• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Change rules of a stratospheric airship’s envelope shape during ascent process

    2017-11-20 12:07:35ZhaoShuaiLiuDongxuZhaoDaWuGangYinShiZhouPan
    CHINESE JOURNAL OF AERONAUTICS 2017年2期

    Zhao Shuai,Liu Dongxu,Zhao Da,Wu Gang,Yin Shi,Zhou Pan

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Change rules of a stratospheric airship’s envelope shape during ascent process

    Zhao Shuai,Liu Dongxu*,Zhao Da,Wu Gang,Yin Shi,Zhou Pan

    School of Aeronautic Science and Engineering,Beihang University,Beijing 100083,China

    Non-forming launch;Pressure gradient;Stratospheric airship;Wrinkles;Zero-pressure level

    Stratospheric airship is a special near-space air vehicle,and has more advantages than other air vehicles,such as long endurance,strong survival ability,excellent resolution,low cost,and so on,which make it an ideal stratospheric platform.It is of great significance to choose a reasonable and effective way to launch a stratospheric airship to the space for both academic research and engineering applications.In this paper,the non-forming launch way is studied and the method of differential pressure gradient is used to study the change rules of the airship’s envelope shape during the ascent process.Numerical simulation results show that the head of the envelope will maintain the inflatable shape and the envelope under the zero-pressure level will be compressed into a wide range of wrinkles during the ascent process.The airship’s envelope will expand with the ascent of the airship and the position of the zero-pressure level will move downward constantly.At the same time,the envelope will gradually form a certain degree of stiffness under the action of the inner and external differential pressure.The experimental results agree well with the analytical results,which shows that the non-forming launch way is effective and reliable,and the analytical method has exactness and feasibility.

    1.Introduction

    Near space is the space region of earth’s atmosphere that lies between 20 and 100 km above the sea level,encompassing the stratosphere,the mesosphere,and the lower thermosphere.1–3In recent years,with the progress of science and technology,near space with its unique advantages of resources has become the focus of attention in the world.4,5A stratospheric airship has many advantages such as long hanging time,low cost,strong survival ability,excellent resolution,and so on.6–8It has a wide applicable prospect and developmental potential in the fields of monitoring and early warning,navigation and positioning,communications relay,meteorological observation,space exploration,etc.9–11

    When a stratospheric airship is launched to the near space,it will undergo complex changes of the external environment.12–14To choose a reasonable and effective way to launchthe airship is very important for the success of the stratospheric airship.15,16In general,there are two ways to launch a stratospheric airship,forming launch way and non-forming launch way.Forming launch is that the air and helium are charged into an airship’s envelope to form the shape of the airship before launch,and it will maintain the shape of the airship during the ascent process.Whereas as for non-forming launch,only a small amount of lifting gas is charged into the envelope before launch.Because the environmental atmospheric pressure will decrease gradually,the airship will expand gradually during the ascent process,and the lifting gas will continue to expand until it completely inflates the envelope to form the rigid aerodynamic shape required for operation at the predetermined resident height.The airship will keep its shape under the action of internal and external overpressure at the resident height.

    It is very important to study the change rules of the envelope shape during the launch and ascent process of an airship.The high altitude sentinel(HiSentinel17)airship sponsored by the United States Army Space and Missile Defense Command was launched with the non-forming launch way.

    In this paper,the non-forming launch way is studied.The adjustment of an airship’s attitude is not considered,that is,it is assumed that an airship will maintain the vertical upward attitude during the ascent process.By using the differential pressure gradient method to simulate the ascent process of an airship,the change rules of the airship’s state at different stages of the ascent process can be obtained.

    2.Principle of ascent and ceiling of airship

    2.1.Principle of ascent

    Fig.1 Internal and external pressure distributions of envelope during ascent process.

    2.2.Ceiling height of stratospheric airship

    With the ascent of the airship,the internal helium will gradually expand and the zero-pressure level will move downward.At the same time,the pressure field will change,too.By changing the location of the zero-pressure level,we can approximately simulate the airship’s ascent process until it reaches the predetermined resident height.

    The net buoyancy of the airship is

    whereBis the buoyancy of airship,and

    The total mass of the airship can be written as

    Without considering the temperature and pressure differences between the inside and outside of the airship,Eq.(4)can be simplified as

    whereVhemaxis the largest helium volume of airship at the resident height.

    According to the standard atmospheric model,it can be known that the density of the air is related to the flight height.Therefore,from Eq.(4),we can know that the airship’s maximum ceiling height is determined by the structural mass of the airship,the largest helium volume,the super-hot,and the super-pressure.The helium will fill the envelope except for the reserved air bag at the resident height.The whole volume of the envelope subtracting the volume of the reserved air bag is the largest helium volume.In this paper,the volume of the reserved air bag is zero.When considering the temperature and pressure differences,24the maximum ceiling height of the airship will be in the nearby range determined by Eq.(5).

