• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Health Phys.Abstracts,Volume 119,Number 2

    2020-12-20 21:07:20
    輻射防護 2020年5期

    EstimationofExternalContaminationandExposureRatesDuetoFissionProductRelease

    S.A.Dewji1,2, K.Bales2,3, E.Asano1,2,4, K.Veinot5, K.Eckerman6, S.Hart2, L.Finklea7, A.Ansari7

    (1.Department of Nuclear Engineering, Texas A & M University, College Station, TX;2.Oak Ridge National Laboratory, Oak Ridge, TN;3.Department of Radiation Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX;4.Nuclear Engineering Department, University of Tennessee, Knoxville, Knoxville, TN;5.Y-12 National Security Complex, Oak Ridge, TN;6.Easterly Scientific, Knoxville, TN;7.Centers for Disease Control and Prevention, Atlanta, GA)

    Abstract:In the event of a radiological incident, the release of fission products into the surrounding environment and the ensuing external contamination present a challenge for triage assessment by emergency response personnel.Reference exposure rate and skin dose rate calibration data for emergency response personnel are currently lacking for cases where receptors are externally contaminated with fission products.Simulations were conducted to compute reference exposure rate coefficients and skin dose rate coefficients from photon-emitting fission products of radiological concern.To accomplish this task, simplified mathematical skin phantoms were created using surface area and height specifications from International Commission on Radiological Protection Publication 89.Simulations were conducted using Monte Carlo radiation transport code using newborn, 1-y-old, 5-y-old, 10-y-old, 15-y-old, and adult phantoms for 22 photon-emitting radionuclides.Exposure rate coefficient data were employed in a case study simulating the radionuclide inventory for a 17 × 17 Westinghouse pressurized water reactor, following three burn-up cycles at 14,600 MWd per metric ton of uranium.The decay times following the final cycle represent the relative activity fractions over a period of 0.5-30 d.The resulting data can be used as calibration standards for triage efforts in emergency response protocols.

    Keywords: emergency planning; exposure, radiation; fission products; skin dose

    Health Phys.119(2):163-175; 2020

    OrganDosesfromChestRadiographsinTuberculosisPatientsinCanadaandTheirUncertaintiesinPeriodsfrom1930to1969

    David C.Kocher1, A.Iulian Apostoaei1, Brian A.Thomas1, David Borrego2, Choonsik Lee2, Lydia B.Zablotska3

    (1.Oak Ridge Center for Risk Analysis, Inc., Oak Ridge, TN;2.Radiation Epidemiology Branch, National Cancer Institute, Bethesda, MD;3.Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA)

    Abstract:This paper describes a study to estimate absorbed doses to various organs from film-based chest radiographs and their uncertainties in the periods 1930 to 1948, 1949 to 1955, and 1956 to 1969.Estimated organ doses will be used in new analyses of risks of cancer and other diseases in tuberculosis patients in Canada who had chest fluoroscopic and radiographic examinations in those periods.In this paper, doses to lungs, female breast, active bone marrow, and heart from a single chest radiograph in adults and children of ages 1, 5, 10, and 15 y in the Canadian cohort and their uncertainties are estimated using(1)data on the tube voltage(kV), total filtration(mm Al), tube-current exposure-time product(mA s), and tube output(mR s〗-1)in each period;(2)assumptions about patient orientation, distance from the source to the skin of a patient, and film size; and(3)new calculations of sex-and age-specific organ dose conversion coefficients(organ doses per dose in air at skin entrance).Variations in estimated doses to each organ across the three periods are less than 20% in adults and up to about 30% at younger ages.Uncertainties in estimated organ doses are about a factor of 2 to 3 in adults and up to a factor of 4 at younger ages and are due mainly to uncertainties in the tube voltage and tube-current exposure-time product.

