• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Study of Mg–Al–Ca magnesium alloy ameliorated with designed Al8Mn4Gd phase

    2021-01-04 04:54:56ChoshengWenboYuXufengPiAntoineGuitton
    Journal of Magnesium and Alloys 2020年4期

    Chosheng M,Wenbo Yu,?,Xufeng Pi,Antoine Guitton

    a School of Mechanical and Electronic Control Engineering,Beijing JiaoTong University,Beijing,China

    b Universitéde Lorraine–CNRS–Arts et Métiers ParisTech–LEM3,F-57000 Metz,France

    c Laboratory of Excellence on Design of Alloy Metals for low-mAss Structures(DAMAS),Universitéde Lorraine,F-57073 Metz,France

    Received 28 April 2020;received in revised form 27 July 2020;accepted 4 August 2020 Available online 22 September 2020

    Abstract To investigate the effect of Al8Mn4Gd phase on microstructural and mechanical properties of Mg–Al–Ca magnesium alloy,two Mg–2.5Al2Ca and Mg–2.5Al2Ca-0.1Al8Mn4Gd alloys were designed and compared in this work.The results show that a small amount of Gd can significantly refineα-Mg grains and change the morphology of Al2Ca particles.Indeed,the formed Al8Mn4Gd phase could serve as a heterogeneous nucleation site for theα-Mg grains and Al2Ca particles.Furthermore,the introduction of Gd not only optimized the mechanical properties of Mg–Al–Ca alloy,but also facilitated the thermal deformation(such as hot rolling).

    Keywords:Mg–Al–Ca alloy;Al8Mn4Gd phase;Microstructure and mechanical properties;Hot rolling.

    1.Introduction

    Magnesium alloy castings have a great advantage in vehicle light-weighting,and aerospace engineering due to the low density,short processing cycle and assembly costs,which have attracted numerous studies[1–8].As AZ series of magnesium alloy exhibits soften behavior at elevated temperature,Mg–Al–Ca alloys was developed to evaluate the mechanical properties due to the low price,texture weakening and good ignition resistance[9–11].However,the poor plastic deformation ability and mechanical properties of as-cast Mg–Al–Ca alloys are challenges still to be addressed yet.

    In cast Mg–Al–Ca alloys,the typical microstructure contains two phases:α-Mg grains andβ-Al2Ca[12].Consequently,the most effective way to improve mechanical properties of Mg–Al–Ca based alloy is to modifyβ-Al2Ca by alloying with Mn,Zn,Si,Sr and Rare Earth(RE)elements,etc.[13–16].The modification mechanism is that the new formed particles could provide the nucleation site for the second phase.To fulfill this step,the particle should firstly form and exhibit one good crystallographic match with the second phase during solidification.For example,Li et al.[17]reported that introduction of manganese(Mn)into the as-cast Mg-5.5Al-3Ca wt.% alloys resulted in the formation of Al8Mn5phase and increased the yield strength of the alloy from 366MPa to 402MPa.However,Mn addition has no refining effect on the microstructure of the as-cast alloys.Nakata et al.[18]reported that only 1% of Zn addition could significantly improve both strength and ductility of rolled Mg-8Al-1Ca-0.3Mn(AX81)alloy sheet.This is because that introduction of Zn facilitated the formation of homogeneous grain structure and isotropic basal texture.Son et al.[19]found that samarium(Sm)addition resulted in a microstructure composed of equiaxed and refined grains and grain sizes in Mg-5 wt%Al-3 wt% Ca-based alloys.

    Recently,Li et al.[20]found that the formation of Al8Mn4Gd phase in AZ91 alloy could significantly refineα-Mg grains and Mg17Al12particles,as Al8Mn4Gd phase can act as the heterogeneous nucleation site.However,so far,there are few reports about the effect of Al8Mn4Gd phase in Mg–Al–Ca alloy.Therefore,in the present work,two Mg-2.5Al2Ca and Mg-2.5Al2Ca-0.1Al8Mn4Gd alloys were designed and compared for investigating the effect of Al8Mn4Gd phase on microstructural and mechanical properties of Mg–Al–Ca magnesium alloy.

    2.Experimental procedure

    The mold and all tools of gravity casting were firstly preheated up to 250°C for removing the moisture.The electric resistance furnace was used to melt 1kg pure Mg and Al together in a steel crucible protected under the protection a mixture gas of CO2and SF6,pure Mg and Al were heated to be melt in one electric resistance furnace.Subsequently,MgGd30and MgMn was used as master alloys for introducing Gd and Mn element.Then Ca was introduced through CaAl20master alloys.The melt was continuously held and stirred at 720°C for 20min after complete melting,homogeneous melt Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy was finally obtained and was poured into a pre-heated steel mold at 250°C.The nominal composition of experimental alloys was given in Table 1.

