• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Identification of Potential Flavonoid Inhibitors of the SARS-CoV-2 Main Protease 6YNQ:A Molecular Docking Study

    2020-12-31 08:13:04SUMITAroraGOVINDLohiyaKESHAVMoharirSAPANShahSUBHASHYene
    Digital Chinese Medicine 2020年4期

    SUMIT Arora,GOVIND Lohiya,KESHAV Moharir,SAPAN Shah,SUBHASH Yene

    a.Pharmacognosy and Phytochemistry Department,Gurunanak College of Pharmacy,Nagpur,Maharashtra 440026,India

    b.Pharmaceutics Department,Gurunanak College of Pharmacy,Nagpur,Maharashtra 440026,India

    c.Pharmaceutical Chemistry Department,Priyadarshini J.L.College of Pharmacy,Nagpur,Maharashtra 440016,India

    d.Pharmacology Department,Gurunanak College of Pharmacy,Nagpur,Maharashtra 440026,India

    ABSTRACT Objective Severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),the causative agent for coronavirus disease 2019(COVID-19),is responsible for the recent global pandemic.As there are no effective drugs or vaccines available for SARS-CoV-2,we investigated the potential of flavonoids against SARS-CoV-2 main protease 6YNQ.Methods In silico molecular simulation study against SARS-CoV-2 main protease 6YNQ.Results Among the 21 selected flavonoids,rutin demonstrated the highest binding energy (? 8.7 kcal/mol) and displayed perfect binding with the catalytic sites.Conclusions Our study demonstrates the inhibitory potential of flavonoids against SARS-CoV-2 main protease 6YNQ.These computational simulation studies support the hypothesis that flavonoids might be helpful for the treatment of COVID-19.

    Keywords COVID-19 SARS-CoV-2 Protease 6YNQ In silico Molecular simulation Virtual drug screening Flavonoids

    1 Introduction

    The unprecedented coronavirus disease 2019(COVID-19) outbreak has had a critical impact on countries across the globe and on people from every walk of life.As of the beginning of October 2020,the world has recorded 1 111 998 deaths due to COVID-19 and more than 39 944 882 confirmed cases[1].The causative agent of COVID-19,severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2),belongs to theβ-coronavirus group.Antiviral drugs can target diverse phases of viral infection.In the case of SARSCoV-2,both structural and nonstructural proteins have been identified as potential drug targets.The main proteases (Mproor 3CLpro) of corona viruses tend to be highly conserved and are critical for viral replication.These proteins are responsible for the maturation of both nonstructural and structural viral proteins,making them a very attractive target for novel anti-coronavirus drugs.Thus,any inhibitor against these proteases (Mproor 3CLpro) that can block the replication of SARS-CoV-2 would be effective for the development of therapeutic agents or antiviral drugs against SARS-CoV-2[2].

    The main protease of SARS-CoV-2,6YNQ,is a homodimer bound to 2-methyl-1-tetralone,which has been expressed inEscherichia coliand has a known crystalline structure,comprising 306 amino acids[3].One important finding is that there have been no mutations in this protein to date.This viral protease is a multifunctional protein involved in the transcription and replication of various viral RNAs and is responsible for the cleavage of the functional replicase polyproteins at 11 different sites.Additionally,6YNQ[3]was shown to share 100% identity and similarity with 6LU7[4]using blast-2-seq,Smith-Waterman and Needleman-Wunsch sequence alignments.In addition,Protein Data Bank (PDB) structures of 6YNQ demonstrate a better resolution (1.8 ?),which ensures better protein structure evaluations.Furthermore,R and R free,who assess the similarity between the calculated values and the observed structural factor amplitudes,were lower for these structures than 6LU7.Although the major protease,spike protein,RdRp,and the papain-like protease have been evaluated as antiviral targets,6YNQ has not yet been evaluated for anti-COVID 19 activity.Co-crystallized ligand P6N (PDB ID 6YNQ) has been shown to interact with the binding site of Mpro,indicating its association with 6YNQ demonstrating the main interaction site for drug targeting[5].Similarly,6YNQ has been recently listed as a possible target for evaluating the efficacy of certain agents against COVID-19[6].Thus,6YNQ with its superior protein structure predictions is far more likely to yield reliable docking results,which is essential in the drug discovery process.

    Recently,the United States Food and Drug Administration approved the use of Gilead’s Remdesivir,marketed under the brand name Veklury,for treatment of COVID-19 for hospitalized patients.This is the first and only drug approved for adults and pediatric patients (age 12 years and older,weighing at least 40 kg) in the treatment of COVID-19 patients requiring hospitalization[7,8].Hydroxychloroquine was under early investigation for use in COVID-19 treatment;however,initial clinical trials were withdrawn amid safety concerns raised by the WHO[9].In order to identify any potential interactions with the SARSCoV-2 protease enzymes,many existing drugs such as Lopinavir,Oseltamivir,Ritonavir and Favipiravir using computational analysis have been evaluated[10,11].

