• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Drought Stress Impairs Grain Yield and Quality of Rice Genotypes by Impaired Photosynthetic Attributes and K Nutrition

    2020-12-28 07:21:38MuhammadZahidMUMTAZ,MuhammadSAQIB,GhulamABBAS
    Rice Science 2020年1期

    Letter

    Drought Stress Impairs Grain Yield and Quality of Rice Genotypes by Impaired Photosynthetic Attributes and K Nutrition

    Drought is one of the most prevalent abiotic stresses that adversely affect rice productivity (Petrozza et al, 2014). Rice is very sensitive to drought stress and drought can cause 50% reduction in rice production globally (Yang et al, 2008). To meet the food needs for global population, 63% more agricultural production will be required by the year 2050 than the current production (Alexandratos and Bruinsma,2012; FAO, 2017). Drought stress delays the time of flowering, leading to a reduced number of panicles, number of kernels and ultimately grain yield (Pantuwan et al, 2002; Iseki et al, 2014). The reproductive stage of rice is very sensitive to drought stress, and water limitation at this stage causes a serious reduction in rice yield (Aydinsakir et al, 2013) and biomass (Iseki et al, 2014). It is a major challenge to increase rice production under increasing drought due to changing climate, however, it may be achieved through use of drought-tolerant rice varieties having the ability to produce high yield under drought stress conditions (Luo, 2010).

    This study was conducted under a split plot design with three replications at the Research Farm of the Institute of Soil and Environmental Sciences, University of Agriculture Faisalabad, Pakistan. Nursery of 11 rice genotypes (99404, 99417, Super Basmati, KS-282, KSK-434, KSK-133, Basmati-2000, KS-432, Basmati-515, Basmati-385 and Shaheen Basmati) was grown under well-irrigated conditions. Data of rainfall, sunshine, and average temperatures are given in Table 1.A well-irrigated control (non-stressed) was maintained by continuous recommended irrigations from transplanting to a week before maturity. The drought stress treatment was started at 60 d after transplantation and thereafter this field was not irrigated. There was 41.17% less application of water in case of drought treatment as compared to the well-irrigated treatment.

    Drought stress affects gas exchange attributes like photosynthetic rate, stomatal conductance and transpiration rate (Serraj et al, 2011). After four weeks of drought stress,the photosynthetic rate, transpiration rate and stomatal conductance of expanded second top leaves were measured according to Mumtaz et al (2018). Drought stress caused a significant reduction in different gas exchange attributes including photosynthetic rate, transpiration rate and stomatal conductance, and significant genotypic variations were observed among different rice genotypes regarding these parameters (Table 2). KS-282 showed significantly higher photosynthetic rate, transpiration rate and stomatal conductance under drought stress as compared to the other genotypes. Drought stress caused 19%, 48%, and 47% decreases in photosynthetic rate, transpiration rate and stomatal conductance of KS-282 over the control, respectively. Meanwhile, 99404 followed by 99417 showed lower photosynthetic rate, transpiration rate and stomatal conductance with 30%, 67% and 68% decreases, respectively, as compared to control.Closure of stomata under drought stress to conserve moisture content may cause a decrease in stomatal conductance (Iseki et al, 2014). Stomatal conductance is associated with turgidity of leaves. Under drought stress, reduction in stomatal conductance also causes decreases in photosynthetic rate and transpiration rate (Rauf et al, 2015). It has been reported that stomatal conductance plays an important role in regulating the water balance of plants (Sinclair et al, 2010). If stomata are closed, the expansion of cell is reduced which leads to limited growth rate, biomass and yield production. Under severe drought conditions, CO2fixation is reduced due to the inhibition of the activities of some key enzymes such as rubisco activase and ribulose-1,5-bisphosphate carboxylase/oxygenase. Drought induced inhibition of enzyme activities results in the generation of reactive oxygen species, which causes photo-oxidation and harm to the photosynthetic membrane proteins, pigments and lipids, and ultimately affects grain quality (Rauf et al, 2015). Drought induced photosynthetic limitations during reproduction phase causes reduction in carbon flux to reproductive organs, triggers ovary abortion, increases pollen sterility, which leads to decreased grain yield and quality (Boyer and Westgate, 2004; Centritto et al, 2009). The results of present work suggested that drought tolerant genotypes have a better ability to maintain their physiological functions under drought stress.

    Number of panicles per plant was recorded manually before harvesting. Paddy yield was recorded after air drying the rice grains. One week sun-dried rice straw was weighed and straw yield was noted. Drought stress significantly reduced grain and straw yields as well as number of panicles per plant (Table 3). Under drought stress, KS-282 showed the highest number of panicles per plant with 7% decrease as compared to the control. The lowest number of panicles per plant was shown by 99404 with 29% decrease over the control. KS-282 also differed significantly regarding number of panicles per plant from all the other genotypes whereas 99404 was statistical at par with 99417. Genotypic variations were also observed with regard to straw and grain yields. KS-282 showed the maximum grain yield (38% decrease over the control) but was statistical at par with KS-432, Basmati-385 and Shaheen Basmati under drought stress, whereas 99404 showed the minimum grain yield with 58% decrease over the control. Similarly, KS-282 also produced the highest straw yield (21% decrease over the control) with a significant difference from all the other genotypes under drought conditions. However, the lowest straw yield (33% decrease over the control) under drought conditions was observed in 99404. These findings are supported by Pantuwan et al (2002), Yue et al (2006), Kumar et al (2009), Luo (2010) and Iseki et al (2014). Pantuwan et al (2002) tested 128 genotypes under mild to prolonged severe drought stresses at the grain filling stage and reported flowering time as an important cause of grain yield loss. Reduction in grain yield under drought stress could be due to increased spikelet sterility that reduces fertile panicles and grain weight (Yue et al, 2006). Straw yield is closely related to photosynthesis which is severely reduced under drought stress (Iseki et al, 2014).