    Table 1Nominal composition of experimental alloys(wt.%).

    Samples for observation were ground with silicon carbide and then successively polished with 6μm,3μm,1μm and 0.25μm diamond suspensions.To avoid the work-hardening caused by conventional grinding,a chemo-mechanical polishing was performed using Al2O3(particle size:0.04μm)suspension.A diluted acetic acid solution comprising 50mL distilled water,150mL anhydrous ethyl alcohol and 1mL glacial acetic acid was used to etch the specimen surface.Scanning Electron Microscope(SEM)observation(Zeiss Merlin Germany)and X-Ray Diffraction(XRD)using Bruker D8 diffractometer(Karlsruhe,Germany)with Cu-Kαradiation were adopted to perform the microstructural observation and phase identification.

    Tensile test was performed on a universal servo-hydraulic mechanical testing machine(Instron 5600,Norwood,MA)equipped with a knife-edge extensometer with a strain rate of 1mm/min at room temperature in air.The samples were fabricated following GB/T228.1–2010 flat specimen standard.The dimensions were 85mm in overall length and 35mm in gauge length,25mm width and 15mm in thickness.Each test was repeated six times for each composite in order to evaluate the corresponding mechanical properties.

    Fig.1.Optical(top)and SEM(below)Morphologies of as-cast MgAlCa-0Gd(left)and Mg–Al–Ca-0.1Gd(right)alloys.

    3.Results

    3.1.Microstructural morphology and refine mechanism

    The morphology and distribution of the particles in ascast alloys were respectively observed by optical and SEM micrographs,as shown in Fig.1,it is clear that Mg–Al–Ca alloy exhibit typical dendritic structure.(Fig.1a).A lot of gray plate particles(Al2Ca phase confirmed in Fig.2)are found around theα-Mg dendrites and inα-Mg inter-dendrites(Fig.1c).When Gd was added into Mg–Al–Ca alloy,the dendritic degree ofα-Mg strongly decreased(Fig.1b).Fig.1d shows that the plate-like Al2Ca changed into the spherical form and a new phase Al8Mn4Gd formed.It is confirmed by XRD shown in Fig.2a.

    As found from XRD result given in Fig.2a,onlyα-Mg and Al2Ca two phases were detected in Mg–Al–Ca alloy,while the new phase Al8Mn4Gd appeared when Gd was introduced into Mg–Al–Ca alloy.In addition,Fig.2b shows the solidification paths of as-cast Mg-4Al2Ca and Mg-0.5Al8Mn4Gd alloys calculated by Scheil model.It reveals that the Al8Mn4Gd phase precipitated at the temperature of 640°C during the solidification process,while the precipitation ofα-Mg and Al2Ca phase starts below 600°C.

    As Al8Mn4Gd phase precipitated earlier thanα-Mg and Al2Ca phases,its ability of acting as potent nucleation sites for theα-Mg grains and Al2Ca could be calculated by Bramfitt’s equation shown in Eq.(1)[21],the degree of potency of the nucleation catalysts based on the average disregistries along low-index directions within low-index planes between substrate and nucleation solid.

    Fig.2.(a)XRD patterns of as-cast MgAlCa-0Gd and MgAlCa-0.1Gd alloys(b)the solidification route calculated of Mg-4Al2Ca and Mg-0.5Al8Mn4Gd alloys by JMatPro.

    Fig.3.Schematic plans of the crystallographic relationships:(a)between Mg and Al8Mn4Gd.(b)between Al2Ca and Al8Mn4Gd.

    Where(hkl)sis a low-index plane of substrate,[uvw]sis the low index direction in(hkl)s,d[uvw]sis the interatomic spacing along[uvw]s,(hkl)nis a low-index plane in the nucleation solid,[uvw]nis the low-index direction in(hkl)n,d[uvw]nis the interatomic spacing along[uvw]n,andθis the angle between[uvw]sand[uvw]n.If the disregistryδof lattice spacing is less than 15%,the substrate can promote the nucleation of melt material.Mg is hexagonal structure with the lattice parameters ofa=0.32093nm andc=0.52103nm.Al8Mn4Gd is tetragonal structure with the lattice parameters ofa=0.8929nm andc=0.512nm.Al2Ca is cubic structure with the lattice parameters ofa=0.802nm.