    Keywords: dose, organ; radiation, medical; X rays; X-ray machines

    Health Phys.119(2):176-191; 2020

    Neuroman:VoxelPhantomsfromSurfaceModelsof300HeadStructuresIncluding12PairsofCranialNerves

    Jin Seo Park1

    (1.Department of Anatomy, Dongguk University School of Medicine, Republic of Korea)

    Abstract:For a precise simulation of electromagnetic radiation effects, voxel phantoms require detailed structures to approximate humans.The phantoms currently used still do not have sophisticated structures.This paper presents voxel and surface models of 300 head structures with cranial nerves and reports on a technique for voxel reconstruction of the cranial nerves having very thin and small structures.In real-color sectioned images of the head(voxel size: 0.1 mm), 300 structures were segmented using Photoshop.A surface reconstruction was performed automatically on Mimics.Voxel conversion was run on Voxel Studio.The abnormal shapes of the voxel models were found and classified into three types: thin cord, thin layers, and thin parts in the structures.The abnormal voxel models were amended using extended, filled, and manual voxelization methods devised for this study.Surface models in STL format and as PDF files of the 300 head structures were produced.The STL format has good scalability, so it can be used in most three-dimensional surface model software.The PDF file is very user friendly for students and researchers who want to learn the head anatomy.Voxel models of 300 head structures were produced(TXT format), and their voxel quantity and weight were measured.A voxel model is difficult to handle, and the surface model cannot use the radiation simulation.Consequently, the best method for making precise phantoms is one in which the flaws of the voxel and surface models complement each other, as in the present study.

    Keywords: electromagnetic fields; human organs; medical imaging; phantom

    Health Phys.119(2):192-205; 2020

    Revisiting35and94GHzMillimeterWaveExposuretotheNon-HumanPrimateEye

    James E.Parker1, Charles W.Beason1, Stephen P.Sturgeon2, William B.Voorhees2, Samuel S.Johnson2, Kaitlin S.Nelson2, Leland R.Johnson2, Jeffrey N.Whitmore2

    (1.General Dynamics Information Technology, JBSA Fort Sam Houston, TX 78234;2.Air Force Research Laboratory, 711th Human Performance Wing,Airman Systems Directorate, Bioeffects Division, Radio Frequency Bioeffects Branch, JBSA Fort Sam Houston, TX 78234.)

    Abstract:A previous study reported thermal effects resulting from millimeter wave exposures at 35 and 94 GHz on non-human primates, specifically rhesus monkeys’(Macacamulatta)corneas, but the data exhibited large variations in the observed temperatures and uncertainties in the millimeter wave dosimetry.By incorporating improvements in models and dosimetry, a non-human primate experiment was conducted involving corneal exposures that agreed well with a three-layer, one-dimensional, thermodynamic model to predict the expected surface temperature rise.The new data indicated that the originally reported safety margins for eye exposures were underestimated by 41 ± 20% over the power densities explored.As a result, the expected minimal visible lesion thresholds should be raised to 10.6 ± 1.5 and 7.1 ± 1.0 J cm-2at 35 and 94 GHz, respectively, provided that the power density is less than 6 W cm-2for subjects that are unable to blink.If the blink reflex was active, a power density threshold of 20 W cm-2could be used to protect the eye, although the eyelid could be burned if the exposure was long enough.

    Keywords: health effects; microwaves; modeling, dose assessment; radiation, non-ionizing

    Health Phys.119(2):206-215; 2020

    ARadonBackground-subtractionAlgorithmforElectronicPersonalDosimeters

    R.Fabian, J.Bell, A.Brandl1

    (1.Colorado State University, Fort Collins, CO)

    Abstract:Many first responders are outfitted with electronic personal dosimeters to recognize and be alerted to radiological hazards during their response operations.These dosimeters provide invaluable measurement data for force protection, allowing the first responder to assess a response situation and take protective measures for themselves and other individuals involved based on instrument readings of dose rate or cumulative dose.However, capabilities of common electronic personal dosimeters to identify and distinguish various contributions to the instrument reading, in particular from natural radiological sources, are rather limited.An algorithm has been developed for two-channel electronic personal dosimeters that quantifies the signal contribution from radon progeny and allows for background subtraction from radon and radon progeny in the instrument reading.This algorithm will be particularly useful in operational scenarios where first responders may be subject to rapidly changing levels of natural background radiation, which could mimic the presence of anthropogenic sources of ionizing radiation.