    Interestingly,many bioactive compounds derived from plants that are known to exert some antiviral effects,have attracted researchers’ attention,with a large panel of these compounds under evaluation for SARS-CoV-2[12,13].Among them,flavonoids have been revealed as the most promising antiviral agents[14].Flavonoids are a large class of food additives that have a positive impact on health and which have been extensively evaluated against a wide range of DNA and RNA viruses.For example,the flavones apigenin,has been reported to exert an antiviral effect against picornavirus (RNA virus),while the flavonol quercetin-3-β-galactoside was found to competitively inhibit SARS-CoV 3CLproin anin vitroassay[15].Additionally,anin silicodocking simulation established that Biflavone adheres to the SARS-CoV 3CLprobinding pocket[16].The role of flavonoids and their interactions with diverse cellular targets and pathways involved in the viral life cycle have been widely demonstrated,and when these features are considered in conjunction with the structural diversity and degree of hydroxylation in flavonoids,it is obvious that these compounds could be used against SARS-CoV-2.

    In this study,we assessed the docking of 21 flavonoids and evaluated their potential as inhibitory compounds against the SARS-CoV-2 main protease 6YNQ using the AutoDock Vina software.Furthermore,we confirmed our initial findings and evaluated the structural flexibility of the docked poses for the best flavonoidsusing CABS-flex 2.0 software[17].

    2 Materials and Methods

    2.1 Platform for molecular docking

    The computational docking assessment of 21 flavonoid ligands for the SARS-CoV-2 main protease 6YNQ was performed using the AutoDock Vina software,and comparative docking was performed using Swiss dock (http://www.swissdock.ch/),an online server that uses EADock DSS software[18,19].

    2.2 Preparation of proteins and grids

    In silicoanalysis of 21 flavonoids was performed using a 1.80 ? crystal structure of 6YNQ from the SARSCoV-2 main protease in complex with an inhibitor 2-methyl-1-tetralone (PDB ID:6YNQ,with a resolution <2 ?,R-value free <0.25,R-value work <0.25),which was retrieved from the PDB (https://www.rcsb.org).The 6YNQ protein containsan a chain with(2~{S})-2-methyl-3,4-dihydro-2~{H}-naphthallen-1-one,which was used in the macromolecule preparation[4].The protein preparation parameters of AutoDock were then used to prepare the whole structure by deleting water molecules,adding hydrogen,and assigning partial charges using Kollman and Gasteiger,and the binding sites were identified after deleting the ligand.

    2.3 Ligand preparations

    For this investigation,the ligand (2~{S})-2-methyl-3,4-dihydro-2~{H}-naphthalen-1-one and the structures of each of the flavonoids under investigation were retrieved from PubChem (https://pubchem.ncbi.nlm.nih.gov/) and saved in SDF.Since the PDB,Partial Charge (Q) and Atom Type (T) (PDBQT)formats can all be used as input in the AutoDock Vina software,Open Babel (version 3.0.0) 21 was used to convert these SDF files to PDB[20].A total of 24 compounds were selected to target the main protease of SARS-CoV-2,including two approved anti-RdRp compounds (Remdesivir)[21]and a recently identified compound used to treat a mild to moderate cases of coronavirus (Favipiravir)[22].

    2.4 Determining compound active sites

    The active sites were defined as the coordinates of the ligand in the original target protein grids,and these active binding sites in the target protein were identified using the computed atlas for surface topography of proteins (CASTp)[23]and Biovia Discovery Studio 4.5[24].The amino acids in the active site were used to evaluate the Grid box and docking evaluation results.PyMol software (version 1.7.4)[25]and the Protein-Ligand Interaction Profiler (PLIP)web server[26]were used to profile the interactions between the ligand-protein complexes showing the lowest binding score and RMSD <2.0 ?.

    2.5 Protein ligand docking and visualization

    AutoDock Vina was used in all the docking experiments,using the optimized model as the docking target.Computational docking is executed to generate a population of promising orientations and conformations of the ligand within the binding site.The grid center for docking was set at X=3.789,Y=– 1.789,and Z=18.846,with the grid box set to 40 ?×40 ?×40 ?.Flavonoids were individually evaluated in the molecular docking,and prior to their first interactions,the classical MM2 force field was applied to optimize the structures of these small molecules,ensuring that their active sites were rigid.After validation of the docking protocol,virtual screening was accomplished using rigid molecular docking into the active site of the partner proteins.Throughout the virtual screening,both the macromolecule and the ligands were kept rigid.Finally,the binding energy limits were removed from the software,and the investigation of the 2D hydrogen-bond interactions could be completed using the Biovia Discovery Studio 4.5 program.This analysis produces a graphical output describing the hydrophobic bonds,hydrogen bonds,and their bond lengths in each docking pose.

    2.6 Physicochemical properties

    Lipinski’s rule was used to assess the physicochemical properties of all the selected flavonoids and predict their drug-like properties,and the Swiss ADME (http://www.swissadme.ch/) was used to compute the SMILES structures of each compound[27].

    2.7 Molecular dynamics simulations

    Molecular dynamics simulations were performed using the CABS Flex 2.0 server and were based on the coarse-grained simulations of protein motion[28]over 50 cycles and 50 trajectory frames of 10 ns each with some additional distance restraints including a global weight of 1.0 applied.These were built with Poisson-Boltzmann/Generalized Born (PB/GB) molecular mechanics,and the solvent probe radius was set to 1.4 ?,the minimum atomic radius was 1 ?,the salt radius was 2 ?,the ionic strength was 0.15,and the temperature of the simulation was 1.4.These restraints allowed us to analyze the conformational stability of the receptor-ligand complex system.

