(A3)at pressure of around 29.47GPa and 26.44GPa,respectively.

    To best of our knowledge,there are no other data existing in the literature on the pressure-induced phase transition for CaMg3compound.Our fi ndings regarding the pressure phase transition of CaMg3compound may be used as a reference for future works.

    Table 3Structural parameters(equilibrium lattice constants a and c/a ratio),bulk modulus B0 and the pressure derivatives of the bulk modulus B0’for D09,D03,L12 and L60 phases for CaMg3 compound.a-Ref.[8]using PP-PAW(GGA),b-Ref.[11]using modifeid embedded-atom method(MEAM).

    3.3.Electronic properties

    The electronic band structures of CaMg3compound in D03structure at the calculated equilibrium lattice constants along the high symmetry directions in the Brillouin zone are presented in Fig.5,using both LDA and GGA.One of the most important tools to investigate the electronic structure of a metallic material is the Fermi surface;which represents the surface of constant energy in k-space[23].The Fermi level(EF),the dashed line in Fig.5,was set to zero energy.It is noticed that the CaMg3in D03structure has a metallic behavior since a number of valance and conduction bands are overlapping at the Fermi level,and no band gaps exist.

    Elastic constants,engineering moduli and several other related physical properties are directly related with the nature of atomic bonding in material,which can be analyzed and explained using both the total density of states(DOS)and the local density of states(LDOS)[24],[25].The electronic density of states(EDOS)elucidates the electronic features of materials(elements,compounds,alloys,etc.)[26],the total density of states(TDOS)and partial density of states(PDOS)of CaMg3in D03structure are calculated and presented in Fig.6.This fi gure shows that the lowest lying bands are due to mainly‘s’like states of Ca and do not contribute much to bonding.The valence bands in the energy range between 2eV,and 3eV are dominated by the maximum contribution of‘d’like states of Ca for GGA approximation,and between 4.5 and 5eV are dominated by the maximum contribution of‘d’like states of Ca using the LDA approximation.

    Fig.5.Band structure of CaMg3 compound in D03 structure using both LDA and GGA approaches.

    Fig.6.Density of states(TDOS and PDOS)of CaMg3 in D03 structure using both LDA and GGA.

    Moreover,the DOS at Efof CaMg3in D03phase were calculated,they are to be around 0.469 and 0.454 using the LDA and GGA,respectively.Our obtained values agree well with the results of Zhou and Gong[8].The differences are around-0.061 and-0.076 using LDA and GGA,respectively.

    Table 4Calculated Cij B,GV,GR,GH,E are all expressed in GPa,ν,A and G/B are without unity.Values with§are calculated using Cij of Ref.[8],while those with?are calculated using Cij of Ref.[11].

    3.4.Elastic properties

    3.4.1.Elastic constants,some aggregate moduli and Vickers hardness

    The formation of solids is governed by the forces between the atoms,ions,and/or molecules,which are related to both the structural parameters of its crystal structure and to its chemical composition[27].The elastic properties play an important role in the structural stability and stiffness of materials.In cubic structures,as in the case of D03structure of CaMg3compound,there are three independent elastic stiffness constants,namely:C11,C12and C44,that were obtained in the present work by calculating the total energy as a function of strain[16],[28].The determination of the elastic constantsCijneeds the knowledge of the nature of the strain,which is expressed as follow[16]:

    Applying this tensor strain modifies the total energy from its unstrained value to the following expression[16]:

    whereE(0)is the energy of the unstrained lattice of unit cell volumeV0.

    The identification ofC44is through the volume-conserving tetragonal strain tensor[16]:

    The total energy is given as follow[16]

    Our results of the elastic constants(C11,C12and C44)obtained from both LDA and GGA approximations are presented in Table 4.Except of two theoretical works based on DFT and MEAM,by Zhou and Gong[8]and Groh[11],respectively,there are no other theoretical or experimental values available,to the best of our knowledge,for the elastic constants of CaMg3in D03phase.Using the calculated values of the elastic constants,other elastic parameters can be calculated such as:bulk modulusB,Voigt,Reuss and Hill shear moduli(GV,GR,GH),Young’s modulusE,Poisson’s ratioν,anisotropy factorAand Pugh’s ratio(G/B)using the following equations[16],[28],[29]:

    Our results of the elastic stiffness constantsCijand the other elastic parameters above obtained for D03phase of CaMg3phase using both LDA and GGA approximations are presented in Table 4.Except of two theoretical works based on DFT and MEAM,realized by Zhou and Gong[8]and Groh[11],respectively,to the best of our knowledge,there are no other theoretical or experimental values available for the elastic constants of CaMg3in D03phase.