    Keywords: algorithm; radiation, background; radioactivity, natural; radon progeny

    Health Phys.119(2):216-221; 2020

    UncertaintiesinRadiationDosesforaCase-controlStudyofThyroidCanceramongPersonsExposedinChildhoodto131IfromChernobylFallout

    Vladimir Drozdovitch1, Ausrele Kesminiene2, Monika Moissonnier2, Ilya Veyalkin3, Evgenia Ostroumova2

    (1.Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, DHHS, 9609 Medical Center Drive, Bethesda, MD 20892;2.International Agency for Research on Cancer, Lyon, France; 3.Republican Research Center for Radiation Medicine and Human Ecology, Gomel, Belarus)

    Abstract:Uncertainties in thyroid doses due to131I intake were evaluated for 2,239 subjects in a case-control study of thyroid cancer following exposure to Chernobyl fallout during childhood and adolescence carried out in contaminated regions of Belarus and Russia.Using new methodological developments that became available recently, a Monte Carlo simulation procedure was applied to calculate 1,000 alternative vectors of thyroid doses due to131I intake for the study population of 2,239 subjects accounting for sources of shared and unshared errors.An overall arithmetic mean of the stochastic thyroid doses in the study was estimated to be 0.43 Gy and median dose of 0.16 Gy.The arithmetic mean and median of deterministic doses estimated previously for 1,615 of 2,239 study subjects were 0.48 Gy and 0.20 Gy, respectively.The geometric standard deviation of individual stochastic doses varied from 1.59 to 3.61 with an arithmetic mean of 1.94 and a geometric mean of 1.89 over all subjects of the study.These multiple sets of thyroid doses were used to update radiation-related thyroid cancer risks in the study population exposed to131I after the Chernobyl accident.

    Keywords:131I; dosimetry; Chernobyl; thyroid

    Health Phys.119(2):222-235; 2020

    IEEECommitteeonManandRadiation—COMARTechnicalInformationStatement:HealthandSafetyIssuesConcerningExposureoftheGeneralPublictoElectromagneticEnergyfrom5GWirelessCommunicationsNetworks

    J.T.Bushberg, C.K.Chou, K.R.Foster, R.Kavet, D.P.Maxson, R.A.Tell, M.C.Ziskin1

    (1.Committee on Man and Radiation(COMAR), IEEE Engineering in Medicine and Biology Society)

    Abstract:This COMAR Technical Information Statement(TIS)addresses health and safety issues concerning exposure of the general public to radiofrequency(RF)fields from 5G wireless communications networks, the expansion of which started on a large scale in 2018 to 2019.5G technology can transmit much greater amounts of data at much higher speeds for a vastly expanded array of applications compared with preceding 2-4G systems; this is due, in part, to using the greater bandwidth available at much higher frequencies than those used by most existing networks.Although the 5G engineering standard may be deployed for operating networks currently using frequencies extending from 100 s to 1,000 s of MHz, it can also operate in the 10s of GHz where the wavelengths are 10 mm or less, the so-called millimeter wave(MMW)band.Until now, such fields were found in a limited number of applications(e.g., airport scanners, automotive collision avoidance systems, perimeter surveillance radar), but the rapid expansion of 5G will produce a more ubiquitous presence of MMW in the environment.While some 5G signals will originate from small antennas placed on existing base stations, most will be deployed with some key differences relative to typical transmissions from 2-4G base stations.Because MMW do not penetrate foliage and building materials as well as signals at lower frequencies, the networks will require “densification,” the installation of many lower power transmitters(often called “small cells” located mainly on buildings and utility poles)to provide for effective indoor coverage.Also, “beamforming” antennas on some 5G systems will transmit one or more signals directed to individual users as they move about, thus limiting exposures to non-users.In this paper, COMAR notes the following perspectives to address concerns expressed about possible health effects of RF field exposure from 5G technology.First, unlike lower frequency fields, MMW do not penetrate beyond the outer skin layers and thus do not expose inner tissues to MMW.Second, current research indicates that overall levels of exposure to RF are unlikely to be significantly altered by 5G, and exposure will continue to originate mostly from the “uplink” signals from one’s own device(as they do now).Third, exposure levels in publicly accessible spaces will remain well below exposure limits established by international guideline and standard setting organizations, including ICNIRP and IEEE.Finally, so long as exposures remain below established guidelines, the research results to date do not support a determination that adverse health effects are associated with RF exposures, including those from 5G systems.While it is acknowledged that the scientific literature on MMW biological effect research is more limited than that for lower frequencies, we also note that it is of mixed quality and stress that future research should use appropriate precautions to enhance validity.The authorship of this paper includes a physician/biologist, epidemiologist, engineers, and physical scientists working voluntarily and collaboratively on a consensus basis.