    Table 1.Rainfall, solar radiation and average minimum and maximum temperatures for the crop season at the experimental site.

    Table 2. Effects of drought stress on photosynthetic rate, transpirational rate and stomatal conductance of different rice genotypes.

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Table 3. Effects of drought stress on number of panicles per plant, grain yield and straw yield of different rice genotypes.

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Plants can maintain the uptake of cations to cope with drought stress (Cakmak, 2005). K+is an important cation in plants, which plays a role in protein synthesis, membrane permeability, cell expansion, enzyme activity and stomatal opening and closing (Hopkins and Huner, 2004). K+content in plantsis positively related to transpiration rate. Drought stress accumulation with K+deficiency causes an increase in reactive oxygen species (ROS) that induced disturbances in stomatal opening and photosynthesis (Mengel and Kirkby, 2001). Severe drought stress increases the demand for K+to avoid oxidative damage and to protect chloroplasts. Plants also need K+under drought stress to maintain photosynthetic CO2fixation, which is reduced as a result of stomatal closure (Egilla et al, 2005).

    Table 4. Effects of drought stress on K+ concentrations in straw and grains of different rice genotypes. mmol/g

    Different lowercase letters for each parameter indicate significant difference according to the least significant difference test at≤0.05.

    Determination of K+concentration in straw and grains were conductedby digesting the samples as described by Wolf (1982). There was a significant effect of drought stress on K+concentration in grains and straw with a significant variation among different rice genotypes (Table 4). Significantly higher K+concentrations in straw and grains were observed in KS-282 (20% and 36% decreases, respectively) followed by KS-432 (12% and 25% decreases, respectively) as compared to the control. The lower K+concentrations of straw and grains were shown by 99404 as compared to the rest of the genotypes. This genotype showed 34% and 17% reductions in K+concentrations of straw and grains, respectively, over the control. K+content in drought tolerant genotypes is positively related to transpiration rate, however, K+uptake may vary due to its availability in the soil. Wang et al (2013) concluded that increased K+availability under drought stress improves enzyme activity, cell expansion, stomatal conductance, leaf area index, water use efficiency and nutrient uptake, which may promote dry matter and grain yield production. Wang et al (2004) explored the effects of K application on plant K+uptake, grain yield and quality ofrice,and found that with increasing K application, plant K+uptake is also increased, which considerably increases the number of ear bearing tillers and seed-setting rate. Moreover, high K+content in plants is correlated with a corresponding decrease in chalkiness and amylose content and high grain yield and quality.

    Grain quality is important for the acceptance and adaptation of any new cultivars by farmers and consumers (Cooper et al, 2008). Generally, in the Indian subcontinent, people prefer rice grain having medium to long grains. Market price can be estimated by grain size and shape, proportion of chalky and broken rice grain (Cooper et al, 2008). Previous studies regarding drought stress have been restricted to physiological and yield attributes but their effects on grain quality are not well-known.Three genotypes (Super Basmati, KS-282 and 99404) were selected for the determination of grain quality as affected by drought stress. Drought stress caused significant reduction in grain length and width of all the selected rice genotypes (Fig. 1). Under drought conditions, the maximum grain length was showed in Super Basmati (7% reduction) and the minimum grain length (2% reduction) was in KS-282 over control. On the contrast, KS-282 produced the maximum grain width with 6% reduction under drought stress as compared to the control. It was revealed that drought stress significantly increased the broken fraction and reduced the total milling recovery (TMR) of all the three rice genotypes (Fig. 2). The maximum broken fraction was observed in Super Basmati, and KS-282 showed the minimum broken fraction with 25% and 54% increases, respectively, under drought stress as compared to the control. Super Basmati showed the highest TMR with 4% decrease under drought stress whereas the minimum TMR was observed in 99404 with 4% reduction over the control. There were no chalkiness spots observed in any genotype under normal conditions whereas under drought stress, 9, 5 and 5 chalkiness spots were observed on grains of 99404, Super Basmati and KS-282, respectively (Table 5).We measured a negative relation between the grain length and width and these results are in accordance with the findings of Koutroubas et al (2004). Reduction in grain width could be linked with a decrease in average endosperm cell area or with abnormal amyloplast packaging that results in white chalky areas (Ishimaru et al, 2009). Fabre et al (2005) reported that grain dimensions are reduced under stress conditions. These results are also similar to the outcomes of Rao et al (2013). The results of this study also revealed a reduction in the total milling recovery along with an increase in broken fraction of rice grains due to drought stress. Super Basmati showed the minimum total milling recovery with the highest broken fraction and longer grain length. During the milling process, breakdown of longer grains was more serious than that of the shorter to medium grains. There was an inverse relationship between grain length and total milling recovery in this study. Sharifi et al (2009) also reported an interaction between rice genotype and environment with respect to grain length and shape. Similar findings have also been discussed by Adu-Kwarteng et al (2003) and Rao et al (2013).