    3 Results

    3.1 Molecular docking

    The results of the molecular docking study using AutoDock Vina revealed the binding energies of the selected compounds,inhibitors and reference molecules (Table1).Additionally,these results were compared with SwissDock.The algorithm consisted of several steps,including the generation of as many binding modes in the local docking as possible,estimating CHARMM energies on the grid,the evaluation of the most favored binding modes using FACTS,and then clustering evaluation.Cluster “0”has the best full fitness (FF) score.We submitted both our protein and phytochemicals one by one.After each docking run,the output clusters were identified and the individual conformer from each cluster with the most favorable binding mode and most negative FF score were chosen for further evaluation as these had the best fit.

    Table1 Ligands with their binding energy and Lipinski rule parameters from the PDB for 6YNQ from SARS-CoV-2

    The inhibitor 2-methyl-1-tetralone binds to the active site of 6YNQ with the lowest binding energy(– 5.6 kcal/mol),where CYS A:145 and HIS A:163 represent the catalytic residues (Figure1A).Favipiravir (binding energy was – 5.5 kcal/mol) docked with a confirmation that forms conventional hydrogen bonds with HIS A:163,GLU A:166,MET A:165 and ASN A:142 along with pi donor hydrogen bonds with CYS A:145 and LEU A:141 (Figure1B),suggesting its interaction with the catalytic residues.In contrast,Remdesivir had the lowest binding energy of– 8.6 kcal/mol,more than the inhibitor and Favipiravir,but failed to make hydrogen bonds with the catalytic residues and rather formed bonds with GLU A:166,HIS A:41,and THR A:25 along with pialkyl interactions with PRO A:168 (Figure1C).

    Among the 21 flavonoids,rutin was shown to bind with the lowest binding energy,– 8.7 kcal/mol,which was close to the Remdesivir binding energy,forming conventional hydrogen bonds with the catalytic active site residues CYS A:145,HIS A:163,SER A:46,THR A:45,HIS A:41,GLU A:166,and GLN A:189 and additional Van der Waals interactions with ASN A:142.In addition,it produced a pialkyl interaction with MET A:49,re-enforcing its binding (Figure2).However,the other flavonoid baicalein demonstrated a binding energy of – 7.9 kcal/mol and formed hydrogen bonds with the active site HIS A:163 and GLU A:166,a pi alkyl interaction with the other catalytic residue CYS A:145,various Van der Waals interactions with LEU A:141,and a pi bond with MET A:49 and HIS A:41 (Figure3).Fisetin presented with a binding energy of – 7.3 kcal/mol and was shown to interact with various amino acid residues producing hydrogen bonds with active site HIS A:163,LEU A:141,GLU A:166,ARG A:188,GLN A:192,THR A:190,PRO A:168 and GLN A:189,and pi alkyl interactions with the other catalytic residues CYS A:145 and PRO A:168(Figure4).The other flavonoids presented with binding energy values ranging from – 8.4 kcal/mol to– 5.6 kcal/mol,although there were no hydrogen bonds with the catalytic site.

    3.2 Physicochemical characterization

    Furthermore,the physicochemical properties of the compounds were studied to predict the pharmacokinetics of the drugs,using Lipinski’s rule.Lipinski’s rules describe orally active drug compounds as having a molecular weight (MW) of <500 Da,an octanol-water partition coefficient (LogP) of <5,a polar surface area (PSA) of <150 ?,number of hydrogen bond donors (HBDs) <5,number of hydrogen bond acceptors (HBAs) <10,and number of rotatable bonds (RBs) <10[29].The Lipinski values for each of the selected compounds are listed in Table1.

    3.3 Molecular dynamics

    The structural flexibility of the best three phytoconstituents in complex with 6YNQ was evaluated using CABS-flex 2.0.To validate the docking results,the structural PDB file was provided to the server with default parameters to obtain the maximum simulation output[30].The root mean square fluctuation (RMSF) values (Figure5) explain the fluctuation of each amino acid residue in the best docked ligand in order to validate the conformational stability of the protein-ligand docked complexes(Figure6).

    4 Discussion

    Molecular docking studies of flavonoids with SARSCoV-2 main protease 6YNQ exhibited promising results based on their binding energies,as determined by AutoDock Vina.In this study,some known antiviral and other flavonoids were selected for targeting SARS-CoV-2 main protease 6YNQ,and molecular docking studies were carried out to assess their potential antiviral effect.To evaluate the binding between the flavonoids and the targets,we selected 21 flavonoids against 6YNQ,along with their known inhibitor 2-methyl-1-tetralone,and reference compounds Remdesivir and Favipiravir.Our results suggest that most of the ligands present with nearly the same score in either docking method,with a corresponding correlation coefficient of 0.752 7 between docking scores obtained using AutoDock vina and Delta G by SwissDock,supporting the accuracy of the AutoDock vina predictions.Based on these results,three flavonoids,rutin,baicalein and fisetin,should be considered potential inhibitors of SARS-CoV-2 main protease 6YNQ acting via Mpro6YNQ inhibition.