    Keywords: microwaves; radiation, low-level; radiation, non-ionizing; safety standards

    Health Phys.119(2):236-246; 2020

    DesignandCharacterizationofanExtremely-Sensitive,Large-VolumeGamma-RaySpectrometerforEnvironmentalSamples

    James M.Seekamp1, Jordan D.Noey1, Emily H.Kwapis1, Long Kiu Chung1, Nasser A.Shubayr2, Travis Smith1, David J.Trimas1, Kimberlee J.Kearfott1

    (1.Department of Nuclear Engineering and Radiological Sciences, University of Michigan, 2355 Bonisteel Boulevard, Ann Arbor, MI 48109-2104;2.Diagnostic Radiology Department, Faculty of Applied Medical Sciences, Jazan University, Almaarfah Rd.Jazan, Saudi Arabia, P.O.Box: 114 Jazan, KSA, 45142)

    Abstract:A large volume gamma spectrometer was designed and constructed to analyze foodstuffs and environmental samples having low radionuclide concentrations.This system uses eight 11-cm × 42.5-cm × 5.5-cm NaI(Tl)detectors, chosen due to their relatively high sensitivity and availability and arranged in an octagonal configuration.The sensitive volume of the system is ~28 cm in diameter and ~42 cm deep.Shielding consists of an 86-cm × 86-cm square, 64-cm-tall lead brick enclosure with 18-cm-thick lead walls lined by 0.3-cm-thick copper plates.An aluminum top was machined to suspend the detectors within this shield.The shielding reduces background counts by 72% at 100 keV and 42% at 1,000 keV.The positional variability in sensitivity of the well was determined by both simulation and experiment.A 2.1-L volume of nearly uniform sensitivity, varying less than 10%, exists in the well’s center.Energy resolutions of 14.6% and 7.8% were measured for241Am and137Cs, respectively.Energy resolution shows a 0.2% variation for both241Am and137Cs as a function of position within all regions of the well’s central sensitive volume.Dead time was also determined to be less than 35% for all sources measured in the system, the largest of which had an activity of 1,760 kBq.Simulated results for various source geometries show higher counts for smaller samples, especially at lower energies due to less attenuation of low energy photons.Minimum detectable activities were determined for all source energies used, less than 5.1 Bq kg-1for reasonable background and sample counting times.

    Keywords: operational topics; contamination, environmental; radiation, gamma; spectroscopy, gamma

    Health Phys.119(2):252-260; 2020

    CompromiseofPersonalProtectiveClothingfromLiquidExposure

    Scott O.Schwahn1, Nathaniel D.Foster2

    (1.Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, TN 37831-2008;2.Brookhaven National Laboratory, PO Box 5000, Upton, NY 11973-5000)