    Chalkiness is an important quality characteristic in the rice grain occurs commonly with the development of numerous air spaces between loosely packed starch granules and environmental stress during grain development (Tashiro and Wardlaw, 1991). In the present study, 99404 showed the greater chalkiness score under drought stress as compared to Super Basmati and KS-282. It could be due to environmental stress (drought in this case) that hindered the normal grain filling (Adu-Kwarteng et al, 2003). Under stress conditions, chalkiness in the grains causes the breakage of grains that fetch a lower price in the market. Chalky spot on grains appears as results of reduced water supply under drought stress. It is particularly evident for 99404 which is a drought-sensitive genotype with greater chalkiness score. Chalkiness degrades the rice appearance, transparency, head rice recovery and consumer acceptability (Graham, 2002; Yoshioka et al, 2007). It is negatively correlated with milling quality as increase in chalkiness caused decrease in head rice recovery (Wassmann et al, 2009; Zhao and Fitzgerald, 2013).

    Fig. 1. Effects of drought stress on grain length and grain width of rice genotypes.

    Data are Mean ± SE (= 3).Different letters above the bar indicate significant difference according to the least significant difference test at the 0.05 level.

    Fig.2. Effects of drought stress on broken fraction and total milling recovery of rice genotypes.

    Data are Mean ± SE (= 3).Different letters above the bar indicate significant difference according to the least significant difference test at the 0.05 level.

    Table 5. Effects of drought stress on chalkiness score on grains of different rice genotypes.

    Chalkiness score was rated on a scale from 0 to 9 with respect to increase in chalky area.None,No chalky area; 5, 10% to 20% chalky area; 9, >20% chalky area.

    SUPPLEMENTAL DATA

    The following material is available in the online version of this article at http://www.sciencedirect.com/science/journal/ 16726308; http://www.ricescience.org.

    Supplemental File 1. Materials and methods used in this study.

    Adu-Kwarteng E, Ellis W O, Oduro I, Manful J T. 2003. Rice grain quality: A comparison of local varieties with new varieties under study in Ghana., 14(7): 507–514.

    Alexandratos N, Bruinsma J. 2012. World agriculture towards 2030/2050: The 2012 revision.: Agricultural Development Economics (ESA) Working Paper No. 12. 3 June, 2012. Rome, Italy: Food and Agriculture Organization of the United Nations.

    Aydinsakir K, Erdala S, Buyuktasb D, Bastugb R, Tokera R. 2013. The influence of regular deficit irrigation applications on water use, yield, and quality components of two corn (L.) genotypes., 128: 65–71.

    Boyer J S, Westgate M E. 2004. Grain yields with limited water.,55: 2385–2394.

    Cakmak I. 2005. The role of potassium in alleviating detrimental effects of abiotic stresses in plants.,168: 521–530.

    Centritto M, Lauteri M, Monteverdi M C, Serraj R. 2009. Leaf gas exchange, carbon isotope discrimination, and grain yield in contrasting rice genotypes subjected to water deficits during the reproductive stage.,60: 2325–2339.

    Cooper N T W, Siebenmorgen T J, Counce P A. 2008. Effects of nighttime temperature during kernel development on rice physicochemical properties., 85(3): 276–282.

    Egilla J N, Davies F T, Boutton T W. 2005. Drought stress influences leaf water content, photosynthesis, and water-use efficiency of hibiscus rosa-sinensis at three potassium concentrations., 43(1): 135–140.

    Fabre D, Siband P, Dingkuhn M. 2005. Characterizing stress effects on rice grain development and filling using grain weight and size distribution.,92(1): 11–16.

    FAO. 2017. The Future of Food and Agriculture: Trends and Challenges.Rome, Italy: Food and Agriculture Organization of the United Nations.

    Graham R. 2002. A proposal for IRRI to establish a grain quality and nutrition research center.: IRRI Discussion Paper Series no. 44. Los Banos, the Phillipine: International Rice Research Institute: 15.

    Hopkins W G, Huner N P A. 2004. Responses of plants to environmental stress.:Introduction to Plant Physiology. 4th edn. USA: John Wiley and Sons: 223–239.

    Iseki K, Homma K, Shiraiwa T, Jongdee B, Mekwatanakarn P. 2014. The effects of cross-tolerance to oxidative stress and drought stress on rice dry matter production under aerobic conditions., 163: 18–23.

    Ishimaru T, Horigane A K, Ida M, Iwasawa N, San-oh Y A, Nakazono M, Nishizawa N K, Masumura T, Kondo M, Yoshida M. 2009. Formation of grain chalkiness and changes in water distribution in developing rice caryopses grown under high- temperature stress., 50(2): 166–174.

    Koutroubas S D, Mazzini F, Pons B, Ntanos D A. 2004. Grain quality variation and relationships with morpho-physiological traits in rice (L.) genetic resources in Europe., 86: 115–130.