    Rutin demonstrated strong inhibition of 6YNQ,forming conventional hydrogen bonds with the catalytic active site residue CysA 145 and having the lowest binding energy (? 8.7 kcal/mol) of any of the compounds.Taken together,this suggests that it exhibits the strongest and most stable binding.This result is in agreement with previously published data that suggest that rutin (docking score:? 9.16 kcal/mol) is the most potent inhibitor for 6LU7[31].Other researchers have also reported that rutin is an effective inhibitor of various targets of the SARS-CoV-2 proteases[32].These studies have confirmed that CysA 145 is a critical residue within the binding pocket of these proteases falling within a 6 ? radius around the catalytic center of these proteins[33,34],and support the application of rutin as a competitive SARS-CoV 3CLproinhibitor that interacts via hydrogen bonding with the catalytically active residue CysA 145.

    One of the most studied flavonoids,baicalein,also forms hydrogen bonds with these proteins,targeting the other catalytic residue,i.e.,histidine.Numerous studies have reported that baicalein and its analogs are strong inhibitors of SARS-CoV-2 3CLproand helicase,suggesting that baicalein is a potential candidate for combating coronavirus disease[35,36].In addition,a traditional Chinese medicine formulation containing baicalein was evaluated in a neutralization study using a fRhK4 cell line infected with 10 strains of SARS-CoV-2 from 10 different patients and shown to effectively neutralize these viruses,supporting the potential clinical application of this product[37].The flavonol fisetin also produced both hydrogen and pi alkyl bonds with the catalytic center of 6YNQ,although its binding energy was somewhat lower than rutin and baicalein.Other studies have reported binding of fisetin with 6LU7[38].Given these results,we propose that a combination of rutin,baicalein and fisetin may produce a synergistic inhibition of both catalytically active residues in 6YNQ,improving its overall inhibition.

    Lipinski’s rule is a major deciding factor when evaluating the potential of drug candidates and is often used to determine whether a compound with particular pharmacological or biological actions possesses the necessary physical and chemical properties for administration in humans.Evaluation of the molecular properties of the compounds based on the computed partition coefficient (LogP) demonstrated that these compounds have relatively good lipophilicity,as the LogPvalues were less than 5[39,40].These results also demonstrated that both baicalein and fisetin strictly followed Lipinski’s rule with zero violations,indicating that both compounds are likely to possess active drug characteristics

    Low RMSF values imply limited motion within a system,while high values in the molecular dynamics simulations reflect more flexibility[41].The results of the molecular dynamics simulations show that there are appropriate secondary structure residues with theα-helix andβ-sheet of the protein that present with minimal fluctuation when evaluated using efficient constraints in the all-atom molecular dynamics algorithm,a classical simulation approach for proteins.Rutin,baicalein and fisetin were shown to maintain their molecular interactions with the target protein under all of these conditions,confirming their likely interaction.

    Interestingly,these three flavonoids are nutraceuticals and act as vital nutritional component of various fruits and vegetables.Thus,we anticipate that this nutraceutical has the potential to enhance immunity and inhibit COVID-19 infections in the population[42].Furthermore,combination therapy of synthetic drugs with flavonoids often results in superior outcomes for antiviral treatments[43,44].Most flavonoid evaluations for COVID-19 have focused on 3CL as the main viral protease[45];however,our study demonstrates the potential for flavonoid treatments to affect other targets including 6YNQ of SARS-CoV-2.

    Conclusions

    Human health and safety is intrinsically linked with the need to find and test novel interventions for COVID-19 (SARS-CoV-2),making any study related to these endeavors critical to global concerns.Here,we have used computational docking studies of various flavonoids against the SARS-CoV-2 main protease 6YNQ to help identify novel therapeutic effectors.We evaluated a library of 21 flavonoids and revealed that rutin,baicalein and fisetin bind the target efficiently and may have value as potential inhibitors.Thus,we conclude that these phytochemicals can be used as potential antiviral candidates and suggest that furtherin vitroorin vivoexperiments may provide better insight into the optimal flavonoid structure for preventing and treating COVID-19.

    Acknowledgements

    The authors are thankful to the Principal,Gurunanak College of Pharmacy,Principal,Priyadarshini J.L.College of Pharmacy and management of the Sikh Education Society for extending facilities.

    Competing Interests

    The authors declare no conflict of interest.