    Abstract:Introduction: Following critiques of multiple personal contamination events from entries into the Oak Ridge National Laboratory’s Spallation Neutron Source Transfer Bay, it was considered that the most likely causes for contamination were personal protective clothing doffing errors or moisture(sweat)allowing contamination to wick through the protective clothing.Radiological protection staff looked more closely, however, at the specific area of the clothing where contamination was highest; under enhanced lighting and photochromic manipulation, there appeared to have been some type of moisture in the area.Recognizing the possibility that moisture may have allowed for migration of contamination through the clothing, further experiments were undertaken to determine under which conditions this transport might have occurred.Objective: The objective for this work was to identify the susceptibility of different types of personal protective clothing to various liquids encountered in the workplace.Method: Several tests were performed to determine if perspiration had enabled migration of contamination and to identify what other liquids might have affected contamination transport.Two layers of personal protective clothing were subjected to static conditions and dynamic conditions to include active rubbing of the materials while wet.Food dye added to each of the liquids tested enabled visual indications of liquid breakthrough.Additional tests were conducted to see if solid contamination could be transported through the materials along with the liquids.Results: All but one type of non-rubberized personal protective clothing in use at Oak Ridge National Laboratory were permanently compromised to some extent by the solvents used for decontamination.Conclusion: It was determined that most common cleaning agents immediately and permanently destroyed the hydrophobic nature of several of the tested protective clothing materials, potentially allowing for radioactive contamination to penetrate through the material to the worker.Work around wet surfaces or performing wet decontamination will only be performed in protective clothing known to prevent transport of the wetting agent.

    Keywords: contamination, external; decontamination; operational topics; surface contamination