    Three low-index planes of Al8Mn4Gd,including(100),(110)and(111)were selected as matching planes.The(0001)plane of Mg and the(001)plane of Al2Ca were used as nucleating plane.The schematic plans of the crystallographic relationships between Mg and Al8Mn4Gd,Al2Ca and Al8Mn4Gd were shown in Fig.3.By using the lattice parameters and Eq.(1),the disregistry between Mg and Al8Mn4Gd,Al2Ca and Al8Mn4Gd were calculated and summarized in Tables 2 and 3.It was found that the mismatch was just 7% between[10]direction on the(111)plane of Al8Mn4Gd and[20]direction on the(0001)plane of Mg.Thus,Al8Mn4Gd can act as nucleation site to refine theα-Mg grains,which was also reported during the alloy solidification process[22–25].Between Al2Ca and Al8Mn4Gd,the calculation indicates that the mismatch was 0.113(below 0.15)when the(110)plane of the Al8Mn4Gd was overlapped on the(001)plane of the Al2Ca.Thus,the refining effect of Al8Mn4Gd on Al2Ca as nucleation site is useful but not effective.This was consistent with the results shown in Fig.1,the size of Al2Ca phase only became a slightly smaller with the formation of Al8Mn4Gd phase.Moreover,the Al2Ca lamellar located at the grain boundaries evolved into granular from with the formation of Al8Mn4Gd phase in Mg–Al–Ca alloy.Therefore,we confirmed that formation of Al8Mn4Gd phase could lead to efficiently refineα-Mg and change Al2Ca phase morphologies,but the Al2Ca phase was slightly refined.

    3.2.Mechanical properties of as-cast and hot rolled

    The room temperature stress-strain curves of the ascast alloys and hot rolled ones are presented in Fig.4.For the as-cast specimens,the addition of Gd into Mg-2.5Al2Ca alloy only has one weak improvement on the tensile strength and ductility.However,Mg-2.5Al2Ca and Mg-2.5Al2Ca-0.1Al8Mn4Gd alloys exhibit obvious different improvement in mechanical properties with hot rolling deformation.With 50% hot-roll deformation degree,the Ultimate Tensile Strength(UTS)and ductility of as-cast Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy were remarkably enhanced from 140MPa and 1.1% to be 225MPa and 1.6%.With further deformation to be 80% degree,UTS and ductility of Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy could reach 260MPa and 2.1%.In contrast,the UTS and strain of Mg-2.5Al2Ca were only enhanced from 119MPa and 0.95% to be 140MPa and 1.1% with 50%hot-roll deformation degree.Subsequently,different from the continuous improvement found in hot rolled 2.5Al2Ca-0.1Al8Mn4Gd alloy,the UTS and strain of Mg-2.5Al2Ca alloy suddenly jumped to 230MPa and 1.6%with 80%deformation degree,even though these values are still lower than those of deformed Mg-2.5Al2Ca-0.1Al8Mn4Gd.

    Table 2The results of planar disregistries between Mg and Al8Mn4Gd.

    Table 3The results of planar disregistries between Al2Ca and Al8Mn4Gd.

    Fig.4.Tensile stress-strain curve of as-cast and hot rolled specimens(a)Mg-2.5Al2Ca alloy and(b)Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy.

    Fig.5 presents the microstructural morphologies of hot rolled two alloys with different degree of hot rolling deformation treatment.It is evident that both two alloys exhibit different Al2Ca distribution.Even after hot rolling with 50% deformation degree,the lamellar Al2Ca phase still accumulated with one necklace form in Mg-2.5Al2Ca alloy.In contrast,Al2Ca and Al8Mn4Gd phases already uniformly dispersed in Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy.When the deformation degree of specimens reached 80%,the lamellar Al2Ca phase was almost broken and well distributed in Mg-2.5Al2Ca alloy.Herein,one jump in mechanical properties occurred in hot rolled Mg-2.5Al2Ca alloy from 50% to 80% deformation degree.At the same time,the distribution of Al2Ca and Al8Mn4Gd particles become more uniform in Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy.

    Fig.5.The SEM morphologies of as-cast Mg-2.5Al2Ca and Mg-2.5Al2Ca-0.1Al8Mn4Gd alloys with different degree of hot rolling deformation treatment:(a and b)50% and(c and d)80%.

    Fig.6a and b show the tensile fracture of two as-cast alloys.Theα-Mg dendrite form was found in tensile fracture of as-cast MgAlCa-0Gd alloy,the fracture surface was mainly occupied by cleavage surfaces.However,noα-Mg dendrite form was found in tensile fracture of as-cast MgAlCa-0.1Gd alloy,some tearing ridges occupied the fracture surface.Fig.6c and d present the tensile fracture surfaces of hot rolled specimens with 80%deformation degree.The tear edge accompanied with dimples were found in hot rolled Mg-2.5Al2Ca alloy,while only dimples were observed in hot rolled Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy.Therefore,it can be concluded that addition of Gd into Mg–Al–Ca alloys facilitate the thermal deformation(such as hot rolling)and are conductive to improve their mechanical properties.

