• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drought Stress Impairs Grain Yield and Quality of Rice Genotypes by Impaired Photosynthetic Attributes and K Nutrition

    2020-12-28 07:21:38MuhammadZahidMUMTAZ,MuhammadSAQIB,GhulamABBAS
    Rice Science 2020年1期

    Letter

    Drought Stress Impairs Grain Yield and Quality of Rice Genotypes by Impaired Photosynthetic Attributes and K Nutrition

    Drought is one of the most prevalent abiotic stresses that adversely affect rice productivity (Petrozza et al, 2014). Rice is very sensitive to drought stress and drought can cause 50% reduction in rice production globally (Yang et al, 2008). To meet the food needs for global population, 63% more agricultural production will be required by the year 2050 than the current production (Alexandratos and Bruinsma,2012; FAO, 2017). Drought stress delays the time of flowering, leading to a reduced number of panicles, number of kernels and ultimately grain yield (Pantuwan et al, 2002; Iseki et al, 2014). The reproductive stage of rice is very sensitive to drought stress, and water limitation at this stage causes a serious reduction in rice yield (Aydinsakir et al, 2013) and biomass (Iseki et al, 2014). It is a major challenge to increase rice production under increasing drought due to changing climate, however, it may be achieved through use of drought-tolerant rice varieties having the ability to produce high yield under drought stress conditions (Luo, 2010).

    This study was conducted under a split plot design with three replications at the Research Farm of the Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan. Nursery of 11 rice genotypes (99404, 99417, Super Basmati, KS-282, KSK-434, KSK-133, Basmati-2000, KS-432, Basmati-515, Basmati-385 and Shaheen Basmati) was grown under well-irrigated conditions. Data of rainfall, sunshine, and average temperatures are given in Table 1.A well-irrigated control (non-stressed) was maintained by continuous recommended irrigations from transplanting to a week before maturity. The drought stress treatment was started at 60 d after transplantation and thereafter this field was not irrigated. There was 41.17% less application of water in case of drought treatment as compared to the well-irrigated treatment.

    Drought stress affects gas exchange attributes like photosynthetic rate, stomatal conductance and transpiration rate (Serraj et al, 2011). After four weeks of drought stress,the photosynthetic rate, transpiration rate and stomatal conductance of expanded second top leaves were measured according to Mumtaz et al (2018). Drought stress caused a significant reduction in different gas exchange attributes including photosynthetic rate, transpiration rate and stomatal conductance, and significant genotypic variations were observed among different rice genotypes regarding these parameters (Table 2). KS-282 showed significantly higher photosynthetic rate, transpiration rate and stomatal conductance under drought stress as compared to the other genotypes. Drought stress caused 19%, 48%, and 47% decreases in photosynthetic rate, transpiration rate and stomatal conductance of KS-282 over the control, respectively. Meanwhile, 99404 followed by 99417 showed lower photosynthetic rate, transpiration rate and stomatal conductance with 30%, 67% and 68% decreases, respectively, as compared to control.Closure of stomata under drought stress to conserve moisture content may cause a decrease in stomatal conductance (Iseki et al, 2014). Stomatal conductance is associated with turgidity of leaves. Under drought stress, reduction in stomatal conductance also causes decreases in photosynthetic rate and transpiration rate (Rauf et al, 2015). It has been reported that stomatal conductance plays an important role in regulating the water balance of plants (Sinclair et al, 2010). If stomata are closed, the expansion of cell is reduced which leads to limited growth rate, biomass and yield production. Under severe drought conditions, CO2fixation is reduced due to the inhibition of the activities of some key enzymes such as rubisco activase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Drought induced inhibition of enzyme activities results in the generation of reactive oxygen species, which causes photo-oxidation and harm to the photosynthetic membrane proteins, pigments and lipids, and ultimately affects grain quality (Rauf et al, 2015). Drought induced photosynthetic limitations during reproduction phase causes reduction in carbon flux to reproductive organs, triggers ovary abortion, increases pollen sterility, which leads to decreased grain yield and quality (Boyer and Westgate, 2004; Centritto et al, 2009). The results of present work suggested that drought tolerant genotypes have a better ability to maintain their physiological functions under drought stress.