    Kumar A, Verulkar S, Dixit S, Chauhan B, Bernier J, Venuprasad R, Zhao D, Shrivastava M N. 2009. Yield and yield-attributing traits of rice (L.) under lowland drought and suitability of early vigor as a selection criterion., 114(1): 99–107.

    Luo L J. 2010. Breeding for water-saving and drought-resistance rice (WDR) in China., 61(13): 3509–3517.

    Mengel K, Kirkby E A.2001. Principles of Plant Nutrition. 5th edn. Dordrecht: Kluwer Academic Publishers.

    Mumtaz M Z, Saqib M, Abbas G, Akhtar J, Qamar Z U. 2018. Genotypic variation in rice for grain yield and quality as affected by salt-affected field conditions., 41(2): 233–242.

    Pantuwan G, Fukai S, Cooper M, Rajatasereekul S, O’Toole J C. 2002. Yield response of rice (L.) genotypes to drought under rainfed lowlands: 2. Selection of drought resistant genotypes., 73: 169–180.

    Petrozza A, Santaniello A, Summerer S, Tommaso G D, Tommaso D D, Paparelli E, Piaggesi A, Perata P, Cellini F. 2014. Physiological responses to Megafol treatments in tomato plants under drought stress: A phenomic and molecular approach., 174: 185–192.

    Rao P S, Mishra B, Gupta S R. 2013. Effects of soil salinity and alkalinity on grain quality of tolerant, semi-tolerant and sensitive rice genotypes., 20(4): 284–291.

    Rauf S, Al-Khayri J M, Zaharieva M, Monneveux P, Khalil F. 2016. Breeding strategies to enhance drought tolerance in crops.: Al-Khayri J M. Advances in Plant Breeding Strategies: Agronomic, Abiotic and Biotic Stress Traits.Switzerland: Springer International Publishing: 397–445.

    Serraj R, McNally K L, Slamet-Loedin I, Kohli A, Haefele S M, Atlin G, Kumar A. 2011. Drought resistance improvement in rice: An integrated genetic and resource management strategy.,14: 1–14.

    Sharifi P, Dehghani H, Mumeni A, Moghaddam M. 2009. Genetic and genotype × environment interaction effects for appearance quality of rice.,8(8): 891–901.

    Sinclair T R, Messina C D, Beatty A P, Samples M. 2010. Assessment across the United States of the benefits of altered soybean drought traits., 102(2): 475–482.

    Tashiro T, Wardlaw I F. 1991. The effect of high temperature on kernel dimensions and the type and occurrence of kernel damage in rice., 42:485–496.

    Wang M, Zheng Q S, Shen Q R, Guo S W. 2013. The critical role of potassium in plant stress response.,14(4): 7370–7390.

    Wang Q S, Zhen R H, Ding Y F, Ji Z J, Cao W X, Huang P S. 2004. Effects of potassium fertilizer application rates on plant potassium accumulation and grain quality ofrice., 37: 1444–1450. (in Chinese with English abstract)

    Wassmann R, Jagadish S V K, Heuer S, Ismail A, Redona E, Serraj R, Singh R K, Howell G, Pathak H, Sumfleth K. 2009. Climate change affecting rice production: The physiological and agronomic basis for possible adaptation strategies., 101: 59–122.

    Wolf B. 1982. A comprehensive system of leaf analysis and its use for diagnosing crop nutrient status., 13(12): 1035–1059.

    Yang JC, Liu K, Zhang SF, Wang XM, Wang ZQ, Liu LJ. 2008. Hormones in rice spikelets in responses to water stress during meiosis., 34(1): 111–118. (in Chinese with English abstract)

    Yoshioka Y, Iwata H, Tabata M, Ninomiya S, Ohsawa R. 2007. Chalkiness in rice: Potential for evaluation with image analysis.,47(5): 2113–2120.

    Yue B, Xue W Y, Xiong L Z, Yu X Q, Luo L J, Cui K H, Jin D M, Xing Y Z, Zhang Q F. 2006. Genetic basis of drought resistance at reproductive stage in rice: Separation of drought tolerance from drought avoidance., 172(2): 1213–1228.

    Zhao X, Fitzgerald M A. 2013. Climate change: Implications for the yield of edible rice., 8(6): e66218.

    Muhammad Zahid Mumtaz1, 2, Muhammad Saqib1, Ghulam Abbas1, 3, Javaid Akhtar1, Zia Ul-Qamar4

    (; Department of Environmental Sciences, 61100, Pakistan; Plant Breeding and Genetics Division, Nuclear Institute for Agriculture and Biology, Faisalabad 38000, Pakistan)

    Copyright ? 2020, China National Rice Research Institute. Hosting by Elsevier B V

    This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

    Peer review under responsibility of China National Rice Research Institute

    http://dx.doi.org/10.1016/j.rsci.2019.12.001

    Muhammad Zahid Mumtaz (zahidses@gmail.com)