    Health Phys.119(2):261-265; 2020

    女人久久www免费人成看片| www.精华液| 久久 成人 亚洲| 黄网站色视频无遮挡免费观看| 国产97色在线日韩免费| 在线观看免费高清a一片| 亚洲色图av天堂| 久久精品国产a三级三级三级| 99国产精品免费福利视频| 最近最新免费中文字幕在线| 亚洲综合色网址| 91在线观看av| videos熟女内射| 国产精品.久久久| 香蕉国产在线看| 国产精品永久免费网站| 国产精品1区2区在线观看. | 久久亚洲真实| 色尼玛亚洲综合影院| 两性午夜刺激爽爽歪歪视频在线观看 | 国产视频一区二区在线看| 欧美在线黄色| 国产精品 国内视频| av片东京热男人的天堂| 老司机深夜福利视频在线观看| 99国产极品粉嫩在线观看| 啦啦啦 在线观看视频| 国产精品成人在线| 国精品久久久久久国模美| 国产一区二区三区视频了| 国产91精品成人一区二区三区| 电影成人av| 成人三级做爰电影| 一二三四在线观看免费中文在| 国产不卡一卡二| 国产伦人伦偷精品视频| www.精华液| 老熟妇乱子伦视频在线观看| 亚洲国产精品sss在线观看 | 69精品国产乱码久久久| 久久 成人 亚洲| 老熟妇仑乱视频hdxx| www.999成人在线观看| 久久精品亚洲av国产电影网| 欧美精品av麻豆av| 黄网站色视频无遮挡免费观看| 91麻豆精品激情在线观看国产 | 中文字幕最新亚洲高清| 国产亚洲av高清不卡| 国产高清激情床上av| 亚洲一码二码三码区别大吗| 亚洲精品国产色婷婷电影| 老熟妇乱子伦视频在线观看| 午夜福利,免费看| 国产黄色免费在线视频| 精品国产乱子伦一区二区三区| 在线观看www视频免费| 人人妻人人爽人人添夜夜欢视频| 丝袜人妻中文字幕| 高清在线国产一区| 午夜两性在线视频| av有码第一页| 亚洲成国产人片在线观看| av电影中文网址| 涩涩av久久男人的天堂| cao死你这个sao货| 最新美女视频免费是黄的| 在线观看免费视频日本深夜| 天堂动漫精品| 欧美日韩福利视频一区二区| 91九色精品人成在线观看| 久久精品国产a三级三级三级| 亚洲人成77777在线视频| 国产麻豆69| 黑人操中国人逼视频| 日本五十路高清| 天天添夜夜摸| 国产精品偷伦视频观看了| 十分钟在线观看高清视频www| 人妻久久中文字幕网| 高潮久久久久久久久久久不卡| 国产亚洲精品一区二区www | 欧美日韩成人在线一区二区| 高清av免费在线| 精品福利观看| 人人妻人人爽人人添夜夜欢视频| 18禁黄网站禁片午夜丰满| 色综合婷婷激情| 精品人妻1区二区| 俄罗斯特黄特色一大片| 成人三级做爰电影| 黄网站色视频无遮挡免费观看| 男女床上黄色一级片免费看| 亚洲色图 男人天堂 中文字幕| 免费观看精品视频网站| 老熟妇仑乱视频hdxx| 国产免费现黄频在线看| 久久久久国产一级毛片高清牌| 岛国在线观看网站| 亚洲成人国产一区在线观看| 三级毛片av免费| 在线观看舔阴道视频| 91成人精品电影| а√天堂www在线а√下载 | 人人妻人人澡人人爽人人夜夜| 操出白浆在线播放| 欧美 亚洲 国产 日韩一| 亚洲国产看品久久| 嫁个100分男人电影在线观看| 国产人伦9x9x在线观看| 12—13女人毛片做爰片一| 国产一区二区激情短视频| 很黄的视频免费| 欧美 亚洲 国产 日韩一| av在线播放免费不卡| 中亚洲国语对白在线视频| 最新美女视频免费是黄的| 黄色 视频免费看| 亚洲精品美女久久av网站| 国产国语露脸激情在线看| 9191精品国产免费久久| 色在线成人网| 免费看十八禁软件| 热re99久久国产66热| 色在线成人网| 亚洲国产欧美一区二区综合| 国产精品电影一区二区三区 | 国产成人啪精品午夜网站| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 亚洲一卡2卡3卡4卡5卡精品中文| 黑人操中国人逼视频| 国产真人三级小视频在线观看| 啦啦啦视频在线资源免费观看| 国产男靠女视频免费网站| 精品国产乱码久久久久久男人| 成人三级做爰电影| 麻豆成人av在线观看| 天堂√8在线中文| 美女 人体艺术 gogo| 国产在视频线精品| 两个人免费观看高清视频| 成人手机av| 一级毛片高清免费大全| 