    天堂影院成人在线观看| 欧美黑人欧美精品刺激| 日韩免费av在线播放| 两性午夜刺激爽爽歪歪视频在线观看 | 久久久国产欧美日韩av| 无限看片的www在线观看| 正在播放国产对白刺激| 99在线视频只有这里精品首页| 日韩欧美三级三区| 人妻夜夜爽99麻豆av| 又黄又爽又免费观看的视频| 九色国产91popny在线| 午夜老司机福利片| 亚洲av熟女| 九色成人免费人妻av| 亚洲自拍偷在线| 全区人妻精品视频| 亚洲一区二区三区不卡视频| 亚洲男人的天堂狠狠| 在线观看免费日韩欧美大片| 亚洲狠狠婷婷综合久久图片| 他把我摸到了高潮在线观看| 男人舔奶头视频| 不卡av一区二区三区| xxx96com| 色av中文字幕| 日韩有码中文字幕| 两个人视频免费观看高清| 亚洲熟妇中文字幕五十中出| 久久人人精品亚洲av| 国产视频一区二区在线看| 国产伦一二天堂av在线观看| 韩国av一区二区三区四区| 国产69精品久久久久777片 | 国产精品日韩av在线免费观看| 亚洲片人在线观看| 午夜影院日韩av| 精品电影一区二区在线| 9191精品国产免费久久| 午夜成年电影在线免费观看| 操出白浆在线播放| 国产高清有码在线观看视频 | 香蕉丝袜av| 变态另类丝袜制服| 五月伊人婷婷丁香| 每晚都被弄得嗷嗷叫到高潮| 国产精品免费视频内射| 两性午夜刺激爽爽歪歪视频在线观看 | 又黄又粗又硬又大视频| 啦啦啦观看免费观看视频高清| 法律面前人人平等表现在哪些方面| 校园春色视频在线观看| 狂野欧美白嫩少妇大欣赏| 日日干狠狠操夜夜爽| 女生性感内裤真人,穿戴方法视频| 99热只有精品国产| av中文乱码字幕在线| 久久精品91蜜桃| 国产精品98久久久久久宅男小说| 国产亚洲精品综合一区在线观看 | 久久国产乱子伦精品免费另类| 免费在线观看影片大全网站| 全区人妻精品视频| 国产午夜福利久久久久久| 欧美不卡视频在线免费观看 | 91成年电影在线观看| 国产欧美日韩精品亚洲av| 在线视频色国产色| 亚洲全国av大片| 亚洲一区二区三区色噜噜| 久热爱精品视频在线9| netflix在线观看网站| 成人一区二区视频在线观看| 久久人妻av系列| 亚洲欧洲精品一区二区精品久久久| 国产成人啪精品午夜网站| 精品日产1卡2卡| av片东京热男人的天堂| 狂野欧美白嫩少妇大欣赏| 好男人在线观看高清免费视频| 99riav亚洲国产免费| www.www免费av| 在线观看美女被高潮喷水网站 | 一进一出抽搐gif免费好疼| 欧美日韩黄片免| 亚洲专区国产一区二区| 女同久久另类99精品国产91| 曰老女人黄片| 激情在线观看视频在线高清| 欧美绝顶高潮抽搐喷水| www日本在线高清视频| 成人国产综合亚洲| 亚洲精品一卡2卡三卡4卡5卡| 超碰成人久久| 特级一级黄色大片| 亚洲va日本ⅴa欧美va伊人久久| 老司机深夜福利视频在线观看| 国内精品一区二区在线观看| 不卡av一区二区三区| 黑人操中国人逼视频| 国产亚洲精品久久久久久毛片| 婷婷亚洲欧美| 国产伦在线观看视频一区| 一区二区三区国产精品乱码| 欧美绝顶高潮抽搐喷水| 国产精品一区二区精品视频观看| 日本黄色视频三级网站网址| 亚洲电影在线观看av| 日韩免费av在线播放| 12—13女人毛片做爰片一| 一级a爱片免费观看的视频| 人人妻人人澡欧美一区二区| 男人舔女人的私密视频| 色在线成人网| 久久精品国产清高在天天线| 久久精品国产清高在天天线| 国产av不卡久久| 亚洲人成77777在线视频| 日本a在线网址| 免费人成视频x8x8入口观看| 搡老妇女老女人老熟妇| 国产亚洲精品久久久久5区| 亚洲国产精品成人综合色| 久久久久九九精品影院| av超薄肉色丝袜交足视频| 亚洲七黄色美女视频| 久久久久国内视频| 国产精品美女特级片免费视频播放器 | av在线播放免费不卡| 亚洲精品美女久久久久99蜜臀| 色综合站精品国产| 亚洲国产精品成人综合色| 夜夜夜夜夜久久久久| e午夜精品久久久久久久| 成人三级做爰电影| 中文在线观看免费www的网站 | 丁香欧美五月| 一进一出好大好爽视频| 变态另类丝袜制服| 一个人免费在线观看电影 | 一个人免费在线观看电影 | 久久人妻福利社区极品人妻图片| 国产黄色小视频在线观看| 亚洲一码二码三码区别大吗| 精品免费久久久久久久清纯| 桃红色精品国产亚洲av| 毛片女人毛片| 在线观看日韩欧美| 很黄的视频免费| av片东京热男人的天堂| 欧美国产日韩亚洲一区| 日日爽夜夜爽网站| 国产成人精品久久二区二区免费| 