    Fig.6.Fracture surface of specimens without hot roll treatment(a)and(b)and with hot rolled 80% degrees(c and d).

    4.Conclusions

    In this study,we proved that we could regulate the microstructure of Mg–Al–Ca magnesium alloy through the formation of Al8Mn4Gd phase.XRD and Bramfitt’s theory indicates that spherical and dispersed Al8Mn4Gd phase firstly precipitate during the solidification process by introduction of Mn and Gd into Mg–Al–Ca magnesium alloy,Al8Mn4Gd phase could efficiently restricted the growth of dendriticα-Mg and disperse lamellar Al2Ca in Mg-2.5Al2Ca alloy.This is because that Al8Mn4Gd phase can serve as heterogeneous nucleation sites for the formation ofα-Mg grains and Al2Ca particles,especially forα-Mg.In addition,the introduction of Gd into Mg–Al–Ca alloys could also facilitate the hot rolling deformation.With 50% hot-roll deformation,the UTS and ductility of as-cast Mg-2.5Al2Ca-0.1Al8Mn4Gd alloy were remarkably enhanced from 140MPa and 1.1% to be 225MPa and 1.6%.In contrast,the UTS and elongation of Mg-2.5Al2Ca were only enhanced from 119MPa and 0.95%to be 140MPa and 1.1%.

    Acknowledgement

    This work was financially supported by the National Science Foundation of China(No.51701010)and by Beijing Government Funds for the Constructive Project of Central Universities(No.353139535).Thanks to Gaomi Xiangyu Company(Shandong province,China)for the gravity casting.