    Number of panicles per plant was recorded manually before harvesting. Paddy yield was recorded after air drying the rice grains. One week sun-dried rice straw was weighed and straw yield was noted. Drought stress significantly reduced grain and straw yields as well as number of panicles per plant (Table 3). Under drought stress, KS-282 showed the highest number of panicles per plant with 7% decrease as compared to the control. The lowest number of panicles per plant was shown by 99404 with 29% decrease over the control. KS-282 also differed significantly regarding number of panicles per plant from all the other genotypes whereas 99404 was statistical at par with 99417. Genotypic variations were also observed with regard to straw and grain yields. KS-282 showed the maximum grain yield (38% decrease over the control) but was statistical at par with KS-432, Basmati-385 and Shaheen Basmati under drought stress, whereas 99404 showed the minimum grain yield with 58% decrease over the control. Similarly, KS-282 also produced the highest straw yield (21% decrease over the control) with a significant difference from all the other genotypes under drought conditions. However, the lowest straw yield (33% decrease over the control) under drought conditions was observed in 99404. These findings are supported by Pantuwan et al (2002), Yue et al (2006), Kumar et al (2009), Luo (2010) and Iseki et al (2014). Pantuwan et al (2002) tested 128 genotypes under mild to prolonged severe drought stresses at the grain filling stage and reported flowering time as an important cause of grain yield loss. Reduction in grain yield under drought stress could be due to increased spikelet sterility that reduces fertile panicles and grain weight (Yue et al, 2006). Straw yield is closely related to photosynthesis which is severely reduced under drought stress (Iseki et al, 2014).

    Table 1.Rainfall, solar radiation and average minimum and maximum temperatures for the crop season at the experimental site.

    Table 2. Effects of drought stress on photosynthetic rate, transpirational rate and stomatal conductance of different rice genotypes.

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Table 3. Effects of drought stress on number of panicles per plant, grain yield and straw yield of different rice genotypes.

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Plants can maintain the uptake of cations to cope with drought stress (Cakmak, 2005). K+is an important cation in plants, which plays a role in protein synthesis, membrane permeability, cell expansion, enzyme activity and stomatal opening and closing (Hopkins and Huner, 2004). K+content in plantsis positively related to transpiration rate. Drought stress accumulation with K+deficiency causes an increase in reactive oxygen species (ROS) that induced disturbances in stomatal opening and photosynthesis (Mengel and Kirkby, 2001). Severe drought stress increases the demand for K+to avoid oxidative damage and to protect chloroplasts. Plants also need K+under drought stress to maintain photosynthetic CO2fixation, which is reduced as a result of stomatal closure (Egilla et al, 2005).

    Table 4. Effects of drought stress on K+ concentrations in straw and grains of different rice genotypes. mmol/g

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Determination of K+concentration in straw and grains were conductedby digesting the samples as described by Wolf (1982). There was a significant effect of drought stress on K+concentration in grains and straw with a significant variation among different rice genotypes (Table 4). Significantly higher K+concentrations in straw and grains were observed in KS-282 (20% and 36% decreases, respectively) followed by KS-432 (12% and 25% decreases, respectively) as compared to the control. The lower K+concentrations of straw and grains were shown by 99404 as compared to the rest of the genotypes. This genotype showed 34% and 17% reductions in K+concentrations of straw and grains, respectively, over the control. K+content in drought tolerant genotypes is positively related to transpiration rate, however, K+uptake may vary due to its availability in the soil. Wang et al (2013) concluded that increased K+availability under drought stress improves enzyme activity, cell expansion, stomatal conductance, leaf area index, water use efficiency and nutrient uptake, which may promote dry matter and grain yield production. Wang et al (2004) explored the effects of K application on plant K+uptake, grain yield and quality ofrice,and found that with increasing K application, plant K+uptake is also increased, which considerably increases the number of ear bearing tillers and seed-setting rate. Moreover, high K+content in plants is correlated with a corresponding decrease in chalkiness and amylose content and high grain yield and quality.

    Grain quality is important for the acceptance and adaptation of any new cultivars by farmers and consumers (Cooper et al, 2008). Generally, in the Indian subcontinent, people prefer rice grain having medium to long grains. Market price can be estimated by grain size and shape, proportion of chalky and broken rice grain (Cooper et al, 2008). Previous studies regarding drought stress have been restricted to physiological and yield attributes but their effects on grain quality are not well-known.Three genotypes (Super Basmati, KS-282 and 99404) were selected for the determination of grain quality as affected by drought stress. Drought stress caused significant reduction in grain length and width of all the selected rice genotypes (Fig. 1). Under drought conditions, the maximum grain length was showed in Super Basmati (7% reduction) and the minimum grain length (2% reduction) was in KS-282 over control. On the contrast, KS-282 produced the maximum grain width with 6% reduction under drought stress as compared to the control. It was revealed that drought stress significantly increased the broken fraction and reduced the total milling recovery (TMR) of all the three rice genotypes (Fig. 2). The maximum broken fraction was observed in Super Basmati, and KS-282 showed the minimum broken fraction with 25% and 54% increases, respectively, under drought stress as compared to the control. Super Basmati showed the highest TMR with 4% decrease under drought stress whereas the minimum TMR was observed in 99404 with 4% reduction over the control. There were no chalkiness spots observed in any genotype under normal conditions whereas under drought stress, 9, 5 and 5 chalkiness spots were observed on grains of 99404, Super Basmati and KS-282, respectively (Table 5).We measured a negative relation between the grain length and width and these results are in accordance with the findings of Koutroubas et al (2004). Reduction in grain width could be linked with a decrease in average endosperm cell area or with abnormal amyloplast packaging that results in white chalky areas (Ishimaru et al, 2009). Fabre et al (2005) reported that grain dimensions are reduced under stress conditions. These results are also similar to the outcomes of Rao et al (2013). The results of this study also revealed a reduction in the total milling recovery along with an increase in broken fraction of rice grains due to drought stress. Super Basmati showed the minimum total milling recovery with the highest broken fraction and longer grain length. During the milling process, breakdown of longer grains was more serious than that of the shorter to medium grains. There was an inverse relationship between grain length and total milling recovery in this study. Sharifi et al (2009) also reported an interaction between rice genotype and environment with respect to grain length and shape. Similar findings have also been discussed by Adu-Kwarteng et al (2003) and Rao et al (2013).

