• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Light-Induced Noise Reduction of Lightly Doped Silicon-based Neural Electrode

    2020-12-23 07:43:46ChunrongWeiFeiWangWeihuaPeiZhiduoLiuXuruiMaoHongzeZhaoSikaiWangYijunWangXiaoweiYangYuanyuanLiuShanshanZhaoQiangGuiHongdaChen
    物理化學(xué)學(xué)報 2020年12期

    Chunrong Wei ,Fei Wang ,Weihua Pei ,*,Zhiduo Liu ,Xurui Mao ,Hongze Zhao ,Sikai Wang ,Yijun Wang ,Xiaowei Yang ,Yuanyuan Liu ,Shanshan Zhao ,Qiang Gui ,Hongda Chen ,2

    1 The State Key Laboratory on Integrated Optoelectronics,Institute of Semiconductors,Chinese Academy of Sciences,Beijing 100083,P.R.China.

    2 CAS Center for Excellence in Brain Science and Intelligence Technology,Beijing 100083,P.R.China.

    3 Engineering Research Center for Semiconductor Integrated Technology,Beijing 100083,P.R.China.

    4 University of Chinese Academy of Sciences,Beijing 100049,P.R.China.

    5 School of Information Technology and Engineering,Tianjin University of Technology and Education,Tianjin 300222,P.R.China.

    Abstract:Silicon-based neural probes are practical tools for recording neural cell firing.A single siliconbased needle with a width of only 70 μm,prepared using the standard complementary metal-oxidesemiconductor (CMOS)process technology,can contain thousands of electrode-recording sites.Optogenetics has made control over neuronal activity more precise.By recording the electrical activity of neurons stimulated by light,more information about brain activity can be recorded and analyzed.When yellow light or blue light is used to stimulate neurons,the photon energy is greater than the forbidden bandwidth of the silicon substrate,and the valence-band electrons are excited to the conduction band,generating electron-hole pairs.The photoinduced carrier in the silicon substrate severely disrupts the probe's signal-to-noise ratio.Decreasing the disturbance caused by light is a pragmatic way to execute recording and stimulating simultaneously.The traditional noise reduction method involves using heavily doped silicon as the substrate,reducing the carrier life by increasing the impurity concentration,and then reducing the noise of the silicon electrode under illumination.However,the heavily doped silicon substrate has more lattice defects than its lightly doped counterparts,which makes the silicon electrode fragile,and this method is not compatible with the standard CMOS process technology.On analyzing the photoinduced noise mechanism of manufacturing electrodes on lightly doped silicon substrates,we found that the inhomogeneous distribution of carriers generated by light excitation polarizes lightly doped silicon substrates.The potential caused by photoinduced polarization will affect the electrodes fabricated on it.Metalizing and grounding the lightly doped silicon substrate will effectively decrease the polarization potential.On using this method,the noise amplitude caused by the illumination can drop to 0.87% of the original value.To ensure an appropriate firing rate of neurons,the photo-stimulation frequency was chosen to be 20 Hz.Under the illumination of 1 mW·mm-2,the background noise of the electrode could be controlled below 45 μV,which meets the needs for general optogenetics applications.Modification of the lightly doped silicon substrate will meet the requirements of the neural electrode for optogenetics applications.Unlike the traditional method of reducing light-induced noise by heavily doping the entire substrate,the noise reduction method of lightly doped silicon substrate is compatible with the standard CMOS process technology.It provides a noise cancellation method for the preparation of silicon-based neural microelectrodes with dense recording sites and high channel count using standard CMOS processes.

    Key Words:Light-induced noise; Photoinduced carrier; Optogenetics; Lightly doped; Silicon-based neural probe

    1 Introduction

    A neural probe is a key tool in electrophysiological research.Hundreds of or more electrodes are required to record as much as possible neural cells.The neural probes with multi-electrodes are designed and fabricated with the help of microelectromechanical systems (MEMS)technology to minimize the volume of the probe.Among these multi-channel electrode arrays,the silicon-based electrode array plays an important role.There are plenty of mature processing technologies that can be adapted to custom silicon into the desired shape and size.A silicon-based electrode array can be conveniently integrated with amplifying circuits1.Michigan electrode array,which is made from the heavily boron-doped silicon substrate,is a deputy of thin-film electrode2.As the number requirement of electrodes on one neural probe raising,fabricating high density and multichannel probe integrated circuits utilizing standard complementary metal-oxide-semiconductor (CMOS)process is becoming an economy and feasible method.

    At the same time,optogenetics is another important tool to adjust or control neural circuits by optical stimulation or inhibition3-5.Neural probes are often used to monitor the reaction of neurons during light stimulation.For ease of use,a variety of silicon-based optical electrodes are developed1,6,7.Light commonly used in optogenetics is lying in the visible range (400-760 nm).The band is right in the absorption band of silicon.If light-generating potential occurs in the silicon substrate,it will affect the electrodes on the silicon by capacitive coupling.Many studies use heavily doped silicon as the support substrate of the electrode to avoid noise from light2,8,9.The minority carrier lifetime of a silicon substrate with a doping concentration of 1019cm-3is in the order of 10 ns10.The drift of photo-generated carriers is nearly impossible in the heavily doped silicon.From the equivalent circuit,it means that the photodiode does not exist.Thus,light sensitivity is not a problem for heavily doped silicon-based electrode9.