又紧又爽又黄一区二区| 国产精品综合久久久久久久免费| 免费看a级黄色片| 少妇人妻一区二区三区视频| 国产不卡一卡二| АⅤ资源中文在线天堂| 国产三级黄色录像| 亚洲欧美一区二区三区黑人| 18美女黄网站色大片免费观看| 在线观看免费午夜福利视频| 中出人妻视频一区二区| 黄色a级毛片大全视频| 亚洲国产日韩欧美精品在线观看 | 黄色 视频免费看| 国产伦一二天堂av在线观看| av福利片在线观看| 亚洲人成网站在线播放欧美日韩| 午夜福利高清视频| 国产精品久久久av美女十八| 免费av毛片视频| 国产亚洲欧美在线一区二区| 91成年电影在线观看| 成人午夜高清在线视频| 1024视频免费在线观看| 精品一区二区三区四区五区乱码| www.精华液| 色综合婷婷激情| 亚洲一区中文字幕在线| 三级国产精品欧美在线观看 | 777久久人妻少妇嫩草av网站| 变态另类成人亚洲欧美熟女| 久久精品人妻少妇| 五月伊人婷婷丁香| 日韩欧美三级三区| 亚洲av成人av| 亚洲精华国产精华精| 18禁黄网站禁片午夜丰满| 又爽又黄无遮挡网站| 久久国产精品人妻蜜桃| 亚洲av中文字字幕乱码综合| 激情在线观看视频在线高清| 日韩欧美 国产精品| 此物有八面人人有两片| 亚洲精品久久成人aⅴ小说| 色综合站精品国产| 日日干狠狠操夜夜爽| 日韩高清综合在线| 午夜精品久久久久久毛片777| 色av中文字幕| 欧美高清成人免费视频www| 国产黄片美女视频| 神马国产精品三级电影在线观看 | 成人av在线播放网站| tocl精华| 99久久精品国产亚洲精品| 精品一区二区三区av网在线观看| 国产午夜精品论理片| 一区二区三区激情视频| 精品人妻1区二区| 久久婷婷人人爽人人干人人爱| 国产一区二区激情短视频| 日日干狠狠操夜夜爽| 1024视频免费在线观看| 女警被强在线播放| 欧美另类亚洲清纯唯美| 国产在线精品亚洲第一网站| 欧美乱色亚洲激情| 精品一区二区三区视频在线观看免费| 午夜福利在线在线| 国产高清视频在线观看网站| 99国产精品一区二区蜜桃av| 99久久国产精品久久久| 国产成人啪精品午夜网站| 国产精品亚洲美女久久久| av免费在线观看网站| 亚洲电影在线观看av| 亚洲乱码一区二区免费版| 精品乱码久久久久久99久播| 俄罗斯特黄特色一大片| 欧美色视频一区免费| 日本在线视频免费播放| 亚洲av片天天在线观看| 亚洲 欧美 日韩 在线 免费| 男女下面进入的视频免费午夜| 黄频高清免费视频| 久99久视频精品免费| 亚洲av成人精品一区久久| 搞女人的毛片| 久久欧美精品欧美久久欧美| 日本 av在线| 床上黄色一级片| 人成视频在线观看免费观看| 国产成人aa在线观看| 成人18禁在线播放| 日日爽夜夜爽网站| 欧美日韩精品网址| 此物有八面人人有两片| 国产私拍福利视频在线观看| 亚洲九九香蕉| 后天国语完整版免费观看| 一卡2卡三卡四卡精品乱码亚洲| 国产av麻豆久久久久久久| 黑人巨大精品欧美一区二区mp4| 亚洲精品一区av在线观看| 国内揄拍国产精品人妻在线| 国产午夜精品久久久久久| 十八禁人妻一区二区| 亚洲国产中文字幕在线视频| 亚洲一区二区三区不卡视频| 不卡一级毛片| 久久精品国产亚洲av香蕉五月| 国产伦人伦偷精品视频| 给我免费播放毛片高清在线观看| 亚洲国产精品久久男人天堂| 一区二区三区国产精品乱码| 精品一区二区三区视频在线观看免费| 草草在线视频免费看| 日日干狠狠操夜夜爽| 国产v大片淫在线免费观看| 欧美日韩国产亚洲二区| 午夜福利高清视频| 少妇被粗大的猛进出69影院| 露出奶头的视频| 午夜精品久久久久久毛片777| 欧美国产日韩亚洲一区| 不卡av一区二区三区| 欧美激情久久久久久爽电影| 两个人的视频大全免费| 久久精品综合一区二区三区| 亚洲成av人片免费观看| 中文字幕高清在线视频| 999精品在线视频| 黄色女人牲交| or卡值多少钱| 午夜激情福利司机影院| 看片在线看免费视频| 午夜免费成人在线视频| 亚洲精品国产精品久久久不卡| 日韩有码中文字幕| 国产在线精品亚洲第一网站| 婷婷亚洲欧美| 美女免费视频网站| 91av网站免费观看| 精品熟女少妇八av免费久了| 欧美一级a爱片免费观看看 | 欧美日韩亚洲综合一区二区三区_| 18禁黄网站禁片午夜丰满| 看免费av毛片| 老汉色∧v一级毛片| 国产蜜桃级精品一区二区三区| 久久精品国产亚洲av高清一级| 国产精品美女特级片免费视频播放器 | 国产午夜精品久久久久久| 麻豆国产av国片精品| 