    7 August 2018;

    30 October 2018

    日韩精品免费视频一区二区三区| 久久国产亚洲av麻豆专区| 桃花免费在线播放| 永久网站在线| 精品亚洲乱码少妇综合久久| 亚洲欧美清纯卡通| www.精华液| 日本午夜av视频| 汤姆久久久久久久影院中文字幕| 黄色一级大片看看| 欧美亚洲日本最大视频资源| 99九九在线精品视频| 国产成人av激情在线播放| 亚洲伊人久久精品综合| 亚洲欧美精品自产自拍| www.自偷自拍.com| 在线观看www视频免费| 久久99热这里只频精品6学生| 国产精品一国产av| 最近最新中文字幕大全免费视频 | 国产免费现黄频在线看| 人人妻人人澡人人爽人人夜夜| 成年人免费黄色播放视频| 亚洲,欧美,日韩| 久久久精品免费免费高清| 少妇 在线观看| 久久影院123| 日韩不卡一区二区三区视频在线| 女人久久www免费人成看片| 秋霞伦理黄片| 久久久久久人人人人人| 亚洲精品国产av成人精品| 成年女人毛片免费观看观看9 | 99热全是精品| 欧美精品av麻豆av| 亚洲av.av天堂| 搡女人真爽免费视频火全软件| 视频在线观看一区二区三区| 在线看a的网站| 最近中文字幕2019免费版| 日韩,欧美,国产一区二区三区| 99久久人妻综合| 亚洲国产最新在线播放| 两个人看的免费小视频| 亚洲激情五月婷婷啪啪| 中文字幕人妻丝袜一区二区 | 精品国产国语对白av| 99国产综合亚洲精品| 人妻系列 视频| 中文字幕精品免费在线观看视频| 好男人视频免费观看在线| 国产精品亚洲av一区麻豆 | 在线天堂最新版资源| 最近最新中文字幕大全免费视频 | 成人国语在线视频| 69精品国产乱码久久久| 国产精品一国产av| 一区在线观看完整版| 久久精品国产自在天天线| 永久网站在线| 亚洲成av片中文字幕在线观看 | 精品一品国产午夜福利视频| 十分钟在线观看高清视频www| 亚洲成人av在线免费| 国产不卡av网站在线观看| 日韩电影二区| 久久久国产欧美日韩av| 久热久热在线精品观看| 国产精品一二三区在线看| av女优亚洲男人天堂| 一区二区三区乱码不卡18| 免费观看无遮挡的男女| 久久ye,这里只有精品| 日韩中文字幕视频在线看片| 免费播放大片免费观看视频在线观看| freevideosex欧美| 国产成人精品久久久久久| 免费在线观看完整版高清| 高清在线视频一区二区三区| 纯流量卡能插随身wifi吗| 黄色视频在线播放观看不卡| 一区二区三区乱码不卡18| 日本爱情动作片www.在线观看| www.精华液| 日本vs欧美在线观看视频| 日韩一卡2卡3卡4卡2021年| 七月丁香在线播放| 美女主播在线视频| 亚洲美女黄色视频免费看| 纵有疾风起免费观看全集完整版| 国产白丝娇喘喷水9色精品| 成年动漫av网址| kizo精华| 一区福利在线观看| 一个人免费看片子| 免费黄网站久久成人精品| 飞空精品影院首页| 晚上一个人看的免费电影| 9热在线视频观看99| 精品少妇一区二区三区视频日本电影 | 亚洲欧美日韩另类电影网站| 亚洲成人手机| av又黄又爽大尺度在线免费看| 自拍欧美九色日韩亚洲蝌蚪91| 国产成人91sexporn| 日本午夜av视频| 中文字幕人妻熟女乱码| 男人操女人黄网站| 亚洲精品,欧美精品| 只有这里有精品99| 久久精品人人爽人人爽视色| 亚洲人成网站在线观看播放| 国产精品二区激情视频| 亚洲,欧美精品.| 午夜福利一区二区在线看| 久久精品熟女亚洲av麻豆精品| 国产一区有黄有色的免费视频| 中文天堂在线官网| 亚洲欧美一区二区三区黑人 | 日本色播在线视频| 欧美精品人与动牲交sv欧美| 成人毛片a级毛片在线播放| 欧美日韩综合久久久久久| 国产在线免费精品| 天天操日日干夜夜撸| 高清黄色对白视频在线免费看| 国产福利在线免费观看视频| 欧美日韩一区二区视频在线观看视频在线| 女人久久www免费人成看片| 亚洲久久久国产精品| 十八禁网站网址无遮挡| 色94色欧美一区二区| 欧美日韩一区二区视频在线观看视频在线| 亚洲第一区二区三区不卡| 色94色欧美一区二区| 久久免费观看电影| 欧美日韩成人在线一区二区| 午夜av观看不卡| 国产 一区精品| 最新的欧美精品一区二区| 麻豆av在线久日| 亚洲精品自拍成人| 欧美日韩一区二区视频在线观看视频在线| 90打野战视频偷拍视频| 国产在线免费精品| 久久久国产精品麻豆| 老汉色av国产亚洲站长工具| 黄色配什么色好看| 高清视频免费观看一区二区| 国产毛片在线视频| 亚洲,欧美,日韩| 