    A look on Table 4,shows that the calculated elastic constantsCijsatisfied elastic stability criteria:(C11-C12)>0,C11>0,C44>0,(C11+2C12)>0,C12

    Another note,from Table 4,that our values of the elastic stiffness constantCijand other elastic moduli of CaMg3compound in D03structure are in excellent agreement with the results of Zhou and Gong[8]and Groh[11],except for C44,where for example,our value(29.77 GPa)of the bulk modulusBobtained with GGA overestimates the theoretical value(29.57?A)reported by Zhou and Gong[8]by around 0.68%.

    The Poisson’s ratioνis small(usuallyv<0.1)for covalent materials,while for ionic materials,v is 0.25[33],[34].Therefore,in CaMg3compound in D03structure(wherev~0.20),a higher ionic contribution in an intra-atomic bonding is expected.

    Young’s modulusEis an important indicator on elasticity;materials having higher values ofE,are more stiffer.Our obtained value ofEfor CaMg3compound in D03phase was found at around 55.94GPa using LDA,and 53.39GPa using GGA,respectively.These two values are slightly higher than the Young modulus(41.43GPa)reported by Daoud et al.[35]for MgCa in B2 phase.

    On the other hand,the shear modulusG,which can be obtained from the measure of resistance to the reversible deformation under the applied shearing stress,plays a dominant role in predicting the hardness of the material[36].The Pugh’s ratioG/Bhas been extensively used as an empirical parameter to express the brittleness/ductility of materials[8].The critical value ofG/Bratio that separates the brittle/ductile behavior is 0.57(B/G=1.75);a largerG/Bvalue means more brittleness,and vice versa[8].It can be seen from Table 4 that our values ofG/Bratio obtained using both LDA and GGA for CaMg3compound in D03structure are in good agreement with the results of Zhou and Gong[8].The values ofG/Bratio are greater than 0.57,indicating the brittleness nature of CaMg3compound in D03phase.This conclusion was also confirmed from the values of the Poisson’s ratio(v~0.20)which is smaller than the critical valuev=0.26[16].It should be noted that,if we use the elastic stiffness constant Cijobtained by Groh[11],a value of~0.48 for the G/B ratio will be found.

    Liu et al.[37]reported that the ductility is a shear-related mechanical property of material,it is associated with both the elastic constant C44and the density of states(DOS)at Fermi energy,while Daoud et al.[35]showed an anti-correlation between the elastic constant C44and the DOS at Fermi energy in MgCa intermetallic compound under compression.This anti-correlation perhaps explained by the fact that as the total DOS at Fermi level increases covalent/ionic behavior,gradually transformed into metallic behavior,thus turning the brittle phase into a ductile one[35].

    The Vickers hardnessHVmeasurement is one of the most techniques used in the mechanical characterization of the materials[35].Like refractive index and density,hardness is a intrinsic property of the given crystal[36].The Vickers hardnessHV,the bulk modulusBand the shear modulusGare related by the empirical formula[35]:

    Using our values of the bulk modulusBand the shear modulusGobtained from the LDA and GGA,the present results of the Vickers hardnessHVfor CaMg3compound in D03phase are:5.80 and 5.93GPa,respectively.These two values are slightly higher than the Vickers hardnessHV(4.82GPa)of MgCa intermetallic compound in B2 phase[35].As far as we know,there are no data available related to Vickers hardnessHVin the literature for CaMg3in D03phase,therefore our calculated values can be considered as prediction for this property for this material.

    3.4.2.Elastic wave speeds and Debye temperature

    The Debye temperatureθDparameter is related to many important physical properties of solids,such as specific heat and melting temperature[32].It is either measured from the elastic constants,or from the specific heat measurement[38].However,at low temperatures both methods give almost the same value ofθD,since at low temperature the vibrational excitations arise from acoustic modes only.The Debye temperatureθDmay be estimated from the average sound velocityvmby the following equation[16]:

    wherehis Plank’s constant,kBBoltzmann’s constant,andVais the atomic volume.