    Under the action of the internal and external pressure difference of the airship,it will keep an overpressure state at the resident height.25–27Meanwhile,the airship will keep its shape under the action of overpressure,so the buoyancy of the airship is constant.By keeping the constant buoyancy,the airship can achieve resident or cruise at the predetermined height.The envelope’s overpressure load is jointly determined by the temperature difference between day and night or seasons in the stratosphere,thermal radiation characteristics of the envelope material,the airship’s envelope volume,and other factors.28–30In general,a stratospheric airship’s envelope materials can withstand overpressure ranging from 0 to 1000 Pa.31

    3.Finite element simulation analysis

    3.1.Judgement of membrane element stress state

    The earliest method about the wrinkling analysis of a membrane is the tension field theory proposed by Wagner.32Mansfield33improved the theory with a reasonable density of relaxation energy instead of the original strain energy,and then Pipkin34used it for isotropic membrane wrinkling analysis.In 1961,Stein and Hedgepeth35proposed the Stein-Hedgepeth theory,which is mainly used for partial wrinkle analysis of a thin membrane.Kang and Lm36and Adler37made some improvements on the basis of the theory to widen the applicability of the method.The bifurcation theory can be used to get the speci fic shape of the wrinkle that is the wrinkle’s amplitude and wavelength.38Fujikake et al.39studied wrinkle questions by modifying the constitutive matrix in a tension thin membrane structure.

    In the Lagrange coordinate system,under the action of an external force,PointMof the deformation body moves to pointM0,as shown in Fig.2.u,v,andware the projections of the displacement along thex,y,andzaxes,respectively.For thin membrane materials,the displacement in the thickness direction can be ignored,so the geometric equations of strain can be written as40,41

    Fig.2 Diagrammatic sketch of deformation.

    where h is the angle between the off-axis and the principle axis,as shown in Fig.3,E1andE2are the elastic modulus in the warp and zonal directions,G12is the shear modulus,m1is the zonal direction Poisson’s ratio caused by the warp direction,and m2is the warp direction Poisson’s ratio caused by the zonal direction.

    Fig.3 Diagrammatic sketch of off-axis and principle axis.

    and wherex1,x2andx3are the three axes in the space coordinate system,X1,X2andX3are the three axes in the material coordinate system.

    Then the principal stress can be obtained as follows:

    where rxand ryare the stress inx-axis and y-axis direction,sxyis the shear stress.

    where exand eyare the strain inx-axis and y-axis direction,cxyis the shear strain.

    Finally we can judge the stress state of the membrane by principal stress-principal strain principles.40,42,43That is:

    3.2.Explicit time integration

    To analyze the change rules of the envelope’s states in different stages of the ascent process,the explicit time integration method is used.The nonlinear discrete equation of motion for a wrinkling membrane at time step(n),obtained from a total Lagrangian finite element formulation,can be written as

    Given a new estimation of the nodal displacements at every time step,at each integration point of an element,a judgment is made on the wrinkling criterion,whether it is taut,wrinkled,or slack.According to the wrinkling criterion,change the constitutive matrix of the membrane materials,40and then go to the next time step.

    4.Numerical results and discussion

    4.1.Related parameters of airship

    Since the stratospheric airship is very large,at the same internal and external differential pressure of the airship,the larger diameter of the airship,the higher requirement for the envelope material strength.26The special and complicated stratospheric environment such as the temperature difference between day and night or seasons,high radiation,and high ozone,puts forward higher requirements for the envelope’s material.4The properties of the material are shown in Table 1.The length of the airship model isL=75 m,the maximum radius of the cross section isR=12 m,and the slenderness ratio is 3.125.

    Table 1 Performance parameters of skin material of airship.

    4.2.Model establishment

    The airship’s envelope is a symmetrical structure,which can be obtained by rotating a generatrix around the symmetrical axis.In this paper,the whole model is established including the envelope,the drag net,and the tension rope.The drag net is on the top of the envelope to fasten the envelope through the tension rope,and the other end of the rope is fixed to the ground.The envelope’s wrinkling deformation,which is induced by the gradient pressure field and gravity load,can be simulated using the dynamic finite element analysis method.Firstly,we can fix the bottom of the airship to the ground and exert the gradient pressure field and gravity load to simulate the initial launch state.Then we can release the bottom of the airship to simulate the ascent process.The effect of gravity is considered in the whole model.By constantly adjusting the position of the zero-pressure level of the airship,the change rules of the airship in different ascent stages can be obtained.

    In order to get the deformation state of the airship’s head more accurately at the initial launch state,it is necessary to use a smaller grid to get more accurate results.At the same time,in order to save the computation time,only the airship’s head is modeled and analyzed.

    4.3.Results and discussion

    In this paper,it is assumed that the airship will maintain the vertical upward attitude during the ascent process,so the adjustment of the airship’s attitude is not considered.Before the launch of the airship,an appropriate amount of lifting gas should be charged into the envelope to meet the resident or cruise requirement of buoyancy.By estimating,at the initial launch state after the lifting gas is charged into the envelope,the zero-pressure level position is approximately 17 m under the top of the airship.

    (1)At the initial state of launch,we can set y0=17 m,the simulation results and the experimental results of the airship’s envelope shape are shown in Fig.4.

    The simulation results and the experimental results agree well.The region above the zero-pressure level expands to the shape of the airship’s head.Meanwhile,the bottom region is compressed to fold together under the action of external atmospheric pressure.

    (2)To simulate the whole ascent process,we can set the position of the zero-pressure level at 17,25,40,50,and 65 m.Fig.5 shows the change rules of the envelope shape.