    To avoid light sensitivity,heavy doping the whole substrate is a commonly used method11,but such highly doped silicon is not suitable for integrating circuit processing.Therefore,the electrode and the circuit must be fabricated separately on the heavily doped silicon substrate and lightly doped silicon substrate12.If the electrode can be integrated on a lightly-doped silicon substrate with an amplifier circuit,the volume of the electrode can be further minimized.However,light sensitivity will produce extra noise on the lightly-doped silicon substrate.

    In this paper,using a lightly doped silicon substrate,a method compatible with standard CMOS is proposed to eliminate the electrode noise caused by light through metalizing and grounding the light-doped silicon substrate.

    2 Methods

    2.1 Equivalent circuit model

    The thin-film silicon electrode used in this paper is fabricated on light-doped silicon film13(n-type with a doping concentration of 1015cm-3).Commonly,silicon based-electrode is composed of four layers.From down to up,they are silicon substrate,lower dielectrics layer,metal wire layer and upper dielectrics layer,as shown in Fig.1a.The silicon substrate mainly provides mechanical support for the electrodes.The lower dielectrics layer electrically insulates the silicon substrate from the metal layer.Because the carrier life in lightly doped silicon material is long enough,photo-generated nonequilibrium carriers located the space charge region T1will generate directional movement when the lightly doped siliconelectrode (LD Si-electrode)is illuminated10.If the carrier life is long enough,a considerable photovoltaic voltage will be built up.The fluctuating voltage will couple into the electrode through the lower dielectric layer,forming a voltage noise eventually.

    The equivalent circuit of LD Si-electrode is shown in Fig.1b.Reis the charge transfer resistance,and Ceis the double-layer capacitance14.D0 is an ideal photodiode.C0 is the capacitance which consists of the silicon substrate and the metal layer on two sides of the lower dielectrics.R0is a drain resistance corresponding to the internal resistance of the photodiode.When the electrode is placed in the dark,there is no potential difference across the capacitor C0.The circuit device in the dashed box can be ignored.At this time,the equivalent circuit can be simplified as a double-layer capacitance parallel with a charge transfer resistance,which is an ideal equivalent circuit of the electrodesolution interface.Once the electrode is irradiated,the directional flow of photo-generated carriers in the silicon substrate will charge C0immediately.It,in turn,changes the voltage of Ce and causes a voltage raising or decreasing,which depends on the polarity of the photodiode.When the light is turned off,the capacitor C0and Cewill discharge through the circuit by R0and Re.The voltage of the electrode will recover.

    Fig.1 (a)Structural schematic diagram of the LD Si-electrode.Space charge region T1 forms for cause of Si-SiO2 interface state as shown in the inset; (b)light-induced noise equivalent circuit of the LD Si-electrode,Re and Ce are the electrode-solution interface resistance and double-layer capacitance,D0 is an ideal photodiode,C0 is the capacitance (lumped parameter)between the silicon substrate and the electrodes as well as capacitance in the substrate,R0 is drain resistance; (c)structural schematic diagram of the SG Si-electrode; (d)the SG Si-electrode test circuit model,R1 is the grounded resistance formed between the substrate and ground,very small,approximately a wire resistance ideally.

    2.2 Method for decrease light noise

    In order to solve this problem,an improved structure is proposed,as is shown in Fig.1c.Underneath the lower dielectrics,the low-doped substrate is ohmic metallization and ground-connection.Grounding will eliminate the accumulation of photo-generated carriers.The new equivalent circuit is shown in Fig.1d.R0',D0',and C0' represent the same circuit but with a different value from that of the LD Si-electrode.By grounding the silicon substrate,both ends of the capacitor C0' and the photodiode D0' are short-circuited.This method enables photogenerated carrier recombination.The improved electrode is named as Substrate Grounded silicon electrode (SG Sielectrode).

    3 Validation

    3.1 Fabrication

    In order to verify the elimination methods,the SG Sielectrodes is fabricated to decrease the noise caused by light,as is shown in Fig.2a.The fabricating process of SG-electrode is identical with that of LD Si-electrode except for substrate processing15.Compared to LD Si-electrode,there are three additional steps.First,the outmost surface (about 300 nm)of the silicon substrate is heavily N+doped to form the ohmic contact layer.Second,Cr/Au/Cr (12 nm/150 nm/12 nm)is deposited for grounding.Since then,the electrode fabrication process is as same as that of the LD Si-electrode.The last process added is exposing the ground pad by etching the upper and lower dielectric layer,as is shown in Fig.2b.