    Chalkiness is an important quality characteristic in the rice grain occurs commonly with the development of numerous air spaces between loosely packed starch granules and environmental stress during grain development (Tashiro and Wardlaw, 1991). In the present study, 99404 showed the greater chalkiness score under drought stress as compared to Super Basmati and KS-282. It could be due to environmental stress (drought in this case) that hindered the normal grain filling (Adu-Kwarteng et al, 2003). Under stress conditions, chalkiness in the grains causes the breakage of grains that fetch a lower price in the market. Chalky spot on grains appears as results of reduced water supply under drought stress. It is particularly evident for 99404 which is a drought-sensitive genotype with greater chalkiness score. Chalkiness degrades the rice appearance, transparency, head rice recovery and consumer acceptability (Graham, 2002; Yoshioka et al, 2007). It is negatively correlated with milling quality as increase in chalkiness caused decrease in head rice recovery (Wassmann et al, 2009; Zhao and Fitzgerald, 2013).

    Fig. 1. Effects of drought stress on grain length and grain width of rice genotypes.

    Data are Mean ± SE (= 3).Different letters above the bar indicate significant difference according to the least significant difference test at the 0.05 level.

    Fig.2. Effects of drought stress on broken fraction and total milling recovery of rice genotypes.

    Data are Mean ± SE (= 3).Different letters above the bar indicate significant difference according to the least significant difference test at the 0.05 level.

    Table 5. Effects of drought stress on chalkiness score on grains of different rice genotypes.

    Chalkiness score was rated on a scale from 0 to 9 with respect to increase in chalky area.None,No chalky area; 5, 10% to 20% chalky area; 9, >20% chalky area.

    SUPPLEMENTAL DATA

    The following material is available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Supplemental File 1. Materials and methods used in this study.

    Adu-Kwarteng E, Ellis W O, Oduro I, Manful J T. 2003. Rice grain quality: A comparison of local varieties with new varieties under study in Ghana., 14(7): 507–514.

    Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: The 2012 revision.: Agricultural Development Economics (ESA) Working Paper No. 12. 3 June, 2012. Rome, Italy: Food and Agriculture Organization of the United Nations.

    Aydinsakir K, Erdala S, Buyuktasb D, Bastugb R, Tokera R. 2013. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (L.) genotypes., 128: 65–71.

    Boyer J S, Westgate M E. 2004. Grain yields with limited water.,55: 2385–2394.

    Cakmak I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants.,168: 521–530.

    Centritto M, Lauteri M, Monteverdi M C, Serraj R. 2009. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.,60: 2325–2339.

    Cooper N T W, Siebenmorgen T J, Counce P A. 2008. Effects of nighttime temperature during kernel development on rice physicochemical properties., 85(3): 276–282.

    Egilla J N, Davies F T, Boutton T W. 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of hibiscus rosa-sinensis at three potassium concentrations., 43(1): 135–140.

    Fabre D, Siband P, Dingkuhn M. 2005. Characterizing stress effects on rice grain development and filling using grain weight and size distribution.,92(1): 11–16.

    FAO. 2017. The Future of Food and Agriculture: Trends and Challenges.Rome, Italy: Food and Agriculture Organization of the United Nations.

    Graham R. 2002. A proposal for IRRI to establish a grain quality and nutrition research center.: IRRI Discussion Paper Series no. 44. Los Banos, the Phillipine: International Rice Research Institute: 15.

    Hopkins W G, Huner N P A. 2004. Responses of plants to environmental stress.:Introduction to Plant Physiology. 4th edn. USA: John Wiley and Sons: 223–239.

    Iseki K, Homma K, Shiraiwa T, Jongdee B, Mekwatanakarn P. 2014. The effects of cross-tolerance to oxidative stress and drought stress on rice dry matter production under aerobic conditions., 163: 18–23.

    Ishimaru T, Horigane A K, Ida M, Iwasawa N, San-oh Y A, Nakazono M, Nishizawa N K, Masumura T, Kondo M, Yoshida M. 2009. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high- temperature stress., 50(2): 166–174.

    Koutroubas S D, Mazzini F, Pons B, Ntanos D A. 2004. Grain quality variation and relationships with morpho-physiological traits in rice (L.) genetic resources in Europe., 86: 115–130.