欧美变态另类bdsm刘玥| 久久久国产欧美日韩av| 亚洲第一av免费看| xxxhd国产人妻xxx| 日本av手机在线免费观看| av又黄又爽大尺度在线免费看| 欧美中文综合在线视频| 国产亚洲最大av| 久久综合国产亚洲精品| 色视频在线一区二区三区| 日日爽夜夜爽网站| 最近手机中文字幕大全| av国产久精品久网站免费入址| 春色校园在线视频观看| 免费日韩欧美在线观看| 丝袜在线中文字幕| 男女午夜视频在线观看| 日韩一区二区视频免费看| 国产成人午夜福利电影在线观看| 免费黄频网站在线观看国产| 80岁老熟妇乱子伦牲交| 亚洲,欧美,日韩| 大香蕉久久网| 人成视频在线观看免费观看| 日韩伦理黄色片| 菩萨蛮人人尽说江南好唐韦庄| 大片电影免费在线观看免费| 夫妻午夜视频| 欧美中文综合在线视频| av国产久精品久网站免费入址| 午夜福利影视在线免费观看| 亚洲成人一二三区av| 高清在线视频一区二区三区| 少妇被粗大的猛进出69影院| 欧美日韩一区二区视频在线观看视频在线| 精品国产一区二区三区久久久樱花| 亚洲精品美女久久av网站| 女人久久www免费人成看片| 丝袜美腿诱惑在线| 亚洲一码二码三码区别大吗| freevideosex欧美| 99热国产这里只有精品6| 亚洲av男天堂| 国产欧美日韩综合在线一区二区| 久久精品亚洲av国产电影网| 日日撸夜夜添| 国产亚洲最大av| 国产成人a∨麻豆精品| 日本欧美国产在线视频| 国产片特级美女逼逼视频| 少妇熟女欧美另类| 另类精品久久| 国产免费又黄又爽又色| 国产一区二区三区综合在线观看| 国产在线视频一区二区| 黄频高清免费视频| 亚洲精品aⅴ在线观看| 成人黄色视频免费在线看| 国产成人91sexporn| 国产国语露脸激情在线看| 国产成人免费观看mmmm| 国产亚洲午夜精品一区二区久久| 大香蕉久久成人网| 26uuu在线亚洲综合色| 国产97色在线日韩免费| 丰满迷人的少妇在线观看| 又黄又粗又硬又大视频| 亚洲五月色婷婷综合| 久久久久久久国产电影| 国产xxxxx性猛交| 99国产精品免费福利视频| 黄片无遮挡物在线观看| 亚洲av男天堂| 一级片'在线观看视频| 日韩成人av中文字幕在线观看| 亚洲精品av麻豆狂野| 2021少妇久久久久久久久久久| 中文字幕精品免费在线观看视频| 国产精品嫩草影院av在线观看| 韩国高清视频一区二区三区| 伊人久久国产一区二区| 91精品三级在线观看| 成年美女黄网站色视频大全免费| 婷婷色麻豆天堂久久| 国产精品亚洲av一区麻豆 | 午夜福利视频精品| 少妇熟女欧美另类| 亚洲国产毛片av蜜桃av| 中文字幕另类日韩欧美亚洲嫩草| 国产熟女欧美一区二区| 在线看a的网站| 欧美精品一区二区免费开放| 精品一区二区免费观看| 亚洲综合色网址| 国产成人a∨麻豆精品| 91精品伊人久久大香线蕉| 国产精品免费视频内射| 在线观看人妻少妇| 人人妻人人爽人人添夜夜欢视频| 日本-黄色视频高清免费观看| 男女无遮挡免费网站观看| 国产av精品麻豆| av在线观看视频网站免费| 五月伊人婷婷丁香| 精品午夜福利在线看| 青春草亚洲视频在线观看| 国产av国产精品国产| 丝袜脚勾引网站| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 天堂俺去俺来也www色官网| 国产亚洲av片在线观看秒播厂| 日本欧美视频一区| 欧美+日韩+精品| 高清黄色对白视频在线免费看| 搡女人真爽免费视频火全软件| 成人漫画全彩无遮挡| 高清欧美精品videossex| 亚洲精品中文字幕在线视频| 午夜免费观看性视频| 久久久久久久久久人人人人人人| 大香蕉久久成人网| 欧美精品国产亚洲| 久久午夜福利片| 亚洲国产成人一精品久久久| 久久久久精品人妻al黑| 2022亚洲国产成人精品| 成人国语在线视频| 毛片一级片免费看久久久久| 美女国产高潮福利片在线看| 亚洲国产精品国产精品| 日韩一区二区视频免费看| 叶爱在线成人免费视频播放| 交换朋友夫妻互换小说| 18禁裸乳无遮挡动漫免费视频| 亚洲精品久久午夜乱码| 黄网站色视频无遮挡免费观看| 亚洲国产毛片av蜜桃av| 久久精品人人爽人人爽视色| 69精品国产乱码久久久| 黄片播放在线免费| 9热在线视频观看99| av线在线观看网站| 九草在线视频观看| 久久精品国产亚洲av高清一级| 国产熟女午夜一区二区三区| av一本久久久久| 超碰成人久久| 99久久人妻综合| 1024香蕉在线观看| 永久网站在线| 国产极品粉嫩免费观看在线| 