    3.2 Testing

    In order to study the interference of light illuminating on silicon-based microelectrodes,a simulation test is set up,as shown in Fig.2c.A commercial Ag/AgCl electrode is used as a reference electrode.Both silicon-based electrodes (after being wire-bonded on a customized printed circuit board)and the reference electrode are immersed in 0.1 mol·L-1phosphate buffer saline (PBS)solution (36 °C,pH=7.3)and connect to the corresponding port of a multi-channel recording system.(Blackrock,128-channel multi-channel Neural Signal Processing System,AC coupling,Bandwidth 0.3-7.5 kHz,the sampling frequency is set to 30 k·s-1.)

    Blue (460 nm)LED and yellow (620 nm)LED are used as light sources (PlexBright,a commercial optogenetics apparatus provided by Plexon company).The output of the LED is modulated into a square wave.The width,repetition frequency,as well as intensity of the pulse,can be adjusted.A multi-mode fiber with a diameter of 200 μm is used to guide light to the electrode.The fiber end is set 1 mm away from the surface of the silicon electrode.The optical power density of the irradiation on the silicon electrode can be adjusted from 0.1 to 2 mW·mm-2.0.1 mW·mm-2is sufficient to activate ChR2-expressing neurons in vivo16.The test system is in an electromagnetic shield to minimize the interference from the LED driver or other electronic equipment.

    Fig.2 (a)Image of the SG Si-electrode from Olympus OLS4100; (b)scanning electron microscope (SEM)image of the SG Si-electrode;(c)simulating testing setup of light sensitivity in 0.1 mol·L-1 phosphate buffered saline (PBS,pH 7.3).

    Fig.3 (a)Comparison of the optical noise of the LD Si-electrode and the SG Si-electrode under different light intensities;(b)multi-sample (N=45,each sample noise-level is the average of 10 s)statistical average noise-level of the SG Si-electrode and the LD Si-electrode under different optical power densities.

    When the LD Si-electrode is placed in a dark environment,the noise voltage (peak-to-peak)is around 30 μV,as shown in Fig.3.This noise mainly consists of two components:thermal noise,Vt,from the electrode,and the bottom noise,Vb,from the amplifier.For electrodes with the typical impedance of 1 MΩ @1 kHz,the value of Vt is about 14 μV,and Vb is 14 μV bandwidth 0.3-7.5 kHz17.In order to determine the photosensitive portion of the probe,electrodes having the same dielectric and metal layer on the glass substrate have been fabricated and tested.The results show that either under the illumination or in the dark,the bottom noise is around 30 μV.The noise caused by light must come from the silicon substrate.

    4 Results and discussion

    The proposed electrode is tested in the same environment as that of LD Si-electrode.LD Si-electrodes with the same electrode area (20 μm in diameter)and similar impedance (0.5-1 MΩ @ 1 kHz)are tested simultaneously as control groups.The test results are shown in Fig.3a.Two groups of electrodes perform the same noise level in a dark environment.When the LD Si-electrode is illuminated by the blue light,with a repetition frequency of 20 Hz and a pulse width of 10 ms,a large noise occurs as soon as the light shines.As shown in Fig.3b,light pulse illumination will cause ten millivolts level noise on the LD Si-electrode.When the light is turned off,the high noise disappears,and the amplifier output regains its original noise amplitude.Compared with LD Si-electrode,the SG Si-electrode has a significant reduction in noise when irradiated with light pulses.

    Taking peak-to-peak noise level for contrast,when the irradiated power density is 0.1 mW·mm-2,the noise of the LD Si-electrode is around 10 mV,whereas the value of the SG Sielectrode has a magnitude of only 38 μV.As the light power increase,the noise value of both electrodes will increase at a low power density range.When the light power density is higher than 0.5 mW·mm-2,the noise level of the LD Si-electrode will tend to be saturation and stay around 12-13 mV.After this point,even if the light power is increased,the noise-level maintains in this value.It means that the light-induced potential reaches the maximum open-circuit voltage of the photodiode.Whereas for the SG Si-electrode,the noise value keeps increasing until light power density increases to 1 mW·mm-2.This phenomenon proves:First,there is still a photo-voltage effect on the proposed device.Second,taking the distribution resister inside the silicon into consideration,grounding is not ideal.Therefore,the value of R1is not zero.So the light-induced carriers will accumulate and establish potential on C0'.The potential will remain at a value when charging from the photodiode D0' reach balance with discharging by R1.When the light-induced current from D0'increase,the potential across R1 increases too to form a new balance.However,the noise of the novel electrode is only 110 μV,even when the optical power irradiated on the silicon electrode increases to 1 mW·mm-2.Multi-sample (N=45,each sample noise level is the average of 10 s)statistical average noise level of the SG Si-electrode and the LD Si-electrode under different optical power densities are shown in Fig.3b.Compared with the noise-level of LD Si-electrode (12.63 ± 0.14 mV),that of SG Si-electrode (110 ± 40 μV)decreases by 99.13%.