亚洲片人在线观看| 国产极品粉嫩免费观看在线| 激情在线观看视频在线高清 | 国产99久久九九免费精品| 日韩欧美国产一区二区入口| 国产精品 国内视频| 午夜免费鲁丝| 精品人妻1区二区| 精品福利永久在线观看| 在线观看免费高清a一片| 亚洲欧美色中文字幕在线| 免费看十八禁软件| 精品久久久精品久久久| 宅男免费午夜| 久久精品国产99精品国产亚洲性色 | 在线观看午夜福利视频| 亚洲av成人一区二区三| av在线播放免费不卡| 两性夫妻黄色片| 丝袜美足系列| 国产91精品成人一区二区三区| 国产欧美日韩综合在线一区二区| 色老头精品视频在线观看| 91麻豆精品激情在线观看国产 | 国产成人精品久久二区二区免费| 国产蜜桃级精品一区二区三区 | 国产精品久久久av美女十八| 麻豆国产av国片精品| 精品卡一卡二卡四卡免费| 精品国产一区二区三区四区第35| 国产熟女午夜一区二区三区| 欧美不卡视频在线免费观看 | 国产精品美女特级片免费视频播放器 | 成人国语在线视频| 亚洲三区欧美一区| 90打野战视频偷拍视频| 久久ye,这里只有精品| 天天躁夜夜躁狠狠躁躁| 又大又爽又粗| 成人永久免费在线观看视频| 十八禁网站免费在线| 国产97色在线日韩免费| 亚洲精品成人av观看孕妇| 国产精品.久久久| av网站在线播放免费| 精品国产亚洲在线| 日韩欧美免费精品| 99精品在免费线老司机午夜| 久热这里只有精品99| 在线观看免费午夜福利视频| 女同久久另类99精品国产91| 久久中文字幕一级| 欧美最黄视频在线播放免费 | 99国产精品免费福利视频| av片东京热男人的天堂| 不卡一级毛片| 中亚洲国语对白在线视频| 正在播放国产对白刺激| 亚洲五月色婷婷综合| 国产亚洲欧美在线一区二区| av片东京热男人的天堂| 女性被躁到高潮视频| 国产精品二区激情视频| www.精华液| 18禁观看日本| 桃红色精品国产亚洲av| 久久精品国产综合久久久| 丰满的人妻完整版| 久久久精品国产亚洲av高清涩受| 国产乱人伦免费视频| 国产午夜精品久久久久久| 久久草成人影院| 999精品在线视频| 国产伦人伦偷精品视频| 真人做人爱边吃奶动态| 人妻一区二区av| 中出人妻视频一区二区| www.自偷自拍.com| 久久午夜亚洲精品久久| 国产精品一区二区精品视频观看| 欧美激情高清一区二区三区| 亚洲精品av麻豆狂野| 国产高清激情床上av| 久久久精品国产亚洲av高清涩受| 国产精品久久久久久精品古装| 久久精品国产亚洲av高清一级| xxxhd国产人妻xxx| 18禁国产床啪视频网站| 狂野欧美激情性xxxx| 国产成人欧美| 日韩大码丰满熟妇| 高清欧美精品videossex| 美女高潮喷水抽搐中文字幕| 国内久久婷婷六月综合欲色啪| 丝瓜视频免费看黄片| 18禁裸乳无遮挡免费网站照片 | 久久久久久久午夜电影 | 亚洲中文字幕日韩| 性色av乱码一区二区三区2| 看免费av毛片| 欧美黑人精品巨大| 狂野欧美激情性xxxx| ponron亚洲| 免费人成视频x8x8入口观看| 无限看片的www在线观看| 捣出白浆h1v1| 亚洲情色 制服丝袜| 国产精品久久久av美女十八| 日韩有码中文字幕| 在线观看www视频免费| 高清黄色对白视频在线免费看| 亚洲精品av麻豆狂野| 国产蜜桃级精品一区二区三区 | 国产欧美日韩一区二区三| 色婷婷av一区二区三区视频| 亚洲全国av大片| 久久精品成人免费网站| 成年人午夜在线观看视频| 美女高潮到喷水免费观看| av一本久久久久| 亚洲国产毛片av蜜桃av| 国产成人免费观看mmmm| 天天躁夜夜躁狠狠躁躁| 别揉我奶头~嗯~啊~动态视频| 黄色成人免费大全| 久久久久久久精品吃奶| 日韩免费高清中文字幕av| 成年人免费黄色播放视频| 日韩欧美在线二视频 | 国产高清国产精品国产三级| 午夜免费成人在线视频| 欧美精品一区二区免费开放| 精品少妇一区二区三区视频日本电影| 亚洲黑人精品在线| 国产亚洲av高清不卡| 国内毛片毛片毛片毛片毛片| 亚洲av片天天在线观看| 亚洲av成人av| 国产高清国产精品国产三级| 在线永久观看黄色视频| 两人在一起打扑克的视频| 不卡一级毛片| 久久精品91无色码中文字幕| 国产精品一区二区精品视频观看| 免费观看人在逋| 国产99久久九九免费精品| 欧美午夜高清在线| 