    Usually,the average sound velocityvmof the aggregate material can be calculated from the longitudinal(compressed)vland transverse(shear)vtsound velocities as follows[39],[40]

    The crystal densityρis usually expressed in g/cm3(or in kg/m3);it is given as follow[41–43]

    whereMis the molecular weight,usually expressed in 10?3kg,Zis the number of molecules per unit cell,NA(=6.022×1023mol?1)is the Avogadro’s number,whileVis the unit cell volume usually expressed in m3.For CaMg3compound in D03phase,the number of molecules per unit cellZwas taken equal to four,and the unit cell volumeVwas taken equal toa3,whileais lattice constant.Adachi[44]has mentioned that the lattice parameters are related to the pressure by Murnaghan equation of state,and they are influenced by the crystalline perfection,such as:impurities,stoichiometry,dislocations and surface damage.Table 5 summarize the results of the crystal densityρ,the average elastic wave velocityvm,the longitudinal wave velocityvland the transverse acoustic wave velocityvtas well as the Debye temperatureθDof CaMg3compound in D03phase,which could not be compared due to unavailability of the measured data.

    A look on Table 5,the Debye temperatureθDof CaMg3in D03phase was found at around 393.44K using LDA,and 389.91K using GGA,respectively.Since the Debye temperatureθDcorrelates with the Young’s modulusEin cubic perovskite-type RBRh3(R are Sc,Y,La and Lu)materials[45],these two values ofθDare also slightly higher than the Debye temperatureθD(328.65K)reported by Daoud et al.[35]for MgCa in B2 phase.Although this rationalization may be useful for chemically related compounds,compounds that are significantly different in chemical nature perhaps should not be necessary expected to follow the same correlation.

    Table 5Crystal densityρ,sound velocities vl,vt,vm Debye temperatureθD and the limiting angular vibrational frequencyωD for CaMg3 compound in D03 phase.Values with§are calculated using the data of Ref.[8],while those with?are calculated using the data of Ref.[11].

    We have also calculated the Debye temperatureθDfor CaMg3in D03phase using a semi-empirical formula betweenθDand elastic constantsCijfirst proposed by Blackmann[46],and latter used by Siethoff and Ahlborn[47]after improvements for several crystals with different structures.This semiempirical formula can be written as[48]

    whereais the lattice constant,Mis the atomic weight(for compounds,Mis the weighted arithmetical average of the masses of the species),andCB=3.89×1011×n–1/6h/kBis a model parameter.In this model parameter,h(=6.62617×10?34J.s),kB(=1.38062×10?23J.K?1)andnare Planck’s constant,Boltzmann’s constant and the number of atoms in the unit cell,respectively.More details can be found in Refs.[48].

    Using Eq.(19),the Debye temperatureθDof CaMg3in D03phase was found at around 417.16K using LDA,and 408.91K using GGA,respectively.These two values ofθDare slightly higher than the values 393.44K(LDA)and 389.91K(GGA)obtained from Eq.(16).

    From Debye temperature one can estimate the Debye cutoff frequency(the limiting angular vibrational frequency)ωDby the following expression[49]:

    wherekBis Boltzmann’s constant,and?=h/2π,his Planck’s constant.

    Substituting the values(393.44K,and 389.91K)of the Debye temperatureθD,obtained from the LDA and GGA,in Eq.(20),the present results of the limiting angular vibrational frequencyωDfor CaMg3compound in D03phase are:5.93×1013and 5.88×1013rad/s,respectively.These results as well as those calculated from the data of Refs.[8],[11]are also summarized in Table 5.

    The same as in the case of the elastic constants and the structural parameters,the longitudinal,transverse and average sound velocities as well as the Debye temperature of our material of interest are in excellent agreement with those calculated using the data of Ref.[8]obtained from the same approach(DFT).To the best of our knowledge,there are no other theoretical or experimental data existing in the literature on the sound velocity,Debye temperature,and Debye cut-off frequency for CaMg3in D03structure.So,we think that our findings regarding these quantities can be used to predict and explain most of the physical properties of this material.

    4.Conclusion

    In this work,we have investigated the equilibrium structural parameters of CaMg3compound inαReO3-type(D09),AlFe3-type(D03),Cu3Au-type(L12)and CuTi3-type(L60)configurations using anab-initioFP-LMTO method,within both local density approximation(LDA),and generalized gradient approximation(GGA).At equilibrium our results for the EOS parameters,in general,agreed well with other data of the literature.