    Fig.4 shows the noise spectra of two kinds of electrodes irradiated by light pulse with a power density of 1 mW·mm-2.The main energy of the noise is concentrated in the lowfrequency range,especially at 20 Hz and its harmonic waves.It means high-frequency neural signals,such as a spike or action potential,are influenced less than that of low frequency.After high-pass filtered (> 500 Hz),the noise amplitude of both electrodes decreases,as shown in Fig.5.For example,the noise level of the SG silicon electrode is decreased to 40 μV at the highest irradiating power density.It is nearly the noise value in the dark.It means with this method,the light sensitivity of the light-doped silicon-based electrode is reduced dramatically,and light stimulating spike can be recorded without interference.

    Fig.4 Noise spectra analysis of two types of electrodes in frequency band 0-1500 Hz,light was applied a square pulse (10 ms)train with the power density of 1 mW·mm-2 at 20 Hz.

    We also compared the noise of SG Si-electrode with that of LD Si-electrode under the irradiation of yellow light (620 nm)with the same pulse mode.Studies prove that yellow light will cause higher noise on either LD or SG Si-electrode under the same optical power density.The average noise level in yellow light is 13.06 mV for LD Si-electrode and 0.13 mV for SG Sielectrode.The corresponding values in blue light are 12.63 mV and 0.11 mV.Compared with blue light,yellow light travels deeper into the silicon,we guess,there are more light-induced carriers contribute to the voltage.Even so,the noise level after high pass filter (> 500 Hz)is 0.045 mV for the SG Si-electrode.The light-induced noise on the proposed device has little effect on spike recording.

    Fig.5 (a)Noise performance of the LD Si-electrode at 0.3-7500 Hz and after 500-7500 Hz filtering;(b)the SGSi-electrode noise at 0.3-7500 Hz and after 500-7500 Hz filtering.

    Compared with the silicon microelectrodes fabricated with heavily doped silicon substrates,the carriers in lightly doped silicon have a longer lifetime.It is difficult to eliminate light interference completely.However,the proposed method can eliminate the overwhelming majority of (> 99%)light noise.On most occasions,the waveguide or fiber is set parallel with the surface of the silicon film electrode.From the experiment,we find that the actual power incident parallel with the silicon substrate is only about 1/6 of the power incident at the simulation set up.1 mW·mm-2irradiation is corresponding to 0.17 mW·mm-2when a fiber is parallel placed on the surface of the silicon-based electrode.In this light power density,the optical noise (including the noise baseline in the dark)generated by the SG Si-electrode is about 40 μV,since the noise mainly concentrates on the frequency under 500 Hz.Spike signals can be recorded nearly without interference.

    Metalizing and grounding the lightly doped silicon substrate will effectively decrease the noise,but it needs a high pass filter(> 500 Hz)to get the clean spike.That's not suitable for extracting the local field potential (LFP),because the square wave used in optogenetics contains rich low-frequency harmonic waves and the frequency of these harmonic waves is exactly included in the LFP frequency range.Recording the LFP with sufficient signal-to-noise ratio under light stimulation is still to be studied.

    5 Conclusions

    A silicon-based photoelectrode is an important tool in the study of optogenetics.An electrode made from lightly doped silicon has more advantages in electrodes-circuit integration and better mechanical characteristics.However,light caused potential fluctuation in the lightly doped silicon substrate severely disturbs the electrode's signal.To decrease the light sensitivity of the LD Si-electrode,the silicon substrate is ohmic metalized and grounded.The novel electrode in this method is fabricated and tested.The results show that the proposed method can reduce the noise generated by photo-excitation by more than 99%.With the help of a high pass digital filter (> 500 Hz),the optical noise of the novel electrode can be controlled below 45 μV under a light intensity of 1 mW·mm-2.This method allows the photo-stimulation and the spike recording to be performed simultaneously.Nevertheless,the lightly doped silicon substrate and the fabricating process is compatible with the process of standard CMOS technology.With the help of this method,high density and high throughput microelectrode array without light sensitivity can be developed by standard CMOS technology.