    成年人午夜在线观看视频| 日本五十路高清| 日韩精品免费视频一区二区三区| 国产熟女欧美一区二区| 最黄视频免费看| 国产精品 欧美亚洲| 精品国产国语对白av| 在线亚洲精品国产二区图片欧美| 国产主播在线观看一区二区 | 精品少妇内射三级| 丝瓜视频免费看黄片| 亚洲精品美女久久av网站| 又大又爽又粗| 久久影院123| 我要看黄色一级片免费的| 国产深夜福利视频在线观看| 黑丝袜美女国产一区| 成人手机av| av一本久久久久| 欧美人与性动交α欧美软件| 国产亚洲精品第一综合不卡| 国产亚洲精品久久久久5区| 国产成人一区二区三区免费视频网站 | 两个人看的免费小视频| 亚洲中文字幕日韩| 精品人妻一区二区三区麻豆| www.999成人在线观看| 一级,二级,三级黄色视频| 91麻豆av在线| 97精品久久久久久久久久精品| 久久狼人影院| 国产伦人伦偷精品视频| 国产精品人妻久久久影院| 这个男人来自地球电影免费观看| av网站在线播放免费| 亚洲av片天天在线观看| av在线老鸭窝| 满18在线观看网站| 精品久久蜜臀av无| 中文乱码字字幕精品一区二区三区| 女人高潮潮喷娇喘18禁视频| 51午夜福利影视在线观看| e午夜精品久久久久久久| av在线播放精品| 麻豆乱淫一区二区| 免费看不卡的av| 一级片免费观看大全| 国产一区亚洲一区在线观看| 亚洲一区中文字幕在线| 亚洲人成网站在线观看播放| 制服诱惑二区| 精品第一国产精品| 国产成人精品久久二区二区91| 亚洲中文av在线| 亚洲国产欧美一区二区综合| 国产成人啪精品午夜网站| 亚洲一区中文字幕在线| 少妇被粗大的猛进出69影院| 美女高潮到喷水免费观看| 99精品久久久久人妻精品| 国产一区二区 视频在线| 午夜两性在线视频| a级片在线免费高清观看视频| 亚洲精品日韩在线中文字幕| 人人妻人人添人人爽欧美一区卜| 自线自在国产av| 女人久久www免费人成看片| 亚洲熟女精品中文字幕| 国产成人免费无遮挡视频| 午夜视频精品福利| 波野结衣二区三区在线| 亚洲av男天堂| 亚洲国产欧美网| 成人国产一区最新在线观看 | 视频区图区小说| 国产1区2区3区精品| 亚洲精品国产av蜜桃| 在线精品无人区一区二区三| 国产熟女午夜一区二区三区| 丰满少妇做爰视频| avwww免费| 欧美精品一区二区大全| 成人影院久久| 啦啦啦啦在线视频资源| 国产一区二区激情短视频 | 国产成人精品久久二区二区免费| 亚洲国产毛片av蜜桃av| 欧美精品一区二区大全| 高潮久久久久久久久久久不卡| 国产成人欧美| 欧美日韩亚洲综合一区二区三区_| 99久久精品国产亚洲精品| 欧美乱码精品一区二区三区| av视频免费观看在线观看| 亚洲精品自拍成人| 黄色a级毛片大全视频| 晚上一个人看的免费电影| 国产三级黄色录像| e午夜精品久久久久久久| √禁漫天堂资源中文www| 不卡av一区二区三区| 亚洲成人免费av在线播放| 日韩熟女老妇一区二区性免费视频| 少妇裸体淫交视频免费看高清 | 国产成人精品久久久久久| 大码成人一级视频| 亚洲精品一卡2卡三卡4卡5卡 | 性高湖久久久久久久久免费观看| 爱豆传媒免费全集在线观看| 亚洲国产精品成人久久小说| 亚洲久久久国产精品| 美女主播在线视频| 亚洲欧美清纯卡通| 在线观看人妻少妇| 亚洲国产精品一区二区三区在线| 美女扒开内裤让男人捅视频| 蜜桃国产av成人99| 香蕉丝袜av| 一本—道久久a久久精品蜜桃钙片| 最近手机中文字幕大全| 久久精品熟女亚洲av麻豆精品| av网站免费在线观看视频| 丰满人妻熟妇乱又伦精品不卡| 国产精品国产三级国产专区5o| 欧美激情 高清一区二区三区| 免费高清在线观看视频在线观看| 亚洲欧美一区二区三区久久| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀 | 亚洲精品一区蜜桃| 日韩一本色道免费dvd| 成人影院久久| 国产爽快片一区二区三区| 精品人妻熟女毛片av久久网站| 最黄视频免费看| 亚洲精品久久午夜乱码| 久久久久久久大尺度免费视频| av有码第一页| 大码成人一级视频| 欧美 日韩 精品 国产| 人人妻人人澡人人爽人人夜夜| 18禁黄网站禁片午夜丰满| 女人爽到高潮嗷嗷叫在线视频| 波多野结衣av一区二区av| 亚洲国产精品一区二区三区在线| 啦啦啦中文免费视频观看日本| 国产深夜福利视频在线观看| 精品福利永久在线观看| 校园人妻丝袜中文字幕| av在线app专区| 纵有疾风起免费观看全集完整版| 