    Fig.4 Comparison of simulation results and experimental results when y0=17 m.

    Fig.5 Change rules of envelope shape.

    During the ascent process of the airship,the external environmental pressure will reduce gradually.The internal helium volume will gradually expand,and the position of the zero-pressure level will move downward constantly.With the constant adjustment of the zero-pressure level,the envelope will form a certain degree of stiffness under the actions of the inner helium and the external pressure.As for a practical stratospheric airship,a payload system,a propulsion system,and an energy system are necessary.With the vertical ascent process,these systems will lead to the center of gravity not consistent with the center of buoyancy,so the airship will automatically adjust the attitude to the horizontal direction.At the same time,the airship will continue to rise until it get to the predetermined resident height.The airship will produce overpressure which makes the airship fully inflated to the rigid aerodynamic shape required for operation.Since then,the airship will achieve resident or cruise at the predetermined height.

    (3)A smaller grid is used to get a more accurate deformation state of the airship’s head.The simulation results and the experimental results are shown in Figs.6 and 7,respectively.

    Fig.6 Simulation result and experimental result of head.

    Fig.7 Partial simulation result and experimental result of head.

    Fig.8 Undeformed model and deformed model results of net.

    The drag net on the top of the envelope is connected to the ground by the tension rope,and we can release the rope properly to adjust the launch attitude of the airship and make the wrinkled part of the airship leave the ground.The undeformed model and deformed model results of the net are shown in Fig.8,respectively.

    In the initial launch state,the simulation results of the airship’s head agree very well with the experimental results.Under the action of atmospheric pressure,the airship will get upward buoyancy,and the buoyancy is born by the drag net,so we can observe a dent obviously in the connecting region of the airship’s head and drag net.

    5.Conclusions

    (1)The coincidence between the simulation results and the experimental results reveals that the model is reasonable and correct.It also shows that the non-forming launch way is effective and reliable,and the simulation method has exactness and feasibility.

    (2)The shape of the airship’s envelope can be simulated by the gradient of the pressure field,and the change rules of the envelope can be obtained by continuously adjusting the position of the zero-pressure level.For further research,during the ascent process,we can use this analytical method to check whether the payload system,propulsion system,and energy system will interfere with each other.Based on the result,we can determinate the location of each system reasonably.

    (3)The pressure gradient will change gradually along with the change of the ascent height.The position of the zero-pressure level will also constantly move downward with the expanding of the envelope.This is a dynamic and coupling change process,so the analytical method may have some limitations,but for the entire ascent process,the method still has a great reference value.

    Acknowledgments

    The reviewers of this paper have provided the authors many valuable suggestions.This study was supported by the Achievements Cultivation Fund of Beihang University(No.YWF-15-CGPY-HKXY-001).The authors wish to express their thanks to all.

    1.Colozza A,Dolce JL.High-altitude,long-endurance airships for coastal surveillance.Wahsington,D.C.:NASA;2005.Report No.:NASA/TM-2005-213427.

    2.Colozza A.Initial feasibility assessment of a high altitude long endurance airship.Wahsington,D.C.:NASA;2003.Report No.:NASA/CR-2003-212724.

    3.Jamison L,Sommer GS,Porche III IR.High-altitude airships for the future force army.Santa Monica(CA):RAND Corporation;2005.Report No.:DASW01-01-C-0003.

    4.Gu ZM.Research of stratospheric airships’skin material.Spacecr Recov Remote Sens2007;28(1):62–6[Chinese].

    5.Wang YF,An YW,Yang JH.Current situation and development trend of near space airship.Technol Found National Defence2010;1:33–7[Chinese].

    6.Schmidt DK,Stevens J,Roney J.Near-space station-keeping performance of a large high-altitude notional airship.J Aircraft2007;44(2):611–5.

    7.Wang MJ,Huang XS.Development of stratospheric airship platform and its key technology analysis.Ordnan Indust Automat2007;26(8):58–60[Chinese].

    8.Ma ZY,Hou ZX,Yang XX.Structural performance analysis of large-scale flexible inflatable structures for stratospheric airships.J Nat Univ Defense Technol2015;4:25–30[Chinese].

    9.Yao W,Li Y,Wang WJ,Zheng W.Development plan and research progress of stratospheric airship in USA.Spacecraft Eng2008;17(2):69–75[Chinese].

    10.Cui EJ.Research statutes,development trends and key technical problems of near space flying vehicles.Adv Mech2009;39(6):658–73[Chinese].

    11.Li YY,Li Z,Shen HR.Analysis on development and application of near space vehicle.J Acad Equip Command Technol2008;19(2):61–5.

    12.Kim DM,Lee YG,Kang WG.Korea stratospheric airship program and current results.Restion:AIAA;2003.Report No.:AIAA-2003-6782.

    13.Lee YG,Kim DM,Yeom CH.Development of Korean high altitude platform systems.Int J Wireless Inform Networks2006;13(1):31–42.

    14.Ouyang J,Qu WD,Xi YG.Stratospheric verifying airship modelingand analysis.JShanghaiJiaotongUniv2003;37(6):956–60[Chinese].

    15.Li LL,Guo WM,He JF.Current situation and development of foreign near space airship.Ordnan Indust Automat2008;27(2):32–4[Chinese].