    两性午夜刺激爽爽歪歪视频在线观看 | 涩涩av久久男人的天堂| 午夜福利,免费看| 成在线人永久免费视频| 99久久国产精品久久久| 青春草亚洲视频在线观看| 不卡av一区二区三区| 欧美亚洲日本最大视频资源| 国产免费av片在线观看野外av| 免费观看人在逋| 波多野结衣一区麻豆| 高清av免费在线| 日日摸夜夜添夜夜添小说| 国产视频一区二区在线看| 精品一区二区三卡| 免费观看av网站的网址| 亚洲国产av影院在线观看| 久久久久久久精品精品| 飞空精品影院首页| 亚洲精品国产精品久久久不卡| 丝袜人妻中文字幕| 久久久国产一区二区| 久久国产亚洲av麻豆专区| 亚洲五月色婷婷综合| 久久国产精品男人的天堂亚洲| videosex国产| 精品国产乱码久久久久久小说| 亚洲av电影在线观看一区二区三区| 老司机亚洲免费影院| 人人妻,人人澡人人爽秒播| 国产欧美日韩精品亚洲av| 亚洲精品日韩在线中文字幕| 国产片内射在线| 老司机影院成人| 国产亚洲精品第一综合不卡| 久久中文字幕一级| 18禁裸乳无遮挡动漫免费视频| 亚洲中文日韩欧美视频| 亚洲精品国产区一区二| 欧美激情 高清一区二区三区| 亚洲av欧美aⅴ国产| 可以免费在线观看a视频的电影网站| 美女福利国产在线| 日本五十路高清| 国产一区二区激情短视频 | 亚洲 国产 在线| 亚洲久久久国产精品| 欧美亚洲 丝袜 人妻 在线| 亚洲国产中文字幕在线视频| 女性被躁到高潮视频| 人人妻,人人澡人人爽秒播| www.av在线官网国产| 精品免费久久久久久久清纯 | 亚洲精品国产区一区二| 久久精品国产a三级三级三级| 老熟女久久久| 男人添女人高潮全过程视频| 99re6热这里在线精品视频| 国产精品二区激情视频| 国产男女超爽视频在线观看| 欧美精品人与动牲交sv欧美| 如日韩欧美国产精品一区二区三区| 欧美日韩视频精品一区| 亚洲av男天堂| 久久久久精品国产欧美久久久 | 免费在线观看影片大全网站| 日本五十路高清| 精品一区二区三卡| www.av在线官网国产| 99国产综合亚洲精品| 亚洲一码二码三码区别大吗| 亚洲国产欧美在线一区| 97人妻天天添夜夜摸| 久久狼人影院| 视频在线观看一区二区三区| 91老司机精品| 国产欧美日韩一区二区三区在线| 亚洲九九香蕉| av又黄又爽大尺度在线免费看| 亚洲自偷自拍图片 自拍| 国产亚洲精品第一综合不卡| 久久久久久久久久久久大奶| 91大片在线观看| 亚洲精品成人av观看孕妇| 久久精品国产亚洲av香蕉五月 | 精品久久久久久久毛片微露脸 | 亚洲精品国产区一区二| 女性生殖器流出的白浆| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看 | 搡老乐熟女国产| 亚洲精品第二区| 亚洲第一青青草原| 视频区图区小说| 真人做人爱边吃奶动态| 午夜影院在线不卡| 亚洲av国产av综合av卡| 日日摸夜夜添夜夜添小说| 男人舔女人的私密视频| 日本a在线网址| 精品欧美一区二区三区在线| 久热爱精品视频在线9| 久久毛片免费看一区二区三区| 免费看十八禁软件| av国产精品久久久久影院| 中文字幕制服av| 国产在线视频一区二区| 夜夜夜夜夜久久久久| 美国免费a级毛片| 天天躁狠狠躁夜夜躁狠狠躁| 久久天躁狠狠躁夜夜2o2o| 男女高潮啪啪啪动态图| 亚洲国产成人一精品久久久| 少妇裸体淫交视频免费看高清 | 亚洲专区国产一区二区| 99re6热这里在线精品视频| 18在线观看网站| 丰满人妻熟妇乱又伦精品不卡| 9热在线视频观看99| 免费少妇av软件| 亚洲一码二码三码区别大吗| 国产成人av激情在线播放| 不卡一级毛片| 最近中文字幕2019免费版| 少妇的丰满在线观看| www日本在线高清视频| 精品视频人人做人人爽| 欧美精品一区二区免费开放| 看免费av毛片| 在线观看一区二区三区激情| 十八禁人妻一区二区| 亚洲精品久久午夜乱码| 午夜影院在线不卡| 91国产中文字幕| 国产成人免费观看mmmm| 日韩免费高清中文字幕av| 91成人精品电影| 日本a在线网址| 久久精品久久久久久噜噜老黄| 多毛熟女@视频| 国产精品1区2区在线观看. | 免费一级毛片在线播放高清视频 | 91成年电影在线观看| 性少妇av在线| 水蜜桃什么品种好| 欧美激情极品国产一区二区三区| 亚洲国产av新网站| 亚洲五月色婷婷综合| 国产在线视频一区二区| av网站在线播放免费| 国产日韩欧美视频二区| 国产一区二区三区综合在线观看| 国产成人欧美在线观看 | 