一级毛片女人18水好多 | 香蕉国产在线看| 久久精品久久精品一区二区三区| 日韩视频在线欧美| 99香蕉大伊视频| av电影中文网址| 久久精品熟女亚洲av麻豆精品| 嫁个100分男人电影在线观看 | 欧美日本中文国产一区发布| 少妇的丰满在线观看| 亚洲欧美中文字幕日韩二区| 亚洲成av片中文字幕在线观看| 亚洲av成人精品一二三区| 一本综合久久免费| 亚洲男人天堂网一区| 又大又黄又爽视频免费| 一本大道久久a久久精品| 少妇精品久久久久久久| 国产黄频视频在线观看| 婷婷色综合www| h视频一区二区三区| 日韩人妻精品一区2区三区| 青青草视频在线视频观看| 亚洲 国产 在线| 免费女性裸体啪啪无遮挡网站| www.精华液| 国产精品一二三区在线看| 五月开心婷婷网| 中文字幕色久视频| 丝袜在线中文字幕| 电影成人av| 免费在线观看日本一区| 国产主播在线观看一区二区 | 亚洲成人免费av在线播放| 久久天躁狠狠躁夜夜2o2o | 国产免费福利视频在线观看| 日本av手机在线免费观看| 精品亚洲乱码少妇综合久久| 免费人妻精品一区二区三区视频| 久久精品国产综合久久久| 欧美黑人精品巨大| 亚洲伊人久久精品综合| 热re99久久精品国产66热6| 亚洲av电影在线进入| 一边亲一边摸免费视频| 久久人人97超碰香蕉20202| 精品福利永久在线观看| 99九九在线精品视频| 一区二区日韩欧美中文字幕| 两人在一起打扑克的视频| 日韩 亚洲 欧美在线| 国产精品.久久久| 777米奇影视久久| 婷婷色av中文字幕| 美女大奶头黄色视频| 黄色a级毛片大全视频| 无遮挡黄片免费观看| 婷婷色麻豆天堂久久| 亚洲中文日韩欧美视频| 欧美激情 高清一区二区三区| 免费不卡黄色视频| 亚洲av综合色区一区| 国产有黄有色有爽视频| av国产精品久久久久影院| 丝袜喷水一区| 99精品久久久久人妻精品| 男人爽女人下面视频在线观看| 99re6热这里在线精品视频| 久久久久视频综合| 纯流量卡能插随身wifi吗| 大话2 男鬼变身卡| 国产1区2区3区精品| 精品视频人人做人人爽| 最新在线观看一区二区三区 | 90打野战视频偷拍视频| 国产精品 欧美亚洲| 麻豆国产av国片精品| 高清不卡的av网站| 91麻豆精品激情在线观看国产 | 777米奇影视久久| 婷婷色综合www| 国产伦理片在线播放av一区| 日韩av免费高清视频| 欧美成人精品欧美一级黄| 国产女主播在线喷水免费视频网站| av国产精品久久久久影院| av欧美777| 亚洲国产av新网站| 国产精品久久久久久精品古装| 天堂中文最新版在线下载| 看免费av毛片| 国产欧美日韩一区二区三 | 国产成人啪精品午夜网站| 韩国精品一区二区三区| 婷婷色综合大香蕉| 韩国高清视频一区二区三区| 国产成人精品久久二区二区91| 91精品伊人久久大香线蕉| 少妇被粗大的猛进出69影院| av片东京热男人的天堂| 中文字幕亚洲精品专区| 免费高清在线观看视频在线观看| 黄色视频在线播放观看不卡| 精品免费久久久久久久清纯 | 精品免费久久久久久久清纯 | 亚洲av日韩在线播放| 亚洲 欧美一区二区三区| 日韩电影二区| 爱豆传媒免费全集在线观看| 日本五十路高清| 亚洲色图 男人天堂 中文字幕| 亚洲欧美中文字幕日韩二区| 日本a在线网址| 亚洲,一卡二卡三卡| 久久精品aⅴ一区二区三区四区| 一区二区av电影网| 黄色 视频免费看| 90打野战视频偷拍视频| 一级毛片女人18水好多 | 国产99久久九九免费精品| 80岁老熟妇乱子伦牲交| 久久久久国产一级毛片高清牌| 老汉色∧v一级毛片| cao死你这个sao货| www日本在线高清视频| 黄色一级大片看看| 我的亚洲天堂| 宅男免费午夜| 中文字幕最新亚洲高清| 免费黄频网站在线观看国产| 午夜老司机福利片| 国产欧美日韩一区二区三区在线| 日本av免费视频播放| 国产黄色视频一区二区在线观看| 最近最新中文字幕大全免费视频 | 亚洲成色77777| 国产视频首页在线观看| 少妇被粗大的猛进出69影院| 成年女人毛片免费观看观看9 | 免费人妻精品一区二区三区视频| 亚洲精品第二区| 天堂中文最新版在线下载| 国产成人a∨麻豆精品| 欧美老熟妇乱子伦牲交| 国产亚洲午夜精品一区二区久久| 国产野战对白在线观看| 日本vs欧美在线观看视频| 女人被躁到高潮嗷嗷叫费观| 中文欧美无线码| 一二三四在线观看免费中文在| 性色av乱码一区二区三区2| 真人做人爱边吃奶动态| 日韩,欧美,国产一区二区三区| 