九色国产91popny在线| 天天一区二区日本电影三级| 婷婷精品国产亚洲av在线| 亚洲中文av在线| 国产欧美日韩一区二区精品| 成人18禁高潮啪啪吃奶动态图| 亚洲精品一卡2卡三卡4卡5卡| 午夜a级毛片| 亚洲七黄色美女视频| 欧美成人免费av一区二区三区| 欧美最黄视频在线播放免费| 身体一侧抽搐| 男女床上黄色一级片免费看| 免费看美女性在线毛片视频| 日韩有码中文字幕| 国产亚洲精品综合一区在线观看 | 欧美黑人巨大hd| 最近最新中文字幕大全电影3| 亚洲精品在线美女| 亚洲激情在线av| 啪啪无遮挡十八禁网站| 中文字幕最新亚洲高清| 欧美日韩精品网址| 国产免费av片在线观看野外av| a在线观看视频网站| 一本精品99久久精品77| 在线a可以看的网站| 久久中文看片网| 香蕉国产在线看| 最新美女视频免费是黄的| 全区人妻精品视频| 国产男靠女视频免费网站| 五月玫瑰六月丁香| 在线观看免费日韩欧美大片| 亚洲av成人精品一区久久| 色哟哟哟哟哟哟| 男女做爰动态图高潮gif福利片| 母亲3免费完整高清在线观看| 91大片在线观看| 波多野结衣高清无吗| 国产成年人精品一区二区| www.www免费av| 久久国产精品人妻蜜桃| 亚洲人成网站在线播放欧美日韩| 国产真人三级小视频在线观看| 99国产综合亚洲精品| 亚洲人成伊人成综合网2020| 91在线观看av| 精品人妻1区二区| 最近视频中文字幕2019在线8| 亚洲欧美激情综合另类| 国产精品免费视频内射| or卡值多少钱| 久久人妻av系列| 91字幕亚洲| 人成视频在线观看免费观看| 中文字幕久久专区| 12—13女人毛片做爰片一| 丝袜美腿诱惑在线| 色av中文字幕| 亚洲人成网站在线播放欧美日韩| 久久久精品欧美日韩精品| 天堂影院成人在线观看| 久久国产乱子伦精品免费另类| 最近在线观看免费完整版| 手机成人av网站| 最近视频中文字幕2019在线8| 亚洲天堂国产精品一区在线| 成人av一区二区三区在线看| 亚洲男人天堂网一区| 国产欧美日韩一区二区精品| 中文字幕av在线有码专区| 日本五十路高清| 我要搜黄色片| 99久久综合精品五月天人人| 欧美精品啪啪一区二区三区| av在线播放免费不卡| 十八禁人妻一区二区| 国产探花在线观看一区二区| 精品人妻1区二区| а√天堂www在线а√下载| 亚洲精品国产一区二区精华液| 在线观看免费视频日本深夜| 久久久久久久久久黄片| 99久久国产精品久久久| 久久久久免费精品人妻一区二区| 美女免费视频网站| a级毛片在线看网站| 久久国产精品人妻蜜桃| 一区二区三区高清视频在线| 欧美日韩中文字幕国产精品一区二区三区| 国产亚洲欧美98| 手机成人av网站| 亚洲,欧美精品.| 可以在线观看的亚洲视频| 又黄又粗又硬又大视频| 日本 av在线| 一本一本综合久久| 亚洲午夜理论影院| 男人舔女人下体高潮全视频| 18禁裸乳无遮挡免费网站照片| 九色国产91popny在线| 97碰自拍视频| 狠狠狠狠99中文字幕| 国产片内射在线| 我的老师免费观看完整版| 久久精品影院6| aaaaa片日本免费| 国产乱人伦免费视频| 亚洲国产欧洲综合997久久,| 亚洲人成伊人成综合网2020| 成年版毛片免费区| 天堂√8在线中文| 91在线观看av| 日韩欧美三级三区| 97超级碰碰碰精品色视频在线观看| 欧美激情久久久久久爽电影| www.999成人在线观看| 国产精品亚洲av一区麻豆| 三级男女做爰猛烈吃奶摸视频| 亚洲av日韩精品久久久久久密| 老司机福利观看| 国产一区二区三区视频了| 国内毛片毛片毛片毛片毛片| 国产精品 欧美亚洲| 每晚都被弄得嗷嗷叫到高潮| 91大片在线观看| 午夜日韩欧美国产| 国产精品影院久久| 啪啪无遮挡十八禁网站| 91大片在线观看| 亚洲一区二区三区色噜噜| 99国产综合亚洲精品| 国产久久久一区二区三区| 国产一级毛片七仙女欲春2| 久久中文字幕一级| 久久久久精品国产欧美久久久| 日韩欧美 国产精品| 午夜亚洲福利在线播放| 91大片在线观看| 神马国产精品三级电影在线观看 | 女人被狂操c到高潮| 女同久久另类99精品国产91| av在线天堂中文字幕| 国产av一区在线观看免费| 日韩精品青青久久久久久| 啪啪无遮挡十八禁网站| 窝窝影院91人妻| 国内揄拍国产精品人妻在线| 精品熟女少妇八av免费久了| 手机成人av网站| 琪琪午夜伦伦电影理论片6080| 国产亚洲欧美98| 日韩中文字幕欧美一区二区| 极品教师在线免费播放| 观看免费一级毛片| 