    16.Roney JA.Statistical wind analysis for near-space applications.J Atmos Solar-Terrest Phys2007;69(13):1485–501.

    17.Smith S,Lee M.The HiSentinel Airship.Restion:AIAA;2007.Report No.:AIAA-2007-7748.

    18.Ma YP,Lǜ MY,Wu Z,Liu DX.Simulation of near-space airship based on wrinkle during ascent.J Beijing Univ Aeronaut Astronaut2009;11(11):1298–301[Chinese].

    19.Baginski FE.A mathematical model for a partially inflated balloon with periodic lobes.Adv Space Res2002;30(5):1167–71.

    20.Kang W,Suh Y,Woo K,Lee I.Mechanical property characterization of film-fabric laminate for stratospheric airship envelope.Compos Struct2006;75(1–4):151–5.

    21.Baginski FE.Nonuniqueness of strained ascent shapes of high altitude balloons.Adv Space Res2004;33(10):1705–10.

    22.Baginski FE,Collier W.Modeling the shapes of constrained partially inflated high-altitude balloons.AIAAJ2001;39(9):1662–72.

    23.Baginski FE,Brakke KA.Modeling ascent configurations of strained high-altitude balloons.AIAA J1998;36(10):1901–10.

    24.Yao W,Li Y,Wang WJ,Zheng W.Thermodynamic model and numerical simulation of a stratospheric airship take-off process.J Astronaut2007;28(3):603–7[Chinese].

    25.Liu DX,Yang YQ,Lu¨MY,Wu Z.Effect of envelope thermal radiative properties on the stratospheric super-pressure LTA vehicle helium temperature.J Beijing Univ Aeronaut Astronaut2010;36(7):836–40[Chinese].

    26.Wang WJ,Li Y,Yao W,Zheng W.Estimation of the relationship between the pressure in airship balloon and the tension in its envelope.J Astronaut2007;5,1109-2[Chinese].

    27.Liao L,Pasternak I.A review of airship structural research and development.Prog Aerosp Sci2009;45(4):83–96.

    28.Shi H,Song B,Yao Q,Cao X.Thermal performance of stratospheric airships during ascent and descent.J Thermophys Heat Transf2009;23(4):816–21.

    29.Xu XH,Cheng XT,Ling XG.Thermal analysis of a stratospheric airship.J Tsinghua Univ(Sci Technol)2009;49(11):1848–51[Chinese].

    30.Fang XD,Wang WZ,Li XJ.A study of thermal simulation of stratospheric airships.Spacecr Recov Remote Sens2007;28(2):5–9[Chinese].

    31.Liu LB,Lu¨MY,Xiao HD,Cao S.Calculation and simulation of stratospheric airship capsule stress considering the pressure gradient.J Beijing Univ Aeronaut Astron2014;40(10):1386–91[Chinese].

    32.Wagner H.Flat sheet metal girders with very thin metal web.Z Flugtechn Motorluftschiffahrt1929;20:200–314.

    33.Mansfield EH.Tension field theory:A new approach which shows its duality with inextensional theory.Applied Mechanics.Berlin:Springer;1969,p.305-20.

    34.Pipkin AC.The relaxed energy density for isotropic elastic membranes.J Appl Math1986;36(1):85–99.

    35.Stein M,Hedgepeth JM.Analysis of partly wrinkled membranes.Washington,D.C.:NASA;1961,p.122-56.

    36.Kang S,Lm S.Finite element analysis of wrinkling membranes.J Appl Mech1997;64(2):263–9.

    37.Adler AL.Finite element approaches for static and dynamic analysis of partially wrinkled membrane structures[dissertation].Boulder(CO):University of Colorado;2000,p.65–75.

    38.Li ZW,Yang QS,Liu RX.Review of methods of wrinkling analysis of membrane structures.China Safety Sci J2004;14(7):16–20[Chinese].

    39.Fujikake M,Osamu K,Seiichiro F.Analysis of fabric tension structures.Comput Struct1989;32(3–4):537–47.

    40.Tan F,Yang QS,Li ZW.Wrinkling criteria and analysis method for membrane structures.J Beijing Jiaotong Univ2006;30(1):35–9[Chinese].

    41.Yang QS,Jiang YN.Analysis and design of tensioned cable–membrane structures.Beijing:Science Press;2004.p.89–93[Chinese].

    42.Tan F,Yang QS,Zhang J.Finite element method of wrinkling analysis of membrane structure.Eng Mech2006;23(1):62–8[Chinese].

    43.Tan F,Zhao J,Yang QS.Integrated program CAFA1.0 for cable and membrane structures.Spatial Struct2003;9(4):33–8[Chinese].

    4 March 2016;revised 11 July 2016;accepted 28 August 2016

    Available online 16 February 2017

    *Corresponding author.

    E-mail addresses:zhaoshbuaa@163.com(S.Zhao),liubuaa@163.com(D.Liu),buaazd@yeah.net(D.Zhao).

    Peer review under responsibility of Editorial Committee of CJA.