搡老乐熟女国产| 精品一区二区三卡| av又黄又爽大尺度在线免费看| 国产深夜福利视频在线观看| 别揉我奶头~嗯~啊~动态视频 | 午夜福利,免费看| 2018国产大陆天天弄谢| avwww免费| 国产精品人妻久久久影院| 亚洲少妇的诱惑av| 老司机午夜十八禁免费视频| 久久人人97超碰香蕉20202| 亚洲色图 男人天堂 中文字幕| 一级黄片播放器| 国产成人精品久久二区二区91| 一本综合久久免费| 免费观看av网站的网址| 老司机深夜福利视频在线观看 | 国产成人一区二区三区免费视频网站 | 国产在线一区二区三区精| 一区在线观看完整版| 99热全是精品| cao死你这个sao货| 老司机在亚洲福利影院| 欧美精品人与动牲交sv欧美| 国产精品一区二区精品视频观看| 亚洲国产精品一区二区三区在线| 久久久久网色| 亚洲av日韩在线播放| 中文字幕精品免费在线观看视频| 视频区欧美日本亚洲| 啦啦啦在线免费观看视频4| 男女床上黄色一级片免费看| 久久久久久久精品精品| 19禁男女啪啪无遮挡网站| 国产一区二区 视频在线| 国产欧美日韩一区二区三 | 中文字幕av电影在线播放| 国产精品二区激情视频| 高潮久久久久久久久久久不卡| 国产精品久久久人人做人人爽| 国产成人啪精品午夜网站| 日韩电影二区| 欧美另类一区| 宅男免费午夜| 人人妻人人添人人爽欧美一区卜| 熟女av电影| 亚洲国产中文字幕在线视频| 国产xxxxx性猛交| 国产精品人妻久久久影院| 国产一区有黄有色的免费视频| 亚洲免费av在线视频| 亚洲精品一区蜜桃| 成人国语在线视频| 亚洲欧美色中文字幕在线| 一级毛片 在线播放| 男女午夜视频在线观看| 首页视频小说图片口味搜索 | 久久久久精品国产欧美久久久 | 性高湖久久久久久久久免费观看| 色播在线永久视频| 欧美日韩综合久久久久久| 国精品久久久久久国模美| 捣出白浆h1v1| 国产av国产精品国产| 捣出白浆h1v1| 亚洲中文日韩欧美视频| 国产有黄有色有爽视频| 女性被躁到高潮视频| 性色av乱码一区二区三区2| 超碰成人久久| 永久免费av网站大全| 中文乱码字字幕精品一区二区三区| 亚洲国产精品一区二区三区在线| 9热在线视频观看99| cao死你这个sao货| 秋霞在线观看毛片| 制服诱惑二区| 纯流量卡能插随身wifi吗| 免费在线观看黄色视频的| 久久久久久久国产电影| 两人在一起打扑克的视频| 免费黄频网站在线观看国产| 欧美日韩亚洲国产一区二区在线观看 | 一二三四社区在线视频社区8| 91老司机精品| 19禁男女啪啪无遮挡网站| 黄色毛片三级朝国网站| 免费高清在线观看日韩| 2021少妇久久久久久久久久久| 高清黄色对白视频在线免费看| 一边摸一边抽搐一进一出视频| 伊人亚洲综合成人网| 黄色视频在线播放观看不卡| 国产黄色免费在线视频| 婷婷色av中文字幕| 国产成人一区二区三区免费视频网站 | 黄片小视频在线播放| 天堂8中文在线网| 99re6热这里在线精品视频| av国产精品久久久久影院| 美女高潮到喷水免费观看| 色播在线永久视频| 久久精品国产亚洲av高清一级| 手机成人av网站| 视频在线观看一区二区三区| 热re99久久精品国产66热6| 久9热在线精品视频| 国产一级毛片在线| 亚洲伊人久久精品综合| 国产xxxxx性猛交| 一级片'在线观看视频| 午夜福利一区二区在线看| 国产片内射在线| 18禁国产床啪视频网站| 啦啦啦中文免费视频观看日本| 看十八女毛片水多多多| 中文字幕精品免费在线观看视频| 天天躁夜夜躁狠狠久久av| 亚洲欧美日韩另类电影网站| 亚洲美女黄色视频免费看| 在线亚洲精品国产二区图片欧美| 最新在线观看一区二区三区 | 日本vs欧美在线观看视频| 天天躁狠狠躁夜夜躁狠狠躁| 久久久精品94久久精品| 久久精品国产亚洲av涩爱| 国精品久久久久久国模美| 国产男女超爽视频在线观看| 成年人午夜在线观看视频| 亚洲精品日韩在线中文字幕| 国产高清不卡午夜福利| av天堂久久9| 国产欧美日韩一区二区三 | 午夜91福利影院| 性色av乱码一区二区三区2| 老司机在亚洲福利影院| 国产精品一国产av| 女人高潮潮喷娇喘18禁视频| 国产精品免费大片| 亚洲国产精品999| 一区二区三区四区激情视频| 你懂的网址亚洲精品在线观看| 亚洲欧美中文字幕日韩二区| 久久久久久久久久久久大奶| 99热全是精品| 国产国语露脸激情在线看| 一个人免费看片子| 国产视频首页在线观看| 亚洲中文av在线| 最近手机中文字幕大全| 中国美女看黄片| 