国产免费一区二区三区四区乱码| 亚洲国产看品久久| 最黄视频免费看| 91九色精品人成在线观看| 日韩视频在线欧美| 亚洲天堂av无毛| 精品卡一卡二卡四卡免费| 国产成人系列免费观看| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 亚洲成av片中文字幕在线观看| 国产极品粉嫩免费观看在线| 欧美性长视频在线观看| www.999成人在线观看| 亚洲欧美成人综合另类久久久| 夜夜骑夜夜射夜夜干| 精品一品国产午夜福利视频| 99热国产这里只有精品6| 免费在线观看视频国产中文字幕亚洲 | 国产国语露脸激情在线看| 日韩免费高清中文字幕av| 午夜免费观看性视频| 久久九九热精品免费| 91精品伊人久久大香线蕉| 国产成人系列免费观看| 别揉我奶头~嗯~啊~动态视频 | 久久免费观看电影| 精品卡一卡二卡四卡免费| 成年动漫av网址| 青草久久国产| 男人爽女人下面视频在线观看| 一本一本久久a久久精品综合妖精| 亚洲欧美成人综合另类久久久| 亚洲一区中文字幕在线| 一个人免费在线观看的高清视频 | 国产精品影院久久| 久久久久久久久久久久大奶| 精品高清国产在线一区| 国产免费av片在线观看野外av| 欧美人与性动交α欧美精品济南到| 色播在线永久视频| 亚洲,欧美精品.| 一区二区av电影网| 欧美成人午夜精品| 久久精品国产亚洲av高清一级| 国产精品一区二区免费欧美 | 国产成人啪精品午夜网站| 少妇粗大呻吟视频| 黄频高清免费视频| 亚洲 欧美一区二区三区| 日本91视频免费播放| 这个男人来自地球电影免费观看| 欧美人与性动交α欧美软件| 国产一区二区激情短视频 | 国产精品二区激情视频| 午夜久久久在线观看| 午夜视频精品福利| 51午夜福利影视在线观看| 91大片在线观看| 精品人妻一区二区三区麻豆| 成年人黄色毛片网站| 午夜福利影视在线免费观看| 99精品欧美一区二区三区四区| 18禁裸乳无遮挡动漫免费视频| 亚洲熟女毛片儿| 亚洲性夜色夜夜综合| 国产高清videossex| 亚洲全国av大片| 高清黄色对白视频在线免费看| 国产福利在线免费观看视频| 少妇猛男粗大的猛烈进出视频| 老熟妇仑乱视频hdxx| 男女床上黄色一级片免费看| 亚洲天堂av无毛| 青青草视频在线视频观看| 麻豆乱淫一区二区| 国产一区二区三区综合在线观看| 热99re8久久精品国产| 亚洲 欧美一区二区三区| 妹子高潮喷水视频| 黄色视频不卡| 久久久精品国产亚洲av高清涩受| 欧美乱码精品一区二区三区| 精品人妻1区二区| 人人妻人人澡人人爽人人夜夜| 欧美人与性动交α欧美精品济南到| 黄片播放在线免费| 三上悠亚av全集在线观看| 亚洲国产精品999| 汤姆久久久久久久影院中文字幕| 日本av手机在线免费观看| 婷婷色av中文字幕| 久久女婷五月综合色啪小说| 久久久久视频综合| 精品少妇内射三级| 精品国产一区二区三区四区第35| 午夜福利在线观看吧| 亚洲成人手机| 中文字幕人妻丝袜一区二区| 午夜激情久久久久久久| 欧美精品高潮呻吟av久久| 免费观看a级毛片全部| 两性午夜刺激爽爽歪歪视频在线观看 | 中文字幕色久视频| 丝瓜视频免费看黄片| 这个男人来自地球电影免费观看| 欧美日韩精品网址| 亚洲欧美一区二区三区黑人| 在线观看舔阴道视频| 美女高潮喷水抽搐中文字幕| 欧美另类一区| av在线app专区| 中文欧美无线码| 色婷婷久久久亚洲欧美| 免费观看人在逋| 国精品久久久久久国模美| 久久毛片免费看一区二区三区| 日韩大片免费观看网站| 欧美+亚洲+日韩+国产| 电影成人av| 亚洲欧美清纯卡通| 久久女婷五月综合色啪小说| 国产1区2区3区精品| 80岁老熟妇乱子伦牲交| 高清av免费在线| 午夜免费成人在线视频| 青草久久国产| 国产精品99久久99久久久不卡| 大陆偷拍与自拍| 50天的宝宝边吃奶边哭怎么回事| 国产欧美日韩一区二区三 | 亚洲 国产 在线| 国产黄频视频在线观看| 国产精品免费视频内射| 69av精品久久久久久 | av线在线观看网站| 三级毛片av免费| 一区二区三区激情视频| 亚洲精品自拍成人| 手机成人av网站| 国产精品自产拍在线观看55亚洲 | 老司机福利观看| 成年av动漫网址| 又大又爽又粗| 久久人人爽人人片av| 最近最新中文字幕大全免费视频| 超碰成人久久| 成年美女黄网站色视频大全免费| 人妻人人澡人人爽人人| 叶爱在线成人免费视频播放| 一区二区三区乱码不卡18| 女性生殖器流出的白浆| 日日爽夜夜爽网站| 老汉色av国产亚洲站长工具| 