    亚洲国产欧洲综合997久久,| 久久精品国产亚洲av香蕉五月| 又黄又爽又免费观看的视频| 国产高清不卡午夜福利| 国产男靠女视频免费网站| 国产男靠女视频免费网站| 久久婷婷人人爽人人干人人爱| 久久99热这里只有精品18| АⅤ资源中文在线天堂| 干丝袜人妻中文字幕| 国产精品美女特级片免费视频播放器| 嫩草影院新地址| 一级毛片我不卡| 99久久无色码亚洲精品果冻| 狂野欧美激情性xxxx在线观看| 天堂√8在线中文| 亚洲一级一片aⅴ在线观看| 国产高清视频在线观看网站| 精品久久久久久久久av| 综合色av麻豆| 亚洲国产欧美人成| 亚洲无线在线观看| 国产国拍精品亚洲av在线观看| 亚州av有码| 搡女人真爽免费视频火全软件 | 寂寞人妻少妇视频99o| 可以在线观看毛片的网站| 男人狂女人下面高潮的视频| 欧美成人免费av一区二区三区| 国产精品一二三区在线看| 久久午夜福利片| 精品免费久久久久久久清纯| 亚洲精品国产成人久久av| 深夜精品福利| 天堂√8在线中文| 亚洲熟妇中文字幕五十中出| 最新中文字幕久久久久| 亚洲国产精品sss在线观看| 一级a爱片免费观看的视频| 12—13女人毛片做爰片一| 夜夜看夜夜爽夜夜摸| 国产女主播在线喷水免费视频网站 | 久久精品夜夜夜夜夜久久蜜豆| 在线播放无遮挡| 欧美色欧美亚洲另类二区| 九九热线精品视视频播放| 国产精品不卡视频一区二区| 乱系列少妇在线播放| 少妇的逼好多水| 亚洲成人中文字幕在线播放| 国产乱人视频| 人妻丰满熟妇av一区二区三区| 久久久久九九精品影院| 高清日韩中文字幕在线| 婷婷亚洲欧美| 最近手机中文字幕大全| 高清毛片免费观看视频网站| 精品免费久久久久久久清纯| 免费观看人在逋| 色播亚洲综合网| 亚洲av免费高清在线观看| 1024手机看黄色片| 亚洲七黄色美女视频| 嫩草影院精品99| 精品一区二区免费观看| 国产午夜精品久久久久久一区二区三区 | 十八禁网站免费在线| 国产精品久久久久久精品电影| 亚洲精品日韩在线中文字幕 | 国内揄拍国产精品人妻在线| or卡值多少钱| 国产成人aa在线观看| 国产伦精品一区二区三区四那| 婷婷亚洲欧美| 亚洲自拍偷在线| 国产精品国产三级国产av玫瑰| 狂野欧美激情性xxxx在线观看| 亚洲精品影视一区二区三区av| 成人性生交大片免费视频hd| 久久久久精品国产欧美久久久| 免费人成在线观看视频色| 亚洲欧美日韩东京热| 18禁黄网站禁片免费观看直播| 深夜精品福利| 欧美色视频一区免费| 又爽又黄无遮挡网站| 真人做人爱边吃奶动态| 精品人妻偷拍中文字幕| 少妇的逼好多水| 国产精品一区www在线观看| 天堂影院成人在线观看| 亚洲无线观看免费| 久久精品人妻少妇| 免费不卡的大黄色大毛片视频在线观看 | av视频在线观看入口| 一进一出抽搐动态| 亚洲天堂国产精品一区在线| 亚洲成人av在线免费| 色在线成人网| 一本精品99久久精品77| 欧美3d第一页| 国产av一区在线观看免费| 赤兔流量卡办理| 在线天堂最新版资源| 日韩中字成人| av卡一久久| 色综合站精品国产| 99热只有精品国产| 一个人免费在线观看电影| 午夜精品在线福利| 国产在视频线在精品| 国产成人一区二区在线| 午夜精品国产一区二区电影 | 欧美激情在线99| 韩国av在线不卡| 搡老熟女国产l中国老女人| 日本五十路高清| 日本爱情动作片www.在线观看 | 国产视频内射| 成人美女网站在线观看视频| 亚洲色图av天堂| 国内精品美女久久久久久| 久久这里只有精品中国| 免费人成视频x8x8入口观看| 精品午夜福利视频在线观看一区| 九九爱精品视频在线观看| a级毛色黄片| 中国美白少妇内射xxxbb| 一个人看的www免费观看视频| 中文字幕av成人在线电影| 日韩三级伦理在线观看| 亚洲欧美中文字幕日韩二区| 高清毛片免费看| 亚洲最大成人中文| 精品国内亚洲2022精品成人| 久久鲁丝午夜福利片| 97人妻精品一区二区三区麻豆| 亚洲熟妇中文字幕五十中出| 精品人妻熟女av久视频| 成人欧美大片| 婷婷精品国产亚洲av在线| 22中文网久久字幕| 亚洲av五月六月丁香网| 国产久久久一区二区三区| 国产精品电影一区二区三区| 中文在线观看免费www的网站| 欧美日韩乱码在线| 免费av毛片视频| 欧美绝顶高潮抽搐喷水| 日韩,欧美,国产一区二区三区 | 成人综合一区亚洲| av黄色大香蕉| 