亚洲精品中文字幕在线视频| 国产成人免费观看mmmm| 一区福利在线观看| xxxhd国产人妻xxx| 人体艺术视频欧美日本| 午夜激情av网站| 国产黄频视频在线观看| 精品亚洲乱码少妇综合久久| 国产精品三级大全| 亚洲成av片中文字幕在线观看| 精品高清国产在线一区| 纵有疾风起免费观看全集完整版| 免费看av在线观看网站| 性少妇av在线| 午夜福利乱码中文字幕| 脱女人内裤的视频| 性色av乱码一区二区三区2| 侵犯人妻中文字幕一二三四区| 亚洲美女黄色视频免费看| 国产在线一区二区三区精| 欧美日韩亚洲国产一区二区在线观看 | 亚洲一区二区三区欧美精品| 亚洲精品国产av蜜桃| 成人国产av品久久久| 老司机影院成人| 婷婷色麻豆天堂久久| 18禁观看日本| 高清av免费在线| 男女床上黄色一级片免费看| 人妻人人澡人人爽人人| 亚洲精品自拍成人| 黑人巨大精品欧美一区二区蜜桃| 2018国产大陆天天弄谢| 久久久久精品人妻al黑| 欧美性长视频在线观看| 亚洲五月婷婷丁香| 极品少妇高潮喷水抽搐| 丰满人妻熟妇乱又伦精品不卡| 国产欧美亚洲国产| 女性被躁到高潮视频| 亚洲美女黄色视频免费看| 亚洲少妇的诱惑av| 欧美精品av麻豆av| 夫妻性生交免费视频一级片| 九色亚洲精品在线播放| 视频区图区小说| 日韩电影二区| 亚洲 欧美一区二区三区| 免费观看av网站的网址| 激情视频va一区二区三区| 色婷婷av一区二区三区视频| 两个人免费观看高清视频| 一级毛片女人18水好多 | 一级黄片播放器| 亚洲欧洲国产日韩| 久热这里只有精品99| 久久青草综合色| 免费观看av网站的网址| 超碰97精品在线观看| 国产精品亚洲av一区麻豆| kizo精华| 色播在线永久视频| 亚洲精品自拍成人| 人人妻,人人澡人人爽秒播 | 搡老岳熟女国产| 青春草亚洲视频在线观看| 国产男女超爽视频在线观看| 一级黄片播放器| 亚洲国产av新网站| 国产又色又爽无遮挡免| 亚洲成人手机| 丝袜人妻中文字幕| 午夜免费成人在线视频| 国产高清videossex| 精品久久久久久久毛片微露脸 | 狠狠精品人妻久久久久久综合| 狂野欧美激情性xxxx| 黄片小视频在线播放| 天天躁日日躁夜夜躁夜夜| 国产精品国产三级专区第一集| 日本五十路高清| 国产高清国产精品国产三级| 黑丝袜美女国产一区| 日韩一区二区三区影片| 国产成人91sexporn| 午夜免费男女啪啪视频观看| av国产久精品久网站免费入址| 国产黄色免费在线视频| 91成人精品电影| 青春草亚洲视频在线观看| 久久中文字幕一级| 国产无遮挡羞羞视频在线观看| 亚洲成国产人片在线观看| 国产精品二区激情视频| 五月天丁香电影| 亚洲天堂av无毛| 天天影视国产精品| 日日爽夜夜爽网站| 日韩人妻精品一区2区三区| 亚洲av成人不卡在线观看播放网 | 国产精品免费视频内射| 国产一区二区在线观看av| 精品国产一区二区三区四区第35| 久久青草综合色| 亚洲黑人精品在线| 亚洲av成人不卡在线观看播放网 | 麻豆乱淫一区二区| 日韩大片免费观看网站| 十八禁网站网址无遮挡| 9热在线视频观看99| 亚洲av成人精品一二三区| 国产精品国产av在线观看| 91九色精品人成在线观看| 久久九九热精品免费| 欧美精品高潮呻吟av久久| 亚洲色图综合在线观看| 日韩av不卡免费在线播放| 中文字幕亚洲精品专区| www.熟女人妻精品国产| 国产熟女欧美一区二区| 亚洲国产欧美日韩在线播放| 国产亚洲午夜精品一区二区久久| 久久国产精品大桥未久av| 国产精品一二三区在线看| 国产精品人妻久久久影院| 国产一区二区激情短视频 | 欧美老熟妇乱子伦牲交| 老司机深夜福利视频在线观看 | 真人做人爱边吃奶动态| 日韩大码丰满熟妇| 免费少妇av软件| 国产免费视频播放在线视频| 日韩大码丰满熟妇| 免费少妇av软件| 男男h啪啪无遮挡| 免费人妻精品一区二区三区视频| 搡老岳熟女国产| 午夜福利视频精品| 亚洲av国产av综合av卡| 丁香六月天网| av在线播放精品| 亚洲精品自拍成人| 国产一区有黄有色的免费视频| 日日爽夜夜爽网站| 18在线观看网站| 国产免费又黄又爽又色| 在线观看免费高清a一片| 中国美女看黄片| 在线观看一区二区三区激情| 久久国产亚洲av麻豆专区| 亚洲精品日韩在线中文字幕| 欧美精品高潮呻吟av久久| 久久国产亚洲av麻豆专区| 久久99精品国语久久久| 巨乳人妻的诱惑在线观看| 午夜日韩欧美国产| 91国产中文字幕| 久久亚洲精品不卡| 一本久久精品|