    The results of the present work concerned with the possibility of phase transition at high pressure show that CaMg3transforms from AlFe3-type structure(D03)toαReO3-type(D09)at pressure of around 29.96GPa using LDA,and at around 25.1GPa using the GGA.

    Both LDA and GGA approaches for the electronic band structures,the total density of states(TDOS)as well as the partial density of states(PDOS)showed that CaMg3in D03phase has a metallic behavior.

    The elastic constants,Young’s modulus,shear modulus,Poisson’s ratio,index of ductility,Vickers hardness,sound velocities,Debye temperature,and the limiting angular vibrational frequency of CaMg3in D03phase were also reported.Our findings on the elastic constants were also in agreed well with other theoretical data of the literature.

    一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 日日摸夜夜添夜夜爱| www日本在线高清视频| 亚洲国产欧美日韩在线播放| 捣出白浆h1v1| 深夜精品福利| 熟女电影av网| 亚洲成国产人片在线观看| 国产av国产精品国产| 一级黄片播放器| 久久精品熟女亚洲av麻豆精品| 美女脱内裤让男人舔精品视频| 五月伊人婷婷丁香| 黄色怎么调成土黄色| 丝袜脚勾引网站| 九九爱精品视频在线观看| 国产午夜精品一二区理论片| 亚洲av国产av综合av卡| 成人18禁高潮啪啪吃奶动态图| 国产片特级美女逼逼视频| 极品少妇高潮喷水抽搐| 亚洲第一区二区三区不卡| 国产一区二区在线观看av| 高清不卡的av网站| 亚洲美女搞黄在线观看| 欧美日韩综合久久久久久| 99热国产这里只有精品6| 亚洲情色 制服丝袜| 少妇 在线观看| 国产成人精品一,二区| 午夜福利在线免费观看网站| 亚洲av.av天堂| 一二三四中文在线观看免费高清| 国产无遮挡羞羞视频在线观看| 免费看不卡的av| 美女大奶头黄色视频| 亚洲国产欧美在线一区| 人妻人人澡人人爽人人| 国产成人精品一,二区| 亚洲第一区二区三区不卡| 成人国产av品久久久| 国产精品久久久久久精品电影小说| 国产野战对白在线观看| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 丝袜美足系列| 新久久久久国产一级毛片| 亚洲经典国产精华液单| 亚洲一级一片aⅴ在线观看| 亚洲欧美一区二区三区久久| 午夜影院在线不卡| 亚洲欧美精品自产自拍| 国产亚洲午夜精品一区二区久久| 亚洲国产精品成人久久小说| 国产不卡av网站在线观看| 蜜桃在线观看..