联通29元200g的流量卡| 在线播放无遮挡| 大香蕉久久网| 亚洲人成网站在线播放欧美日韩| 寂寞人妻少妇视频99o| 国产老妇女一区| 蜜臀久久99精品久久宅男| www日本黄色视频网| 国产精品一及| 国产精品一及| 精品无人区乱码1区二区| 亚洲四区av| 久久精品国产亚洲网站| 99热这里只有是精品在线观看| 成人亚洲精品av一区二区| 精品99又大又爽又粗少妇毛片| 午夜久久久久精精品| 夜夜夜夜夜久久久久| 精品日产1卡2卡| 国产片特级美女逼逼视频| 校园春色视频在线观看| 亚洲人成网站高清观看| 丝袜喷水一区| 久久人妻av系列| 亚洲第一电影网av| 日本一本二区三区精品| 日韩在线高清观看一区二区三区| 尾随美女入室| 精品少妇黑人巨大在线播放 | 国产三级在线视频| 午夜福利在线在线| 男女做爰动态图高潮gif福利片| 日韩欧美三级三区| or卡值多少钱| 老司机午夜福利在线观看视频| 日日摸夜夜添夜夜添av毛片| 少妇人妻一区二区三区视频| 久久午夜福利片| 老师上课跳d突然被开到最大视频| 天天一区二区日本电影三级| 国产精品福利在线免费观看| 久久天躁狠狠躁夜夜2o2o| 极品教师在线视频| 99视频精品全部免费 在线| 美女黄网站色视频| 简卡轻食公司| 国产精品99久久久久久久久| 精华霜和精华液先用哪个| 丝袜美腿在线中文| 久久人妻av系列| 成人亚洲欧美一区二区av| 日韩欧美三级三区| 亚洲欧美中文字幕日韩二区| 18+在线观看网站| 3wmmmm亚洲av在线观看| 精品欧美国产一区二区三| 看片在线看免费视频| 中文字幕av成人在线电影| 久久久精品欧美日韩精品| 一本久久中文字幕| 精品久久久久久久久久免费视频| 国产午夜福利久久久久久| 国产精品一区二区三区四区久久| 可以在线观看的亚洲视频| 日韩在线高清观看一区二区三区| 97人妻精品一区二区三区麻豆| 免费看美女性在线毛片视频| 欧美极品一区二区三区四区| 内射极品少妇av片p| 深夜a级毛片| 一个人观看的视频www高清免费观看| 夜夜夜夜夜久久久久| 国产伦一二天堂av在线观看| 美女大奶头视频| 天美传媒精品一区二区| 十八禁国产超污无遮挡网站| 国产高清视频在线播放一区| 91久久精品国产一区二区成人| 亚洲国产精品国产精品| 国产精品一区二区性色av| 亚洲熟妇熟女久久| 精品无人区乱码1区二区| 尾随美女入室| 久久中文看片网| 久久午夜福利片| 国产综合懂色| 精华霜和精华液先用哪个| 午夜福利在线观看吧| 欧美国产日韩亚洲一区| 悠悠久久av| 乱人视频在线观看| 久久久久久久久久久丰满| 高清午夜精品一区二区三区 | 日本 av在线| 俄罗斯特黄特色一大片| 干丝袜人妻中文字幕| or卡值多少钱| 97超级碰碰碰精品色视频在线观看| 人人妻人人看人人澡| 丰满的人妻完整版| 女人被狂操c到高潮| 九九在线视频观看精品| 免费搜索国产男女视频| 国内精品久久久久精免费| 国产爱豆传媒在线观看| 精品久久国产蜜桃| 小说图片视频综合网站| 国产精品亚洲一级av第二区| 白带黄色成豆腐渣| 又粗又爽又猛毛片免费看| 91麻豆精品激情在线观看国产| 深夜a级毛片| 欧美激情在线99| 国产黄色视频一区二区在线观看 | 99国产精品一区二区蜜桃av| 给我免费播放毛片高清在线观看| 一级av片app| 国产精品人妻久久久久久| 久久精品91蜜桃| 自拍偷自拍亚洲精品老妇| 久久国产乱子免费精品| 日韩制服骚丝袜av| 精品免费久久久久久久清纯| 国产亚洲精品久久久com| 内地一区二区视频在线| 久久久欧美国产精品| 国产亚洲精品久久久久久毛片| 午夜影院日韩av| 国产精品人妻久久久影院| 简卡轻食公司| 亚洲国产精品合色在线| 国产伦精品一区二区三区视频9| 一本久久中文字幕| 国产免费男女视频| www日本黄色视频网| 男插女下体视频免费在线播放| 男女那种视频在线观看| 日本与韩国留学比较| 99国产精品一区二区蜜桃av| 99热这里只有是精品50| 亚洲成人中文字幕在线播放| 精品欧美国产一区二区三| 国产精品不卡视频一区二区| 美女黄网站色视频| 亚洲av不卡在线观看| 国语自产精品视频在线第100页| 国内揄拍国产精品人妻在线| 最近的中文字幕免费完整| 欧美激情国产日韩精品一区| 美女大奶头视频| 免费看美女性在线毛片视频| 久久久久精品国产欧美久久久| 亚洲电影在线观看av| 亚洲最大成人av| 