精品国产乱子伦一区二区三区 | 一级毛片女人18水好多| 亚洲av美国av| 久久久久久久久免费视频了| 高清视频免费观看一区二区| 91大片在线观看| 人妻 亚洲 视频| 婷婷丁香在线五月| 国产成人系列免费观看| 大码成人一级视频| 涩涩av久久男人的天堂| 十分钟在线观看高清视频www| 欧美日韩亚洲高清精品| 成人黄色视频免费在线看| 日韩中文字幕欧美一区二区| 亚洲五月婷婷丁香| 日韩一区二区三区影片| 91av网站免费观看| 99国产精品一区二区三区| 国产精品av久久久久免费| 看免费av毛片| www.av在线官网国产| 天堂8中文在线网| 91麻豆精品激情在线观看国产 | 精品少妇黑人巨大在线播放| 91老司机精品| 欧美激情 高清一区二区三区| www.熟女人妻精品国产| 国产免费av片在线观看野外av| 国产精品免费大片| av视频免费观看在线观看| 国产激情久久老熟女| 搡老岳熟女国产| 在线av久久热| 国产日韩欧美在线精品| 高清av免费在线| 欧美97在线视频| 久久久久国产一级毛片高清牌| 在线观看人妻少妇| 18禁裸乳无遮挡动漫免费视频| 国产精品影院久久| 十分钟在线观看高清视频www| 午夜免费成人在线视频| 成人国语在线视频| 国产真人三级小视频在线观看| 成年女人毛片免费观看观看9 | 亚洲专区字幕在线| 最近中文字幕2019免费版| 亚洲av片天天在线观看| 叶爱在线成人免费视频播放| 超碰成人久久| 欧美精品一区二区大全| 97人妻天天添夜夜摸| 伊人亚洲综合成人网| 亚洲一区中文字幕在线| 久久天躁狠狠躁夜夜2o2o| 国产精品99久久99久久久不卡| 啪啪无遮挡十八禁网站| 亚洲精品成人av观看孕妇| 麻豆av在线久日| 欧美精品亚洲一区二区| 男女边摸边吃奶| 欧美日韩精品网址| 十八禁人妻一区二区| 日韩一区二区三区影片| 亚洲熟女精品中文字幕| 好男人电影高清在线观看| 黄色片一级片一级黄色片| 纯流量卡能插随身wifi吗| av福利片在线| 精品人妻1区二区| 99久久精品国产亚洲精品| 精品人妻1区二区| 操美女的视频在线观看| 午夜影院在线不卡| 国产成人av激情在线播放| 亚洲久久久国产精品| 亚洲欧美日韩高清在线视频 | 如日韩欧美国产精品一区二区三区| 妹子高潮喷水视频| 日本一区二区免费在线视频| 99久久人妻综合| 极品人妻少妇av视频| av线在线观看网站| 狂野欧美激情性xxxx| 亚洲国产毛片av蜜桃av| 国产亚洲欧美精品永久| 国产一卡二卡三卡精品| 50天的宝宝边吃奶边哭怎么回事| 女人久久www免费人成看片| 国产免费视频播放在线视频| 国产男女超爽视频在线观看| 国产精品熟女久久久久浪| 99国产精品一区二区蜜桃av | 中文字幕精品免费在线观看视频| 男女下面插进去视频免费观看| 欧美激情久久久久久爽电影 | 黑人猛操日本美女一级片| 国产精品国产av在线观看| 国产人伦9x9x在线观看| 欧美日本中文国产一区发布| 国产免费一区二区三区四区乱码| 日本a在线网址| 9热在线视频观看99| 1024视频免费在线观看| 国产亚洲一区二区精品| 中文字幕人妻熟女乱码| 亚洲全国av大片| 操美女的视频在线观看| 女人高潮潮喷娇喘18禁视频| 各种免费的搞黄视频| 天天影视国产精品| svipshipincom国产片| 宅男免费午夜| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 国产精品久久久久久精品电影小说| 亚洲激情五月婷婷啪啪| 蜜桃国产av成人99| 菩萨蛮人人尽说江南好唐韦庄| 无遮挡黄片免费观看| 欧美日韩亚洲国产一区二区在线观看 | 国产精品一区二区在线不卡| 亚洲国产日韩一区二区| 午夜91福利影院| 狠狠婷婷综合久久久久久88av| 欧美国产精品va在线观看不卡| 老鸭窝网址在线观看| 又紧又爽又黄一区二区| 午夜精品久久久久久毛片777| 91字幕亚洲| 成人国语在线视频| 在线永久观看黄色视频| 一区二区三区四区激情视频| 黑丝袜美女国产一区| 欧美精品啪啪一区二区三区 | 久久精品成人免费网站| 国产老妇伦熟女老妇高清| av超薄肉色丝袜交足视频| 亚洲熟女毛片儿| 在线观看免费午夜福利视频| 欧美av亚洲av综合av国产av| 黑人猛操日本美女一级片| 高清视频免费观看一区二区| 亚洲国产欧美网| 日韩欧美免费精品| 国产精品免费视频内射| 别揉我奶头~嗯~啊~动态视频 | 国产精品免费大片| 在线精品无人区一区二区三| 午夜91福利影院| 亚洲七黄色美女视频| 久久久久国产精品人妻一区二区| 波多野结衣一区麻豆| 99国产极品粉嫩在线观看| 亚洲第一欧美日韩一区二区三区 | 亚洲国产日韩一区二区| 无限看片的www在线观看| 亚洲国产欧美一区二区综合| 亚洲精品国产区一区二| 久久久久久亚洲精品国产蜜桃av| 另类亚洲欧美激情| av国产精品久久久久影院| 丝袜美腿诱惑在线| 亚洲精品成人av观看孕妇| av福利片在线| 免费少妇av软件| 成人影院久久| 国产精品.