欧美精品av麻豆av| 老司机亚洲免费影院| 精品一品国产午夜福利视频| 国产熟女欧美一区二区| 丝袜人妻中文字幕| 丰满迷人的少妇在线观看| 久久久久久久大尺度免费视频| 精品一品国产午夜福利视频| 街头女战士在线观看网站| 久久综合国产亚洲精品| 欧美日韩av久久| av在线老鸭窝| 国产午夜精品一二区理论片| 人体艺术视频欧美日本| 99香蕉大伊视频| 久久人人爽av亚洲精品天堂| 日韩免费高清中文字幕av| 久久精品国产亚洲av天美| 国产成人精品一,二区| 久久久久久久久久久免费av| 国产精品一国产av| 国产人伦9x9x在线观看 | av线在线观看网站| 成人亚洲精品一区在线观看| 亚洲精品乱久久久久久| 一本久久精品| 国产日韩欧美视频二区| 国产又爽黄色视频| 制服丝袜香蕉在线| 少妇人妻久久综合中文| 久久 成人 亚洲| 999精品在线视频| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 天堂中文最新版在线下载| 搡女人真爽免费视频火全软件| 国产精品三级大全| 免费日韩欧美在线观看| 日本91视频免费播放| 久久精品人人爽人人爽视色| 69精品国产乱码久久久| 天美传媒精品一区二区| 三级国产精品片| 国产色婷婷99| 国产熟女欧美一区二区| 亚洲av国产av综合av卡| 一级片'在线观看视频| 国产精品熟女久久久久浪| 91成人精品电影| 免费观看av网站的网址| 久久久国产一区二区| 国产精品99久久99久久久不卡 | 不卡av一区二区三区| 久久久a久久爽久久v久久| h视频一区二区三区| 日韩人妻精品一区2区三区| 欧美另类一区| 男人爽女人下面视频在线观看| 国产日韩欧美亚洲二区| 永久网站在线| 亚洲成国产人片在线观看| videossex国产| 久久精品夜色国产| 一区二区日韩欧美中文字幕| 亚洲精品视频女| 免费观看性生交大片5| 99久久精品国产国产毛片| 亚洲欧美清纯卡通| 成年动漫av网址| 2022亚洲国产成人精品| 成人影院久久| 亚洲欧美日韩另类电影网站| 国产成人午夜福利电影在线观看| 91午夜精品亚洲一区二区三区| 久久综合国产亚洲精品| 亚洲精品成人av观看孕妇| 国产一区二区三区综合在线观看| 亚洲国产av新网站| 男男h啪啪无遮挡| 亚洲少妇的诱惑av| 一级,二级,三级黄色视频| 国产日韩一区二区三区精品不卡| 日韩一区二区三区影片| 日韩在线高清观看一区二区三区| 一级片免费观看大全| 国产片内射在线| 在线观看www视频免费| 国产伦理片在线播放av一区| 成人黄色视频免费在线看| 婷婷色综合www| 国产伦理片在线播放av一区| 如日韩欧美国产精品一区二区三区| 色视频在线一区二区三区| 国产亚洲精品第一综合不卡| 边亲边吃奶的免费视频| 男女边吃奶边做爰视频| 国产精品熟女久久久久浪| 少妇被粗大的猛进出69影院| 精品国产一区二区三区久久久樱花| 最新中文字幕久久久久| 大片免费播放器 马上看| av在线老鸭窝| 久久免费观看电影| 男男h啪啪无遮挡| 天天影视国产精品| 观看av在线不卡| 热re99久久国产66热| 美女中出高潮动态图| 黄片无遮挡物在线观看| 国产免费一区二区三区四区乱码| 香蕉精品网在线| 国产一区二区激情短视频 | 捣出白浆h1v1| 少妇人妻久久综合中文| 精品少妇一区二区三区视频日本电影 | 国产女主播在线喷水免费视频网站| 大码成人一级视频| 韩国高清视频一区二区三区| 国产成人精品福利久久| 18禁裸乳无遮挡动漫免费视频| 欧美人与性动交α欧美软件| av视频免费观看在线观看| 欧美日韩精品成人综合77777| 免费日韩欧美在线观看| 另类亚洲欧美激情| av片东京热男人的天堂| 啦啦啦在线免费观看视频4| 在线观看人妻少妇| 男的添女的下面高潮视频| 亚洲一级一片aⅴ在线观看| 国产精品嫩草影院av在线观看| 人妻 亚洲 视频| 美女主播在线视频| 国产精品嫩草影院av在线观看| 亚洲,欧美,日韩| 一区二区三区精品91| 春色校园在线视频观看| av视频免费观看在线观看| 午夜av观看不卡| 午夜激情av网站| 久久人妻熟女aⅴ| 国产免费视频播放在线视频| 日韩电影二区| 亚洲国产av影院在线观看| 侵犯人妻中文字幕一二三四区| 精品一区二区三区四区五区乱码 | 国产成人免费无遮挡视频| 新久久久久国产一级毛片| 午夜日本视频在线| 午夜老司机福利剧场| 老汉色av国产亚洲站长工具| 欧美少妇被猛烈插入视频| av线在线观看网站| 亚洲精品视频女| 国语对白做爰xxxⅹ性视频网站| 亚洲,欧美精品.