日本在线视频免费播放| av在线观看视频网站免费| 在线观看午夜福利视频| 国产精品野战在线观看| 欧美bdsm另类| 99久久无色码亚洲精品果冻| 国产在线男女| 国产成人91sexporn| 一进一出抽搐动态| 三级经典国产精品| 中国国产av一级| 日本黄色片子视频| 啦啦啦韩国在线观看视频| 波多野结衣巨乳人妻| 国产淫片久久久久久久久| 亚洲美女搞黄在线观看 | 免费不卡的大黄色大毛片视频在线观看 | 嫩草影院入口| 卡戴珊不雅视频在线播放| 少妇熟女欧美另类| 久久人妻av系列| 不卡视频在线观看欧美| 老熟妇仑乱视频hdxx| avwww免费| 男女边吃奶边做爰视频| 亚洲国产精品成人久久小说 | 久久人人精品亚洲av| 一区二区三区四区激情视频 | 男人狂女人下面高潮的视频| 国产女主播在线喷水免费视频网站 | 亚洲综合色惰| 极品教师在线视频| 免费在线观看影片大全网站| 嫩草影院新地址| 一本精品99久久精品77| 成人三级黄色视频| 国产成人影院久久av| 欧美日韩国产亚洲二区| 波多野结衣高清作品| 国产视频内射| 两性午夜刺激爽爽歪歪视频在线观看| 国内少妇人妻偷人精品xxx网站| 国产毛片a区久久久久| 亚洲av电影不卡..在线观看| 大又大粗又爽又黄少妇毛片口| 99在线视频只有这里精品首页| 乱人视频在线观看| 1024手机看黄色片| 成人性生交大片免费视频hd| 国产精品一区二区免费欧美| av在线亚洲专区| 亚洲一区二区三区色噜噜| 日韩人妻高清精品专区| 久久精品国产亚洲av香蕉五月| 九色成人免费人妻av| 男人的好看免费观看在线视频| 久久草成人影院| 波多野结衣巨乳人妻| 天天躁夜夜躁狠狠久久av| 亚洲无线在线观看| 精品一区二区三区视频在线| 亚洲国产精品国产精品| 99视频精品全部免费 在线| 男人舔女人下体高潮全视频| 久久久久久国产a免费观看| 免费观看的影片在线观看| 国产aⅴ精品一区二区三区波| av在线亚洲专区| 国产黄a三级三级三级人| 国产亚洲av嫩草精品影院| 国内精品久久久久精免费| 小说图片视频综合网站| www.色视频.com| 97在线视频观看| 在线观看免费视频日本深夜| 97碰自拍视频| 在线免费观看的www视频| 一级毛片久久久久久久久女| 亚洲av免费高清在线观看| 久久亚洲国产成人精品v| 亚洲熟妇中文字幕五十中出| 精品久久久久久久久久免费视频| 国产 一区精品| 三级毛片av免费| 国产黄片美女视频| 狠狠狠狠99中文字幕| 亚洲人成网站高清观看| 亚洲电影在线观看av| 天天躁日日操中文字幕| 国产午夜精品论理片| 精品午夜福利在线看| 色尼玛亚洲综合影院| 男人舔奶头视频| 国产精品嫩草影院av在线观看| 国产精品99久久久久久久久| 九九热线精品视视频播放| 人妻丰满熟妇av一区二区三区| 色噜噜av男人的天堂激情| 最新在线观看一区二区三区| 搡老熟女国产l中国老女人| 精品午夜福利在线看| 国产精品永久免费网站| 成年版毛片免费区| 俄罗斯特黄特色一大片| a级毛色黄片| 九九在线视频观看精品| 国产亚洲91精品色在线| 热99在线观看视频| 午夜福利在线观看免费完整高清在 | 黄片wwwwww| 在现免费观看毛片| 午夜免费男女啪啪视频观看 | 成人av在线播放网站| 国产视频一区二区在线看| 欧美一区二区国产精品久久精品| 国产精品伦人一区二区| 日本黄大片高清| 欧美成人a在线观看| 99久久九九国产精品国产免费| 日韩欧美三级三区| 又爽又黄无遮挡网站| 国产亚洲精品久久久久久毛片| 久久中文看片网| 韩国av在线不卡| 一级黄色大片毛片| 成人午夜高清在线视频| 亚洲欧美日韩高清在线视频| 日韩av不卡免费在线播放| 简卡轻食公司| 欧美区成人在线视频| 露出奶头的视频| 亚洲图色成人| 亚洲精品在线观看二区| 性插视频无遮挡在线免费观看| 成人一区二区视频在线观看| 亚州av有码| 久久久国产成人精品二区| 不卡一级毛片| 听说在线观看完整版免费高清| 麻豆av噜噜一区二区三区| 日本黄色视频三级网站网址| 国产国拍精品亚洲av在线观看| 欧美色欧美亚洲另类二区| 亚洲成人av在线免费| 一级毛片久久久久久久久女| 青春草视频在线免费观看| 91av网一区二区| 中文字幕精品亚洲无线码一区| 青春草视频在线免费观看| 波多野结衣高清作品| 精品久久久噜噜| 国产精品久久久久久精品电影| 欧美丝袜亚洲另类| 欧美三级亚洲精品| 亚洲五月天丁香| 