| h视频一区二区三区| 成年动漫av网址| 美女午夜性视频免费| 国产成人一区二区在线| 波野结衣二区三区在线| 人成视频在线观看免费观看| 一区二区三区精品91| 精品久久久久久电影网| 国产亚洲午夜精品一区二区久久| 国产成人免费无遮挡视频| 亚洲欧美精品综合一区二区三区 | 国产成人精品在线电影| 婷婷色麻豆天堂久久| 美女国产视频在线观看| 亚洲精品国产av成人精品| 极品少妇高潮喷水抽搐| 美女大奶头黄色视频| 国产精品 欧美亚洲| 少妇 在线观看| 1024香蕉在线观看| 汤姆久久久久久久影院中文字幕| 亚洲精品av麻豆狂野| 久久久久久久国产电影| 一级毛片黄色毛片免费观看视频| 亚洲欧洲日产国产| 亚洲成人一二三区av| 在线天堂中文资源库| 免费播放大片免费观看视频在线观看| 日韩免费高清中文字幕av| 精品亚洲成国产av| 这个男人来自地球电影免费观看 | 一区二区三区激情视频| 欧美最新免费一区二区三区| 国产成人精品婷婷| 亚洲欧美日韩另类电影网站| 在线天堂中文资源库| 搡女人真爽免费视频火全软件| videossex国产| 精品亚洲成a人片在线观看| 国产精品av久久久久免费| 国产97色在线日韩免费| 九色亚洲精品在线播放| 国产在线视频一区二区| 中国三级夫妇交换| 久久精品夜色国产| 成人亚洲精品一区在线观看| av网站在线播放免费| 水蜜桃什么品种好| 黄色配什么色好看| 日韩不卡一区二区三区视频在线| 在现免费观看毛片| 亚洲,欧美精品.| 国产精品无大码| 一区二区三区四区激情视频| 亚洲国产毛片av蜜桃av| 久久免费观看电影| 亚洲精品av麻豆狂野| 伊人久久国产一区二区| 免费女性裸体啪啪无遮挡网站| 精品午夜福利在线看| 曰老女人黄片| 国产一区二区三区综合在线观看| 日韩大片免费观看网站| 韩国av在线不卡| 欧美日本中文国产一区发布| 精品国产一区二区久久| 国产精品免费视频内射| 90打野战视频偷拍视频| 日韩中文字幕视频在线看片| 一区二区三区激情视频| 女性生殖器流出的白浆| 一级毛片 在线播放| 国产精品熟女久久久久浪| 国产精品香港三级国产av潘金莲 | 国产免费福利视频在线观看| 成人漫画全彩无遮挡| 欧美 日韩 精品 国产| 久久久国产精品麻豆| 亚洲av.av天堂| 亚洲av中文av极速乱| www.精华液| 校园人妻丝袜中文字幕| 欧美 亚洲 国产 日韩一| 街头女战士在线观看网站| 一区二区av电影网| 少妇的丰满在线观看| 国产精品一区二区在线不卡| 国产精品一区二区在线不卡| 久久精品国产综合久久久| 超碰97精品在线观看| 日韩欧美一区视频在线观看| 成人毛片a级毛片在线播放| 精品一区二区三区四区五区乱码 | 久久久国产欧美日韩av| 日韩熟女老妇一区二区性免费视频| 久久99精品国语久久久| 亚洲内射少妇av| 高清欧美精品videossex| 女人高潮潮喷娇喘18禁视频| 亚洲精品一二三| 五月伊人婷婷丁香| 丝袜脚勾引网站| 91精品三级在线观看| 精品国产一区二区久久| 丝袜脚勾引网站| 精品少妇黑人巨大在线播放| 欧美精品国产亚洲| 女的被弄到高潮叫床怎么办| 日韩人妻精品一区2区三区| 最近中文字幕高清免费大全6| 国产在线一区二区三区精| 男女免费视频国产| 啦啦啦在线免费观看视频4| 涩涩av久久男人的天堂| 亚洲av欧美aⅴ国产| 久久综合国产亚洲精品| 欧美av亚洲av综合av国产av | 国产高清国产精品国产三级| 老熟女久久久| 欧美日韩成人在线一区二区| 国产精品熟女久久久久浪| 尾随美女入室| 国产麻豆69| 男人爽女人下面视频在线观看| 国产精品不卡视频一区二区| av又黄又爽大尺度在线免费看| 精品少妇一区二区三区视频日本电影 | 亚洲精品在线美女| 久久这里有精品视频免费| 欧美激情 高清一区二区三区| 国产毛片在线视频| 久久国产精品大桥未久av| 国产精品无大码| 精品第一国产精品| 国产精品99久久99久久久不卡 | 欧美变态另类bdsm刘玥| 永久网站在线| 亚洲av男天堂| 精品国产国语对白av| 狠狠精品人妻久久久久久综合| 亚洲成av片中文字幕在线观看 | av在线播放精品| 国产精品久久久久久久久免| 一级毛片黄色毛片免费观看视频| 亚洲 欧美一区二区三区| 欧美av亚洲av综合av国产av | 久久99热这里只频精品6学生| 国产亚洲精品第一综合不卡| 99香蕉大伊视频| 一级毛片我不卡| 国产成人午夜福利电影在线观看| 亚洲一级一片aⅴ在线观看| 天堂俺去俺来也www色官网| 亚洲经典国产精华液单| 人人妻人人添人人爽欧美一区卜| 一级爰片在线观看| 最新中文字幕久久久久| 人妻系列 视频| 夫妻性生交免费视频一级片| 看免费av毛片| 少妇被粗大的猛进出69影院| 各种免费的搞黄视频| 日韩中文字幕欧美一区二区 | 捣出白浆h1v1| 国产亚洲最大av| 极品少妇高潮喷水抽搐| 欧美bdsm另类| 久久人人爽人人片av| 午夜福利在线免费观看网站| 91在线精品国自产拍蜜月| 巨乳人妻的诱惑在线观看| 日本午夜av视频| 午夜激情av网站| 亚洲av电影在线进入| 欧美另类一区| 国产精品久久久av美女十八| 日韩精品有码人妻一区| 黄网站色视频无遮挡免费观看| 最近中文字幕2019免费版| 制服人妻中文乱码| 免费黄频网站在线观看国产| 欧美日韩精品成人综合77777| 亚洲欧美中文字幕日韩二区| 大陆偷拍与自拍| 久久综合国产亚洲精品| 少妇被粗大的猛进出69影院| av网站在线播放免费| 九九爱精品视频在线观看| freevideosex欧美| 免费日韩欧美在线观看| 日韩熟女老妇一区二区性免费视频| √禁漫天堂资源中文www| 熟妇人妻不卡中文字幕| 超色免费av| 婷婷色综合www| 99re6热这里在线精品视频| 精品久久蜜臀av无| 亚洲av在线观看美女高潮| 婷婷色麻豆天堂久久| 高清欧美精品videossex| 日韩,欧美,国产一区二区三区| 午夜久久久在线观看| 亚洲少妇的诱惑av| 少妇人妻 视频| 少妇人妻精品综合一区二区| 在线看a的网站| 亚洲成人手机| 日韩,欧美,国产一区二区三区| √禁漫天堂资源中文www| 男女午夜视频在线观看| 日韩制服骚丝袜av| 美女视频免费永久观看网站| 国产精品国产三级专区第一集| 亚洲av免费高清在线观看| 伦理电影大哥的女人| 久久影院123| 久久狼人影院| 一本色道久久久久久精品综合| 美女视频免费永久观看网站| 成人手机av| 久久久久视频综合| 国产亚洲一区二区精品| 永久免费av网站大全| 午夜日韩欧美国产| 久久精品国产亚洲av涩爱| 一边亲一边摸免费视频| 亚洲国产毛片av蜜桃av| 中国三级夫妇交换| 国产亚洲精品第一综合不卡| 性少妇av在线| 韩国av在线不卡| 亚洲欧美精品自产自拍| 春色校园在线视频观看| 久久久久久久久久人人人人人人| 热re99久久国产66热| 中文字幕人妻丝袜一区二区 | av不卡在线播放| 女性生殖器流出的白浆| 在线观看美女被高潮喷水网站| 久久这里有精品视频免费| 成人国语在线视频| 欧美成人午夜免费资源| 又大又黄又爽视频免费| 亚洲精品国产av蜜桃| 亚洲精品久久久久久婷婷小说| 超碰成人久久| 大陆偷拍与自拍| 免费观看无遮挡的男女| 国产一区有黄有色的免费视频| 十八禁网站网址无遮挡| 婷婷成人精品国产| 亚洲久久久国产精品| 成人国语在线视频| 亚洲av综合色区一区| 精品国产一区二区三区久久久樱花| 亚洲av男天堂| 丝袜脚勾引网站| 亚洲男人天堂网一区| 免费高清在线观看视频在线观看| 精品第一国产精品| 美女视频免费永久观看网站| 熟女电影av网| 91久久精品国产一区二区三区| 婷婷色av中文字幕| 夫妻性生交免费视频一级片| 国产亚洲欧美精品永久| 国产日韩欧美视频二区| 精品酒店卫生间| 国产精品人妻久久久影院| 国产精品一二三区在线看| av有码第一页| 有码 亚洲区| 欧美 日韩 精品 国产| 寂寞人妻少妇视频99o| 两个人看的免费小视频| 老熟女久久久| 哪个播放器可以免费观看大片| 麻豆精品久久久久久蜜桃| 中文天堂在线官网| 国产精品久久久久久精品电影小说| 天堂中文最新版在线下载| 午夜日韩欧美国产| 久久久欧美国产精品| 亚洲激情五月婷婷啪啪| 