    Kumar A, Verulkar S, Dixit S, Chauhan B, Bernier J, Venuprasad R, Zhao D, Shrivastava M N. 2009. Yield and yield-attributing traits of rice (L.) under lowland drought and suitability of early vigor as a selection criterion., 114(1): 99–107.

    Luo L J. 2010. Breeding for water-saving and drought-resistance rice (WDR) in China., 61(13): 3509–3517.

    Mengel K, Kirkby E A.2001. Principles of Plant Nutrition. 5th edn. Dordrecht: Kluwer Academic Publishers.

    Mumtaz M Z, Saqib M, Abbas G, Akhtar J, Qamar Z U. 2018. Genotypic variation in rice for grain yield and quality as affected by salt-affected field conditions., 41(2): 233–242.

    Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J C. 2002. Yield response of rice (L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes., 73: 169–180.

    Petrozza A, Santaniello A, Summerer S, Tommaso G D, Tommaso D D, Paparelli E, Piaggesi A, Perata P, Cellini F. 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach., 174: 185–192.

    Rao P S, Mishra B, Gupta S R. 2013. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes., 20(4): 284–291.

    Rauf S, Al-Khayri J M, Zaharieva M, Monneveux P, Khalil F. 2016. Breeding strategies to enhance drought tolerance in crops.: Al-Khayri J M. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits.Switzerland: Springer International Publishing: 397–445.

    Serraj R, McNally K L, Slamet-Loedin I, Kohli A, Haefele S M, Atlin G, Kumar A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy.,14: 1–14.

    Sharifi P, Dehghani H, Mumeni A, Moghaddam M. 2009. Genetic and genotype × environment interaction effects for appearance quality of rice.,8(8): 891–901.

    Sinclair T R, Messina C D, Beatty A P, Samples M. 2010. Assessment across the United States of the benefits of altered soybean drought traits., 102(2): 475–482.

    Tashiro T, Wardlaw I F. 1991. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice., 42:485–496.

    Wang M, Zheng Q S, Shen Q R, Guo S W. 2013. The critical role of potassium in plant stress response.,14(4): 7370–7390.

    Wang Q S, Zhen R H, Ding Y F, Ji Z J, Cao W X, Huang P S. 2004. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality ofrice., 37: 1444–1450. (in Chinese with English abstract)

    Wassmann R, Jagadish S V K, Heuer S, Ismail A, Redona E, Serraj R, Singh R K, Howell G, Pathak H, Sumfleth K. 2009. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies., 101: 59–122.

    Wolf B. 1982. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status., 13(12): 1035–1059.

    Yang JC, Liu K, Zhang SF, Wang XM, Wang ZQ, Liu LJ. 2008. Hormones in rice spikelets in responses to water stress during meiosis., 34(1): 111–118. (in Chinese with English abstract)

    Yoshioka Y, Iwata H, Tabata M, Ninomiya S, Ohsawa R. 2007. Chalkiness in rice: Potential for evaluation with image analysis.,47(5): 2113–2120.

    Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. 2006. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance., 172(2): 1213–1228.

    Zhao X, Fitzgerald M A. 2013. Climate change: Implications for the yield of edible rice., 8(6): e66218.

    Muhammad Zahid Mumtaz1, 2, Muhammad Saqib1, Ghulam Abbas1, 3, Javaid Akhtar1, Zia Ul-Qamar4

    (; Department of Environmental Sciences, 61100, Pakistan; Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan)

    Copyright ? 2020, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2019.12.001

    Muhammad Zahid Mumtaz (zahidses@gmail.com)