搡老熟女国产l中国老女人| 久久久久久久久大av| 精品久久久久久成人av| 精品熟女少妇av免费看| 亚洲五月天丁香| 欧美+日韩+精品| 欧美性感艳星| 日日摸夜夜添夜夜添小说| 国产精品三级大全| 一本精品99久久精品77| 看非洲黑人一级黄片| 国产麻豆成人av免费视频| 欧美日韩一区二区视频在线观看视频在线 | 亚洲成人久久爱视频| 夜夜看夜夜爽夜夜摸| 性插视频无遮挡在线免费观看| 久久久久久久久久成人| 舔av片在线| 18+在线观看网站| 久久久久久久午夜电影| 美女被艹到高潮喷水动态| 国产亚洲91精品色在线| 人妻丰满熟妇av一区二区三区| 亚洲熟妇中文字幕五十中出| 欧美日本视频| 国产成人a∨麻豆精品| av在线蜜桃| 欧美丝袜亚洲另类| 国产伦精品一区二区三区视频9| 日韩欧美国产在线观看| 久久久久久久久久黄片| 国产高清三级在线| 日韩三级伦理在线观看| 禁无遮挡网站| 老熟妇乱子伦视频在线观看| 国产精品免费一区二区三区在线| 午夜精品国产一区二区电影 | 九色成人免费人妻av| 国产精品三级大全| 国产乱人偷精品视频| 亚洲真实伦在线观看| 好男人在线观看高清免费视频| 国产成人一区二区在线| 亚洲七黄色美女视频| 人人妻人人澡人人爽人人夜夜 | 草草在线视频免费看| 欧美色欧美亚洲另类二区| 国产爱豆传媒在线观看| 久99久视频精品免费| 高清午夜精品一区二区三区 | 丝袜美腿在线中文| 色综合色国产| 在线观看美女被高潮喷水网站| 在线播放国产精品三级| 91午夜精品亚洲一区二区三区| av卡一久久| 波野结衣二区三区在线| 美女内射精品一级片tv| 国产免费男女视频| a级毛片a级免费在线| 国产又黄又爽又无遮挡在线| 亚洲精品亚洲一区二区| 国产精品女同一区二区软件| 又黄又爽又刺激的免费视频.| 日本黄大片高清| 一个人观看的视频www高清免费观看| 联通29元200g的流量卡| 精品乱码久久久久久99久播| 又爽又黄无遮挡网站| 搡老岳熟女国产| 久久精品国产99精品国产亚洲性色| 久久精品91蜜桃| 一级毛片我不卡| 精品一区二区三区视频在线观看免费| 一边摸一边抽搐一进一小说| 在线a可以看的网站| 午夜福利在线观看吧| 人人妻人人澡人人爽人人夜夜 | 美女cb高潮喷水在线观看| 亚洲欧美精品自产自拍| 国产成人aa在线观看| 国产亚洲精品av在线| 精品免费久久久久久久清纯| 天天一区二区日本电影三级| av卡一久久| 成年女人看的毛片在线观看| 久久久久国内视频| 亚洲第一区二区三区不卡| av女优亚洲男人天堂| 欧美+亚洲+日韩+国产| 91精品国产九色| 香蕉av资源在线| 可以在线观看毛片的网站| 少妇的逼好多水| 久久久久免费精品人妻一区二区| 九九热线精品视视频播放| 中文在线观看免费www的网站| 97在线视频观看| 日本一本二区三区精品| 国产精品三级大全| 波多野结衣巨乳人妻| a级毛片免费高清观看在线播放| 国内精品久久久久精免费| 黄色视频,在线免费观看| 精品一区二区三区av网在线观看| 我的女老师完整版在线观看| 精品久久久噜噜| 亚洲国产欧美人成| 国产亚洲精品综合一区在线观看| 99在线人妻在线中文字幕| 联通29元200g的流量卡| 久久久精品欧美日韩精品| 日日摸夜夜添夜夜添av毛片| 亚洲七黄色美女视频| 99视频精品全部免费 在线| 久久久国产成人免费| 日韩人妻高清精品专区| 久久久久久久久久久丰满| 欧美性感艳星| 亚洲成人久久性| 啦啦啦啦在线视频资源| 99在线人妻在线中文字幕| 欧美激情久久久久久爽电影| 一进一出抽搐动态| 美女免费视频网站| av专区在线播放| 亚洲高清免费不卡视频| 婷婷精品国产亚洲av在线| 天堂影院成人在线观看| 俄罗斯特黄特色一大片| 欧美区成人在线视频| 中出人妻视频一区二区| 国产高清视频在线观看网站| 欧美不卡视频在线免费观看| 午夜激情欧美在线| 深夜精品福利| 免费无遮挡裸体视频| 久久久久性生活片| 免费高清视频大片| 黄色配什么色好看| 欧美xxxx性猛交bbbb| 免费不卡的大黄色大毛片视频在线观看 | 男人舔女人下体高潮全视频| 99久久精品一区二区三区| 亚洲va在线va天堂va国产| 婷婷色综合大香蕉| 国产精品人妻久久久久久| 在现免费观看毛片| 日韩制服骚丝袜av| 两性午夜刺激爽爽歪歪视频在线观看| 春色校园在线视频观看| av天堂中文字幕网| 国产v大片淫在线免费观看| 久久久久久国产a免费观看|