久久久| 欧美性长视频在线观看| 黄片大片在线免费观看| 精品亚洲乱码少妇综合久久| 欧美中文综合在线视频| 久久久水蜜桃国产精品网| 亚洲欧美一区二区三区久久| 中亚洲国语对白在线视频| 飞空精品影院首页| 可以免费在线观看a视频的电影网站| 久久毛片免费看一区二区三区| av在线播放精品| 99国产综合亚洲精品| 一二三四在线观看免费中文在| 香蕉国产在线看| av天堂在线播放| 午夜成年电影在线免费观看| 91精品三级在线观看| 美国免费a级毛片| 亚洲精品自拍成人| 嫩草影视91久久| 亚洲精品国产一区二区精华液| 国产精品二区激情视频| 无限看片的www在线观看| 久久久久国内视频| 人人妻,人人澡人人爽秒播| 亚洲欧洲日产国产| av有码第一页| 欧美激情久久久久久爽电影 | 日本av手机在线免费观看| 国内毛片毛片毛片毛片毛片| 一级黄色大片毛片| 精品一区二区三区四区五区乱码| 久久亚洲精品不卡| 一区二区三区四区激情视频| 亚洲一码二码三码区别大吗| 悠悠久久av| 亚洲第一欧美日韩一区二区三区 | 最近中文字幕2019免费版| 亚洲专区国产一区二区| 日本wwww免费看| 日韩精品免费视频一区二区三区| 脱女人内裤的视频| 国产成人精品久久二区二区91| 动漫黄色视频在线观看| 一本色道久久久久久精品综合| 国产一卡二卡三卡精品| 咕卡用的链子| 在线观看免费日韩欧美大片| 国产亚洲av片在线观看秒播厂| 国产精品一区二区在线不卡| 美女脱内裤让男人舔精品视频| 少妇 在线观看| 亚洲国产av影院在线观看| 考比视频在线观看| 丝袜美足系列| 麻豆av在线久日| 亚洲av成人不卡在线观看播放网 | 一二三四社区在线视频社区8| 一区二区三区乱码不卡18| 超色免费av| 亚洲伊人色综图| av一本久久久久| 免费高清在线观看日韩| 国产精品国产三级国产专区5o| 少妇人妻久久综合中文| 亚洲成人国产一区在线观看| 国产在视频线精品| 国产一区二区三区av在线| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美日韩高清在线视频 | 久久久久国产一级毛片高清牌| 中文字幕人妻丝袜一区二区| 不卡av一区二区三区| 麻豆国产av国片精品| 亚洲国产看品久久| 在线观看免费高清a一片| 最近最新免费中文字幕在线| 人人妻,人人澡人人爽秒播| av天堂久久9| 黄色视频,在线免费观看| 建设人人有责人人尽责人人享有的| 99久久精品国产亚洲精品| 黄片小视频在线播放| 一区二区三区乱码不卡18| 久久精品亚洲av国产电影网| 亚洲第一av免费看| 脱女人内裤的视频| 电影成人av| 亚洲精品一区蜜桃| 久久热在线av| 欧美xxⅹ黑人| 999久久久国产精品视频| 丰满人妻熟妇乱又伦精品不卡| 天天添夜夜摸| 啦啦啦啦在线视频资源| 老司机福利观看| 女性生殖器流出的白浆| 亚洲精品第二区| 在线av久久热| 亚洲精品美女久久av网站| 午夜激情av网站| 操美女的视频在线观看| 亚洲成av片中文字幕在线观看| 岛国在线观看网站| 国产成人一区二区三区免费视频网站| 欧美变态另类bdsm刘玥| 王馨瑶露胸无遮挡在线观看| 18在线观看网站| 亚洲欧美色中文字幕在线| 日日爽夜夜爽网站| 国产黄色免费在线视频| 国产一区有黄有色的免费视频| 日日夜夜操网爽| 1024视频免费在线观看| 在线观看人妻少妇| 亚洲色图综合在线观看| 日韩人妻精品一区2区三区| 十八禁高潮呻吟视频| 亚洲国产精品999| 久久精品亚洲熟妇少妇任你| 18禁黄网站禁片午夜丰满| 日韩欧美一区二区三区在线观看 | 极品人妻少妇av视频| 美女高潮喷水抽搐中文字幕| 美女国产高潮福利片在线看| 国产一区二区在线观看av| 国产精品二区激情视频| 欧美日韩精品网址| 亚洲免费av在线视频| 蜜桃在线观看..| 中文字幕精品免费在线观看视频| 欧美日韩福利视频一区二区| 91麻豆精品激情在线观看国产 | 国产精品成人在线| 一个人免费看片子| 国产1区2区3区精品| 超色免费av| 成年动漫av网址| 搡老熟女国产l中国老女人|