午夜福利18| 国产熟女午夜一区二区三区| 婷婷亚洲欧美| 亚洲精品粉嫩美女一区| 婷婷丁香在线五月| 一区二区三区高清视频在线| 麻豆av在线久日| 精品高清国产在线一区| 丰满人妻一区二区三区视频av | 欧美大码av| 日韩精品青青久久久久久| 国产精品 国内视频| 亚洲av成人一区二区三| 美女黄网站色视频| 国产v大片淫在线免费观看| 国产爱豆传媒在线观看 | 亚洲专区字幕在线| 久久精品影院6| 国产精品 欧美亚洲| 此物有八面人人有两片| 久久久久国内视频| 免费在线观看视频国产中文字幕亚洲| 日韩欧美一区二区三区在线观看| 国产区一区二久久| 12—13女人毛片做爰片一| 国产成人精品无人区| 成人精品一区二区免费| 国产精品香港三级国产av潘金莲| 国产精品美女特级片免费视频播放器 | 亚洲人成电影免费在线| 白带黄色成豆腐渣| 久久久久久大精品| 国产精品一区二区免费欧美| 日韩 欧美 亚洲 中文字幕| 国产精品美女特级片免费视频播放器 | 少妇的丰满在线观看| 麻豆久久精品国产亚洲av| 99久久无色码亚洲精品果冻| 亚洲国产日韩欧美精品在线观看 | 高潮久久久久久久久久久不卡| 欧美黑人精品巨大| 久久久久久亚洲精品国产蜜桃av| 欧美日韩黄片免| 国产精品 国内视频| 亚洲专区字幕在线| 久久精品综合一区二区三区| 伦理电影免费视频| 搡老岳熟女国产| 非洲黑人性xxxx精品又粗又长| 国产午夜福利久久久久久| 一个人观看的视频www高清免费观看 | 老汉色av国产亚洲站长工具| 亚洲av电影不卡..在线观看| 2021天堂中文幕一二区在线观| 国产欧美日韩一区二区精品| 欧美成人午夜精品| 亚洲精品中文字幕一二三四区| 男男h啪啪无遮挡| 五月玫瑰六月丁香| 丰满人妻熟妇乱又伦精品不卡| 美女大奶头视频| 99热6这里只有精品| 国内少妇人妻偷人精品xxx网站 | 1024视频免费在线观看| 亚洲午夜精品一区,二区,三区| 国产一区二区三区在线臀色熟女| 国产99久久九九免费精品| 丰满人妻一区二区三区视频av | 精品福利观看| 99久久精品热视频| 午夜精品久久久久久毛片777| 国产99白浆流出| 久久天躁狠狠躁夜夜2o2o| 日本熟妇午夜| 欧美日韩乱码在线| 91在线观看av| 亚洲人成77777在线视频| 成人欧美大片| 在线免费观看的www视频| 精品第一国产精品| 亚洲国产欧洲综合997久久,| 高潮久久久久久久久久久不卡| 久久香蕉国产精品| 国产亚洲精品av在线| 免费看美女性在线毛片视频| 757午夜福利合集在线观看| 亚洲欧美一区二区三区黑人| 熟妇人妻久久中文字幕3abv| 国产亚洲精品久久久久5区| 99国产精品一区二区三区| 18禁美女被吸乳视频| 欧美日韩瑟瑟在线播放| 日日干狠狠操夜夜爽| 熟妇人妻久久中文字幕3abv| 在线观看美女被高潮喷水网站 | 亚洲欧洲精品一区二区精品久久久| 久久亚洲精品不卡| 国产精品 欧美亚洲| 91麻豆精品激情在线观看国产| 正在播放国产对白刺激| 亚洲精品久久成人aⅴ小说| 99久久综合精品五月天人人| 巨乳人妻的诱惑在线观看| 亚洲国产中文字幕在线视频| 色综合亚洲欧美另类图片| 日韩欧美在线二视频| 99久久精品热视频| 法律面前人人平等表现在哪些方面| 国产不卡一卡二| 欧美国产日韩亚洲一区| 日韩欧美三级三区| 亚洲在线自拍视频| 日韩三级视频一区二区三区| 中文字幕av在线有码专区| 久久久久久久午夜电影| 午夜日韩欧美国产| 一个人免费在线观看电影 | 午夜久久久久精精品| 国产欧美日韩一区二区三| 黑人欧美特级aaaaaa片| 天堂√8在线中文| 国产av麻豆久久久久久久| 亚洲av日韩精品久久久久久密| 亚洲成av人片在线播放无| 在线观看美女被高潮喷水网站 | 亚洲欧美精品综合久久99| 久久国产乱子伦精品免费另类| 99久久综合精品五月天人人| 久久精品国产亚洲av香蕉五月| 亚洲欧洲精品一区二区精品久久久| 久久中文看片网| 欧美一级a爱片免费观看看 | 男女那种视频在线观看| 欧美黑人欧美精品刺激| 人妻丰满熟妇av一区二区三区| 床上黄色一级片| 日韩欧美在线乱码| 国产精品精品国产色婷婷| 又黄又粗又硬又大视频| 亚洲av熟女| 黑人巨大精品欧美一区二区mp4| 国产精华一区二区三区| 在线a可以看的网站| 亚洲五月婷婷丁香| 亚洲中文字幕一区二区三区有码在线看 | 日本五十路高清| 老司机福利观看| 香蕉av资源在线| 中文字幕久久专区| 90打野战视频偷拍视频| 国产午夜精品论理片| 日韩av在线大香蕉|