    7 August 2018;

    30 October 2018

    80岁老熟妇乱子伦牲交| 亚洲av在线观看美女高潮| 久久久色成人| 最近手机中文字幕大全| 国语对白做爰xxxⅹ性视频网站| 日本av手机在线免费观看| 男女国产视频网站| 欧美国产精品一级二级三级 | 亚洲人成网站高清观看| 欧美成人午夜免费资源| 蜜桃亚洲精品一区二区三区| 国产成人aa在线观看| 久久久久精品性色| 水蜜桃什么品种好| 欧美xxxx性猛交bbbb| 欧美xxxx性猛交bbbb| 日韩一区二区三区影片| 国产精品国产三级国产专区5o| 欧美xxxx性猛交bbbb| 777米奇影视久久| 91午夜精品亚洲一区二区三区| 午夜福利网站1000一区二区三区| 天天躁夜夜躁狠狠久久av| 久久久午夜欧美精品| 久久久午夜欧美精品| 午夜日本视频在线| 日韩人妻高清精品专区| 中文天堂在线官网| 午夜福利在线观看免费完整高清在| 两个人的视频大全免费| 中文天堂在线官网| 午夜福利在线在线| 亚洲欧美精品专区久久| 日韩欧美精品v在线| 亚洲天堂av无毛| 3wmmmm亚洲av在线观看| 3wmmmm亚洲av在线观看| 久久99热这里只有精品18| 色吧在线观看| 亚洲国产欧美在线一区| 国国产精品蜜臀av免费| 我要看日韩黄色一级片| 狂野欧美激情性xxxx在线观看| 青春草亚洲视频在线观看| 日韩成人av中文字幕在线观看| 99九九线精品视频在线观看视频| 综合色丁香网| 国模一区二区三区四区视频| 亚洲精品国产成人久久av| 五月玫瑰六月丁香| 有码 亚洲区| 激情 狠狠 欧美| av在线播放精品| videossex国产| 日韩免费高清中文字幕av| 欧美成人a在线观看| 性色avwww在线观看| 日本欧美国产在线视频| 亚洲精品日本国产第一区| 欧美xxxx性猛交bbbb| 特大巨黑吊av在线直播| 亚洲国产精品国产精品| 欧美一级a爱片免费观看看| 精品久久久久久久人妻蜜臀av| 尾随美女入室| 国产成人精品福利久久| 国产高清不卡午夜福利| 国产av码专区亚洲av| 日韩人妻高清精品专区| av在线观看视频网站免费| 91aial.com中文字幕在线观看| 视频区图区小说| 免费电影在线观看免费观看| 欧美少妇被猛烈插入视频| 中国国产av一级| 国产成人免费无遮挡视频| 性色avwww在线观看| 国产精品99久久99久久久不卡 | 亚洲av免费在线观看| 夫妻午夜视频| 国产精品女同一区二区软件| 性插视频无遮挡在线免费观看| 亚洲精品国产av成人精品| 亚洲欧美一区二区三区国产| 欧美 日韩 精品 国产| 涩涩av久久男人的天堂| 日韩在线高清观看一区二区三区| av在线亚洲专区| 欧美日韩一区二区视频在线观看视频在线 | 如何舔出高潮| 亚洲不卡免费看| 又黄又爽又刺激的免费视频.| 秋霞伦理黄片| 久久久久国产网址| 精品熟女少妇av免费看| 成人毛片a级毛片在线播放| 深夜a级毛片| 免费电影在线观看免费观看| 精品久久国产蜜桃| av国产精品久久久久影院| 精品久久久精品久久久| 午夜激情福利司机影院| 亚洲人成网站在线播| 国产一区有黄有色的免费视频| 97超碰精品成人国产| 黄色日韩在线| 亚洲精品乱码久久久久久按摩| av国产免费在线观看| 国产欧美另类精品又又久久亚洲欧美| 久久久久久久午夜电影| 天天躁日日操中文字幕| 免费黄色在线免费观看| 亚洲精品乱码久久久v下载方式| 青春草视频在线免费观看| 五月开心婷婷网| 亚洲一区二区三区欧美精品 | 国产日韩欧美在线精品| 十八禁网站网址无遮挡 | 成人二区视频| 国产免费一级a男人的天堂| 日本色播在线视频| 777米奇影视久久| av在线播放精品| 午夜爱爱视频在线播放| 国产91av在线免费观看| av专区在线播放| 亚洲成色77777| 日产精品乱码卡一卡2卡三| 最近最新中文字幕免费大全7| av在线天堂中文字幕| 亚洲综合精品二区| 久久精品久久久久久久性| 丝袜喷水一区| 欧美激情久久久久久爽电影| 中文字幕av成人在线电影| 日韩中字成人| 我要看日韩黄色一级片| 婷婷色综合www| 国产精品伦人一区二区| 联通29元200g的流量卡| 黄色一级大片看看| 亚洲精品视频女| 我的女老师完整版在线观看| 最近中文字幕高清免费大全6| 国产精品久久久久久精品电影小说 | 美女xxoo啪啪120秒动态图| 成年人午夜在线观看视频| 欧美成人午夜免费资源| 欧美高清成人免费视频www| 午夜福利网站1000一区二区三区| 