国产精品二区激情视频| 男人操女人黄网站| 卡戴珊不雅视频在线播放| 亚洲美女搞黄在线观看| 欧美精品人与动牲交sv欧美| 亚洲色图综合在线观看| 日韩视频在线欧美| 黄片无遮挡物在线观看| 9色porny在线观看| 如何舔出高潮| 亚洲精品aⅴ在线观看| 人人澡人人妻人| 十八禁高潮呻吟视频| 亚洲一区二区三区欧美精品| 国产成人a∨麻豆精品| 国产不卡av网站在线观看| 黑人猛操日本美女一级片| 一区福利在线观看| 国产精品欧美亚洲77777| 精品一区二区三卡| 可以免费在线观看a视频的电影网站 | 亚洲,一卡二卡三卡| 尾随美女入室| 丰满迷人的少妇在线观看| 国产亚洲av片在线观看秒播厂| 在线观看免费日韩欧美大片| 飞空精品影院首页| 欧美日韩精品成人综合77777| 欧美亚洲日本最大视频资源| 欧美日韩精品成人综合77777| 欧美 日韩 精品 国产| 婷婷色综合大香蕉| 久久久久久久国产电影| 最新中文字幕久久久久| 精品人妻一区二区三区麻豆| 成年女人毛片免费观看观看9 | 亚洲欧美中文字幕日韩二区| 视频在线观看一区二区三区| 亚洲精品在线美女| 26uuu在线亚洲综合色| 飞空精品影院首页| av福利片在线| 亚洲少妇的诱惑av| 777米奇影视久久| 国产淫语在线视频| www.熟女人妻精品国产| 欧美黄色片欧美黄色片| 精品少妇久久久久久888优播| 国产精品二区激情视频| 在线观看免费高清a一片| 国产精品一区二区在线观看99| 国产成人a∨麻豆精品| 午夜福利在线免费观看网站| 欧美 亚洲 国产 日韩一| 在线看a的网站| 欧美日韩av久久| 男的添女的下面高潮视频| 曰老女人黄片| 免费高清在线观看视频在线观看| 国产精品久久久久久久久免| 日韩制服骚丝袜av| 久久国产精品男人的天堂亚洲| xxx大片免费视频| 成年女人在线观看亚洲视频| 亚洲精品国产色婷婷电影| 18禁国产床啪视频网站| 午夜免费鲁丝| 波野结衣二区三区在线| 欧美国产精品va在线观看不卡| 大话2 男鬼变身卡| 国产精品久久久久久精品电影小说| 久久久久久久久久久久大奶| 麻豆乱淫一区二区| 男人操女人黄网站| 亚洲国产精品国产精品| 可以免费在线观看a视频的电影网站 | 99re6热这里在线精品视频| 亚洲色图综合在线观看| 99国产综合亚洲精品| 欧美 亚洲 国产 日韩一| 交换朋友夫妻互换小说| 少妇熟女欧美另类| 最黄视频免费看| 久久人人97超碰香蕉20202| 国产成人91sexporn| 日本91视频免费播放| 一级片'在线观看视频| 国产午夜精品一二区理论片| 日本爱情动作片www.在线观看| 九草在线视频观看| 咕卡用的链子| 伊人亚洲综合成人网| 亚洲欧美日韩另类电影网站| 日韩中字成人| 久久久国产欧美日韩av| 男女国产视频网站| 国产精品二区激情视频| 精品国产国语对白av| 国产成人精品久久久久久| 亚洲欧美精品综合一区二区三区 | 九色亚洲精品在线播放| 如日韩欧美国产精品一区二区三区| 国产欧美日韩一区二区三区在线| 欧美av亚洲av综合av国产av | 亚洲精品成人av观看孕妇| 只有这里有精品99| 伊人久久大香线蕉亚洲五| 一本色道久久久久久精品综合| 一区福利在线观看| 色视频在线一区二区三区| 亚洲国产欧美网| 精品酒店卫生间| 久久韩国三级中文字幕| 亚洲av日韩在线播放| 一级黄片播放器| 日韩中字成人| 亚洲欧美色中文字幕在线| www.精华液| 亚洲久久久国产精品| 午夜日韩欧美国产| 男的添女的下面高潮视频| 啦啦啦啦在线视频资源| 久久这里只有精品19| 国产色婷婷99| 青青草视频在线视频观看| 国产免费现黄频在线看| 欧美国产精品va在线观看不卡| freevideosex欧美| 九九爱精品视频在线观看| 在线观看三级黄色| 亚洲,欧美,日韩| 少妇猛男粗大的猛烈进出视频| 日本-黄色视频高清免费观看| 97人妻天天添夜夜摸| 久久精品亚洲av国产电影网| www.