| 亚洲伊人久久精品综合| 最近2019中文字幕mv第一页| 日韩在线高清观看一区二区三区| 又大又黄又爽视频免费| 亚洲精品成人av观看孕妇| 成年美女黄网站色视频大全免费| 在线观看美女被高潮喷水网站| 18禁观看日本| 人成视频在线观看免费观看| 王馨瑶露胸无遮挡在线观看| kizo精华| 日韩一卡2卡3卡4卡2021年| 少妇人妻精品综合一区二区| 国产免费现黄频在线看| 亚洲精品国产色婷婷电影| 丁香六月天网| 日本av免费视频播放| 国产精品免费视频内射| 国产熟女欧美一区二区| 男女高潮啪啪啪动态图| 亚洲精品国产av蜜桃| 亚洲一区二区三区欧美精品| 91精品国产国语对白视频| 男女无遮挡免费网站观看| 欧美bdsm另类| 婷婷色综合www| 亚洲国产毛片av蜜桃av| 午夜日本视频在线| 天美传媒精品一区二区| 激情视频va一区二区三区| av.在线天堂| 男女高潮啪啪啪动态图| 老熟女久久久| 国产极品天堂在线| 国产免费一区二区三区四区乱码| 精品国产一区二区三区四区第35| 18在线观看网站| 精品国产国语对白av| 午夜福利,免费看| 亚洲av福利一区| 久久久久久人人人人人| 男女边摸边吃奶| 亚洲综合精品二区| 欧美日本中文国产一区发布| 如日韩欧美国产精品一区二区三区| 中文字幕最新亚洲高清| 精品人妻在线不人妻| 国产精品 欧美亚洲| 两个人免费观看高清视频| av又黄又爽大尺度在线免费看| 麻豆乱淫一区二区| 欧美最新免费一区二区三区| av一本久久久久| 久久久久久久亚洲中文字幕| 日产精品乱码卡一卡2卡三| av电影中文网址| 黄色配什么色好看| 日韩av免费高清视频| 97在线人人人人妻| 婷婷色综合大香蕉| 亚洲欧美中文字幕日韩二区| 伦理电影大哥的女人| 激情五月婷婷亚洲| 亚洲三级黄色毛片| 视频区图区小说| 久久久久久免费高清国产稀缺| 精品人妻偷拍中文字幕| 我要看黄色一级片免费的| videosex国产| 啦啦啦在线免费观看视频4| 亚洲在久久综合| 一级片'在线观看视频| 极品少妇高潮喷水抽搐| 波多野结衣一区麻豆| 国产成人aa在线观看| 亚洲国产精品一区二区三区在线| 久久99热这里只频精品6学生| 成年女人在线观看亚洲视频| 免费不卡的大黄色大毛片视频在线观看| 欧美亚洲日本最大视频资源| 国产精品国产三级专区第一集| 一本大道久久a久久精品| 国产成人精品福利久久| 看免费av毛片| 亚洲精华国产精华液的使用体验| 久久久久国产一级毛片高清牌| 国产日韩欧美视频二区| 天天躁夜夜躁狠狠久久av| 王馨瑶露胸无遮挡在线观看| 亚洲久久久国产精品| av国产精品久久久久影院| 看免费成人av毛片| 伦理电影免费视频| 两个人免费观看高清视频| 一边亲一边摸免费视频| av在线app专区| 精品国产一区二区久久| 熟妇人妻不卡中文字幕| 婷婷色综合大香蕉| 久久久久国产精品人妻一区二区| 满18在线观看网站| 欧美 亚洲 国产 日韩一| 最近中文字幕2019免费版| 美女福利国产在线| 国产在线免费精品| 亚洲 欧美一区二区三区| 国产成人一区二区在线| 男女边吃奶边做爰视频| 久久久a久久爽久久v久久| 少妇人妻 视频| 久久久久久久大尺度免费视频| 汤姆久久久久久久影院中文字幕| 黄色视频在线播放观看不卡| 边亲边吃奶的免费视频| 一级毛片我不卡| 成年人免费黄色播放视频| 久久青草综合色| 国产成人精品在线电影| 人人澡人人妻人| 人妻一区二区av| 欧美日韩视频高清一区二区三区二| 亚洲人成网站在线观看播放| 免费av中文字幕在线| 考比视频在线观看| 亚洲精品国产色婷婷电影| 成人午夜精彩视频在线观看| 亚洲欧洲日产国产| h视频一区二区三区| 免费av中文字幕在线| 国产av一区二区精品久久| 久久ye,这里只有精品| 1024香蕉在线观看| 久久热在线av| 99国产精品免费福利视频| 久久青草综合色| 成人免费观看视频高清| 一本久久精品| 成人亚洲欧美一区二区av| 午夜日韩欧美国产| 精品国产露脸久久av麻豆| 亚洲精品国产av成人精品| 人人妻人人澡人人爽人人夜夜| 国产免费视频播放在线视频| 久久精品人人爽人人爽视色| 人妻人人澡人人爽人人| 国产成人精品久久二区二区91 | 叶爱在线成人免费视频播放| 午夜老司机福利剧场| 午夜福利在线免费观看网站| 精品卡一卡二卡四卡免费| 精品国产乱码久久久久久男人| 好男人视频免费观看在线| 久久国产精品大桥未久av| 我要看黄色一级片免费的| 国产成人精品久久二区二区91 | 免费观看a级毛片全部| 久久久久久免费高清国产稀缺|