免费观看av网站的网址| 久久99蜜桃精品久久| 爱豆传媒免费全集在线观看| 国产黄片视频在线免费观看| 亚洲国产精品成人久久小说| 中文字幕亚洲精品专区| 国产精品人妻久久久久久| 午夜福利在线观看免费完整高清在| 欧美日韩在线观看h| 国产av不卡久久| 国产精品久久久久久av不卡| 人妻系列 视频| 国产日韩欧美在线精品| 国产欧美亚洲国产| freevideosex欧美| 又粗又硬又长又爽又黄的视频| 成人无遮挡网站| 免费看av在线观看网站| 国产日韩欧美在线精品| 亚洲成人av在线免费| av国产免费在线观看| 国产视频首页在线观看| 色婷婷久久久亚洲欧美| 涩涩av久久男人的天堂| 国产成人精品福利久久| 日韩av不卡免费在线播放| 久久精品人妻少妇| 只有这里有精品99| 男女下面进入的视频免费午夜| 26uuu在线亚洲综合色| 国产综合精华液| 亚洲国产精品成人久久小说| 乱码一卡2卡4卡精品| 国产探花极品一区二区| 亚洲一区二区三区欧美精品 | 久久精品久久久久久久性| 亚洲在线观看片| 成人亚洲精品一区在线观看 | 九草在线视频观看| 国产精品久久久久久久电影| 日韩精品有码人妻一区| 国产精品精品国产色婷婷| 国产美女午夜福利| av在线老鸭窝| 亚洲色图av天堂| 国产 一区精品| 久久精品综合一区二区三区| 久久久久九九精品影院| 狠狠精品人妻久久久久久综合| 久久亚洲国产成人精品v| 天天躁夜夜躁狠狠久久av| 日韩三级伦理在线观看| 91在线精品国自产拍蜜月| 麻豆精品久久久久久蜜桃| 亚洲av成人精品一区久久| 成人亚洲精品一区在线观看 | 久久久久久久久久人人人人人人| 亚洲av中文av极速乱| 国产黄a三级三级三级人| 日韩亚洲欧美综合| 又爽又黄a免费视频| 看十八女毛片水多多多| 精品国产乱码久久久久久小说| 久久久久久久午夜电影| 下体分泌物呈黄色| 日日啪夜夜爽| 亚洲成色77777| 街头女战士在线观看网站| 夫妻午夜视频| 国产精品熟女久久久久浪| 国产乱人偷精品视频| 中文资源天堂在线| 国产精品国产三级专区第一集| 久久人人爽人人爽人人片va| videossex国产| 高清毛片免费看| 伦理电影大哥的女人| 2021天堂中文幕一二区在线观| 国产黄a三级三级三级人| 日韩亚洲欧美综合| 在线观看一区二区三区激情| 人人妻人人澡人人爽人人夜夜| 亚洲自拍偷在线| 精品人妻偷拍中文字幕| 交换朋友夫妻互换小说| 高清日韩中文字幕在线| 一区二区三区免费毛片| 亚洲久久久久久中文字幕| 国产成人freesex在线| 日韩欧美精品v在线| 欧美性猛交╳xxx乱大交人| 人妻少妇偷人精品九色| 联通29元200g的流量卡| 天堂中文最新版在线下载 | 午夜老司机福利剧场| 久久久久久久国产电影| 岛国毛片在线播放| 美女主播在线视频| 99久久中文字幕三级久久日本| 亚洲精品成人久久久久久| 国产高清有码在线观看视频| 亚洲成人一二三区av| 国产 一区 欧美 日韩| 禁无遮挡网站| 下体分泌物呈黄色| 国产亚洲av片在线观看秒播厂| 在线a可以看的网站| 亚洲美女视频黄频| 国产免费一区二区三区四区乱码| 婷婷色av中文字幕| 欧美激情久久久久久爽电影| 亚洲av成人精品一二三区| 国产精品女同一区二区软件| 人妻系列 视频| 人人妻人人爽人人添夜夜欢视频 | 黄色怎么调成土黄色| 国产一级毛片在线| 黄色一级大片看看| 少妇被粗大猛烈的视频| 在线观看免费高清a一片| 国产欧美日韩一区二区三区在线 | 亚洲真实伦在线观看| 91久久精品国产一区二区三区| 亚洲精品成人av观看孕妇| 中国美白少妇内射xxxbb| 欧美亚洲 丝袜 人妻 在线| av在线天堂中文字幕| 国产视频内射| 高清视频免费观看一区二区| 欧美亚洲 丝袜 人妻 在线| 18禁在线播放成人免费| 国产精品久久久久久久久免| 久久精品国产亚洲av涩爱| 婷婷色综合大香蕉| 免费观看无遮挡的男女| 国产在线一区二区三区精| 三级男女做爰猛烈吃奶摸视频| 精品久久久久久电影网| 插阴视频在线观看视频| 中文字幕人妻熟人妻熟丝袜美| av.