自偷自拍.com| 亚洲精品国产一区二区精华液| 亚洲欧美成人精品一区二区| 啦啦啦视频在线资源免费观看| 欧美日韩一区二区视频在线观看视频在线| 亚洲欧美日韩另类电影网站| 国产国语露脸激情在线看| 天天躁狠狠躁夜夜躁狠狠躁| 国产亚洲最大av| 亚洲中文av在线| 成人18禁高潮啪啪吃奶动态图| 日韩电影二区| 成人漫画全彩无遮挡| 久久久久久久久久久免费av| 欧美国产精品va在线观看不卡| 欧美日韩成人在线一区二区| 国产乱人偷精品视频| 国产成人精品婷婷| 精品少妇黑人巨大在线播放| 春色校园在线视频观看| 免费人妻精品一区二区三区视频| 国产乱人偷精品视频| √禁漫天堂资源中文www| 国产欧美亚洲国产| 老司机影院成人| 欧美亚洲 丝袜 人妻 在线| 欧美成人午夜免费资源| 夫妻午夜视频| 国产在线免费精品| 下体分泌物呈黄色| 精品国产乱码久久久久久小说| 久久久a久久爽久久v久久| www.熟女人妻精品国产| 成人亚洲精品一区在线观看| 欧美日韩精品网址| 婷婷色综合大香蕉| 男人添女人高潮全过程视频| 综合色丁香网| 中文字幕人妻丝袜制服| 亚洲精品在线美女| 久久久久视频综合| 亚洲久久久国产精品| 高清欧美精品videossex| 国产精品偷伦视频观看了| 男女午夜视频在线观看| 亚洲av电影在线观看一区二区三区| 亚洲在久久综合| 丰满迷人的少妇在线观看| 欧美+日韩+精品| 黄色怎么调成土黄色| 欧美黄色片欧美黄色片| 国产精品 欧美亚洲| 日韩欧美一区视频在线观看| 自拍欧美九色日韩亚洲蝌蚪91| av在线老鸭窝| 国产一区亚洲一区在线观看| 国产乱人偷精品视频| 亚洲欧洲国产日韩| 亚洲av综合色区一区| 如日韩欧美国产精品一区二区三区| 曰老女人黄片| 2022亚洲国产成人精品| a 毛片基地| 国产黄色免费在线视频| 亚洲五月色婷婷综合| 国产精品偷伦视频观看了| 婷婷成人精品国产| 99热国产这里只有精品6| 精品亚洲乱码少妇综合久久| 中国三级夫妇交换| 亚洲三级黄色毛片| 男女国产视频网站| 中文字幕人妻丝袜一区二区 | 99九九在线精品视频| 国产有黄有色有爽视频| 免费日韩欧美在线观看| 亚洲av国产av综合av卡| 丁香六月天网| 校园人妻丝袜中文字幕| 天天操日日干夜夜撸| 国产爽快片一区二区三区| 国产男女内射视频| 国产一区二区激情短视频 | 久久精品久久久久久噜噜老黄| 精品一品国产午夜福利视频| 久久 成人 亚洲| 精品福利永久在线观看| 999久久久国产精品视频| 亚洲精品国产一区二区精华液| 五月开心婷婷网| 一二三四在线观看免费中文在| 日本vs欧美在线观看视频| 午夜福利,免费看| 欧美国产精品va在线观看不卡| 五月伊人婷婷丁香| 精品人妻在线不人妻| av卡一久久| 亚洲精品视频女| 久久精品国产鲁丝片午夜精品| 亚洲av电影在线观看一区二区三区| av.在线天堂| 欧美日韩亚洲高清精品| 国产精品免费大片| 夫妻性生交免费视频一级片| 激情视频va一区二区三区| 一本色道久久久久久精品综合| 久久久久精品人妻al黑| 亚洲国产色片| 国产麻豆69| 欧美黄色片欧美黄色片| 亚洲精品日本国产第一区| 一区二区av电影网| 黄片小视频在线播放| 国产精品嫩草影院av在线观看| 观看av在线不卡| 亚洲人成网站在线观看播放| 久久精品国产综合久久久| 一区二区三区精品91| 国产色婷婷99| 色播在线永久视频| 最新的欧美精品一区二区| 午夜影院在线不卡| 少妇猛男粗大的猛烈进出视频| 欧美亚洲 丝袜 人妻 在线| 国产又爽黄色视频| 高清不卡的av网站| 2022亚洲国产成人精品| 一级爰片在线观看| 国产精品久久久久久av不卡| freevideosex欧美| 国产免费又黄又爽又色| 免费观看无遮挡的男女| 国产精品国产三级专区第一集| 日本欧美视频一区| 99久久综合免费| 午夜av观看不卡| 国产av一区二区精品久久| 中文字幕精品免费在线观看视频| 日韩伦理黄色片| 尾随美女入室|