在线天堂| 少妇的逼好多水| 国产精品一区www在线观看| 久热这里只有精品99| 神马国产精品三级电影在线观看| 亚洲av一区综合| 午夜精品国产一区二区电影 | 日本wwww免费看| videossex国产| 大又大粗又爽又黄少妇毛片口| 国产爱豆传媒在线观看| 亚洲精品国产成人久久av| 亚洲欧美日韩另类电影网站 | 中文字幕免费在线视频6| 99精国产麻豆久久婷婷| 亚洲综合色惰| 亚洲最大成人手机在线| 联通29元200g的流量卡| 我的老师免费观看完整版| 嫩草影院精品99| 男人狂女人下面高潮的视频| 国产精品一区二区三区四区免费观看| 3wmmmm亚洲av在线观看| 国产成人免费无遮挡视频| 精品亚洲乱码少妇综合久久| 日本-黄色视频高清免费观看| 日日撸夜夜添| 国产淫片久久久久久久久| 免费看不卡的av| 日产精品乱码卡一卡2卡三| 一区二区三区四区激情视频| 伊人久久国产一区二区| 成年女人看的毛片在线观看| 男女边吃奶边做爰视频| 国产69精品久久久久777片| 国产精品.久久久| 黑人高潮一二区| 99久国产av精品国产电影| 波多野结衣巨乳人妻| 久久国产乱子免费精品| 91精品伊人久久大香线蕉| 日本一本二区三区精品| 汤姆久久久久久久影院中文字幕| 啦啦啦中文免费视频观看日本| 又爽又黄a免费视频| 精品人妻偷拍中文字幕| 精品少妇久久久久久888优播| 欧美高清性xxxxhd video| 九九在线视频观看精品| 国产精品三级大全| 一级av片app| 夫妻性生交免费视频一级片| 五月玫瑰六月丁香| 99热这里只有是精品在线观看| 看十八女毛片水多多多| 少妇的逼好多水| 免费看日本二区| 高清午夜精品一区二区三区| 成人特级av手机在线观看| 女的被弄到高潮叫床怎么办| 精品国产一区二区三区久久久樱花 | 秋霞伦理黄片| 亚洲av国产av综合av卡| 丝袜美腿在线中文| 免费看av在线观看网站| 成年版毛片免费区| 九色成人免费人妻av| 男人狂女人下面高潮的视频| 精品国产露脸久久av麻豆| 亚洲国产欧美人成| 香蕉精品网在线| av.在线天堂| 久久影院123| 又爽又黄a免费视频| 制服丝袜香蕉在线| av在线天堂中文字幕| 亚洲久久久久久中文字幕| 在线看a的网站| 国产高清有码在线观看视频| 男女那种视频在线观看| 亚洲真实伦在线观看| 国产免费一区二区三区四区乱码| 日韩欧美一区视频在线观看 | 国产大屁股一区二区在线视频| 中文字幕av成人在线电影| 日韩成人av中文字幕在线观看| 中文在线观看免费www的网站| 日产精品乱码卡一卡2卡三| 在线观看免费高清a一片| 亚洲丝袜综合中文字幕| 亚洲精品日韩av片在线观看| 久久国内精品自在自线图片| 亚洲欧美成人精品一区二区| 99热网站在线观看| 韩国av在线不卡| 久久女婷五月综合色啪小说 | 下体分泌物呈黄色| 搞女人的毛片| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国产高清三级在线| 国产黄频视频在线观看| 欧美xxxx黑人xx丫x性爽| 人人妻人人看人人澡| 婷婷色综合大香蕉| 色婷婷久久久亚洲欧美| 欧美激情国产日韩精品一区| av免费在线看不卡| 一级av片app| 国产爱豆传媒在线观看| 午夜福利视频精品| 亚洲欧美成人精品一区二区| 亚洲伊人久久精品综合| 亚洲欧美一区二区三区国产| 三级经典国产精品| 欧美另类一区| 涩涩av久久男人的天堂| 国产精品成人在线| 2021少妇久久久久久久久久久| 国产成人一区二区在线| 日日撸夜夜添| 国产视频内射| 在线a可以看的网站| 嫩草影院精品99| 真实男女啪啪啪动态图| 国产 一区精品| 国产精品一区www在线观看| 网址你懂的国产日韩在线| 一级毛片电影观看| videos熟女内射| 亚洲精品亚洲一区二区| 六月丁香七月| kizo精华| 色吧在线观看| 国产亚洲一区二区精品| 亚洲av日韩在线播放| 日韩成人av中文字幕在线观看| 男女无遮挡免费网站观看| 少妇丰满av| 亚洲欧美中文字幕日韩二区| 亚洲经典国产精华液单| 偷拍熟女少妇极品色| 日韩电影二区| 草草在线视频免费看| 欧美丝袜亚洲另类| 色网站视频免费| 在线观看国产h片| 在线观看人妻少妇| 欧美日韩精品成人综合77777| 五月天丁香电影| 老司机影院毛片| 亚洲av一区综合| 观看免费一级毛片| 在线观看一区二区三区| 一级黄片播放器| 亚洲国产高清在线一区二区三| 美女国产视频在线观看| 国产综合精华液| tube8黄色片| 少妇人妻 视频| 97精品久久久久久久久久精品| 亚洲国产高清在线一区二区三| 91在线精品国自产拍蜜月| 久热这里只有精品99| 国产精品国产三级国产av玫瑰| 久久久久久久大尺度免费视频| 神马国产精品三级电影在线观看| 男插女下体视频免费在线播放| 特级一级黄色大片| 麻豆国产97在线/欧美| 涩涩av久久男人的天堂| 97人妻精品一区二区三区麻豆| 国产精品一区www在线观看| 欧美最新免费一区二区三区| 成人特级av手机在线观看| 国产精品麻豆人妻色哟哟久久| 欧美日韩精品成人综合77777| 久久精品夜色国产| 身体一侧抽搐| 好男人视频免费观看在线| 日韩国内少妇激情av| 亚洲精品国产成人久久av| 国产免费又黄又爽又色| 免费av毛片视频| 特大巨黑吊av在线直播| 国产极品天堂在线| 一本一本综合久久| 在线天堂最新版资源| 精品久久久久久久末码| 日韩国内少妇激情av| 欧美性感艳星| 男女无遮挡免费网站观看| 国产欧美另类精品又又久久亚洲欧美| 欧美成人精品欧美一级黄| 日日啪夜夜撸| 国产精品嫩草影院av在线观看| 少妇高潮的动态图| 少妇裸体淫交视频免费看高清| 联通29元200g的流量卡| 色吧在线观看| 九九爱精品视频在线观看| 亚洲成人精品中文字幕电影| 人妻少妇偷人精品九色| 亚洲欧美一区二区三区黑人 | 人妻少妇偷人精品九色| 欧美日韩综合久久久久久| 久久6这里有精品| 伦精品一区二区三区| 国产亚洲午夜精品一区二区久久 | 五月玫瑰六月丁香| 老女人水多毛片| 亚洲综合色惰| 高清毛片免费看| 精品国产三级普通话版| 中文字幕亚洲精品专区| 久久国产乱子免费精品| 欧美3d第一页| 国产精品偷伦视频观看了| 亚洲欧美日韩另类电影网站 | 国产精品99久久久久久久久| 中国国产av一级| 国产伦精品一区二区三区四那| 国产成年人精品一区二区| 中文字幕人妻熟人妻熟丝袜美| 亚洲伊人久久精品综合| 欧美成人午夜免费资源| 日韩精品有码人妻一区| 女的被弄到高潮叫床怎么办| 国产 一区精品| 韩国高清视频一区二区三区| 久久精品人妻少妇| 狂野欧美激情性bbbbbb| 中文字幕av成人在线电影| 水蜜桃什么品种好| 国产爱豆传媒在线观看| 人妻少妇偷人精品九色| 男的添女的下面高潮视频| 午夜爱爱视频在线播放| 精品人妻偷拍中文字幕| 亚洲欧美一区二区三区国产| 亚洲激情五月婷婷啪啪| 一级黄片播放器| 久久久午夜欧美精品| 建设人人有责人人尽责人人享有的 | 在线免费观看不下载黄p国产| 成人毛片a级毛片在线播放| 亚洲国产精品成人久久小说| 色网站视频免费| 18禁裸乳无遮挡免费网站照片| 国产男女超爽视频在线观看| 97热精品久久久久久| 精品国产一区二区三区久久久樱花 | 亚洲av日韩在线播放| 久久久久精品性色| 成人毛片a级毛片在线播放| 日韩 亚洲 欧美在线| 午夜福利高清视频| 97精品久久久久久久久久精品| 亚洲一区二区三区欧美精品 | 午夜福利在线在线| 建设人人有责人人尽责人人享有的 | 一级av片app| 欧美日韩精品成人综合77777| 成年av动漫网址| 久久久久久久久大av| 涩涩av久久男人的天堂| 最近最新中文字幕免费大全7| 亚洲av成人精品一区久久| 国产男人的电影天堂91| 久久精品熟女亚洲av麻豆精品| 欧美少妇被猛烈插入视频| 尾随美女入室| 69人妻影院| 女人久久www免费人成看片| 97热精品久久久久久| 一级毛片黄色毛片免费观看视频| 插阴视频在线观看视频| 我的老师免费观看完整版| 国产精品99久久99久久久不卡 | 日本熟妇午夜| 午夜亚洲福利在线播放| 国产成人精品福利久久| 大片免费播放器 马上看| 肉色欧美久久久久久久蜜桃 | 全区人妻精品视频| 日本欧美国产在线视频| 1000部很黄的大片| 少妇人妻精品综合一区二区| 亚洲自拍偷在线| 中文字幕免费在线视频6| 视频区图区小说| 又黄又爽又刺激的免费视频.| 午夜激情久久久久久久| 国产精品国产av在线观看| 综合色丁香网| 国产黄片美女视频| 能在线免费看毛片的网站| 两个人的视频大全免费| 少妇 在线观看| 久久99蜜桃精品久久| 欧美高清性xxxxhd video| 国产成人免费观看mmmm| 日韩视频在线欧美| 成人特级av手机在线观看| 波多野结衣巨乳人妻| 校园人妻丝袜中文字幕| 国产高清不卡午夜福利| 好男人在线观看高清免费视频| 午夜日本视频在线| 国产精品久久久久久久久免| 久久久成人免费电影| 午夜精品一区二区三区免费看| av一本久久久久| 亚洲欧美日韩东京热| videossex国产| 三级国产精品欧美在线观看| 久久久久国产精品人妻一区二区| 国产精品福利在线免费观看| 亚洲人成网站在线播| 18禁裸乳无遮挡动漫免费视频 | 日韩av免费高清视频| 91狼人影院| 男男h啪啪无遮挡| 午夜福利在线观看免费完整高清在| 欧美xxxx性猛交bbbb| 自拍偷自拍亚洲精品老妇|