大片电影免费在线观看免费| 国产又爽黄色视频| 中出人妻视频一区二区| 欧美精品高潮呻吟av久久| 日本一区二区免费在线视频| 热re99久久精品国产66热6| 亚洲黑人精品在线| 激情在线观看视频在线高清 | 国产精品亚洲一级av第二区| 免费女性裸体啪啪无遮挡网站| 美女福利国产在线| 一本一本久久a久久精品综合妖精| 人妻久久中文字幕网| 新久久久久国产一级毛片| 在线观看日韩欧美| 丝袜在线中文字幕| 麻豆国产av国片精品| 亚洲欧美激情在线| 18禁裸乳无遮挡免费网站照片 | 欧美激情高清一区二区三区| 无限看片的www在线观看| 午夜福利免费观看在线| 免费一级毛片在线播放高清视频| 天堂√8在线中文| 国产色爽女视频免费观看| 一区福利在线观看| 精品99又大又爽又粗少妇毛片 | 日韩精品青青久久久久久| 一本一本综合久久| 在线观看免费视频日本深夜| 日韩高清综合在线| 免费av不卡在线播放| 日日干狠狠操夜夜爽| 99久久99久久久精品蜜桃| 亚洲内射少妇av| 国产在线精品亚洲第一网站| 在线免费观看的www视频| 亚洲国产中文字幕在线视频| 一a级毛片在线观看| 国产成人欧美在线观看| 亚洲乱码一区二区免费版| 99热6这里只有精品| 老熟妇仑乱视频hdxx| 男人和女人高潮做爰伦理| 国产老妇女一区| 免费人成视频x8x8入口观看| 亚洲av二区三区四区| 欧美zozozo另类| 国产精品亚洲美女久久久| 中文字幕熟女人妻在线| 18+在线观看网站| 成年女人永久免费观看视频| 天堂av国产一区二区熟女人妻| 亚洲av成人av| 国产精品电影一区二区三区| 国产精品日韩av在线免费观看| 中文字幕久久专区| 亚洲精品粉嫩美女一区| 麻豆一二三区av精品| 国产欧美日韩精品亚洲av| 亚洲av成人精品一区久久| 久久中文看片网| 高清在线国产一区| 18禁国产床啪视频网站| 国产成人av激情在线播放| 高清日韩中文字幕在线| 中文在线观看免费www的网站| 搡女人真爽免费视频火全软件 | 久久人人精品亚洲av| 免费在线观看成人毛片| 午夜影院日韩av| 久久久久性生活片| 欧美日本亚洲视频在线播放| 蜜桃亚洲精品一区二区三区| 国产一区在线观看成人免费| 校园春色视频在线观看| 婷婷六月久久综合丁香| 国产aⅴ精品一区二区三区波| 一进一出好大好爽视频| xxx96com| 国产黄a三级三级三级人| 免费观看精品视频网站| 成人特级av手机在线观看| 午夜视频国产福利| 国产精品爽爽va在线观看网站| 成人精品一区二区免费| 国内毛片毛片毛片毛片毛片| 在线十欧美十亚洲十日本专区| 日日干狠狠操夜夜爽| 色老头精品视频在线观看| а√天堂www在线а√下载| 亚洲欧美日韩东京热| 欧美成人性av电影在线观看| 日本熟妇午夜| 国产精品 国内视频| 婷婷精品国产亚洲av| 久久亚洲真实| 亚洲成人免费电影在线观看| 真人一进一出gif抽搐免费| 两个人的视频大全免费| 国产中年淑女户外野战色| 国产av在哪里看| xxxwww97欧美| 久久精品国产自在天天线| 99热这里只有精品一区| 午夜免费观看网址| 亚洲在线自拍视频| 成年女人永久免费观看视频| 国产熟女xx| av在线天堂中文字幕| 熟妇人妻久久中文字幕3abv| 母亲3免费完整高清在线观看| 亚洲精品一卡2卡三卡4卡5卡| 免费看十八禁软件| 三级国产精品欧美在线观看| 18禁黄网站禁片午夜丰满| 午夜福利在线在线| 少妇的丰满在线观看| 亚洲成人中文字幕在线播放| 高清在线国产一区| 一二三四社区在线视频社区8| av专区在线播放| 亚洲av日韩精品久久久久久密| 91在线观看av| 久久久久久久精品吃奶| 亚洲成人免费电影在线观看| 熟女人妻精品中文字幕| 亚洲美女黄片视频| 欧洲精品卡2卡3卡4卡5卡区| 国产精品,欧美在线| 天堂网av新在线| 性色av乱码一区二区三区2| 757午夜福利合集在线观看| 欧美成人a在线观看| 国产精品久久久久久久电影 | 日韩成人在线观看一区二区三区| 蜜桃久久精品国产亚洲av| 国产免费av片在线观看野外av| 最近最新中文字幕大全电影3| 天堂动漫精品| 小蜜桃在线观看免费完整版高清| 制服丝袜大香蕉在线| 亚洲av五月六月丁香网| 久久九九热精品免费| 日本免费一区二区三区高清不卡| 首页视频小说图片口味搜索| 久久精品夜夜夜夜夜久久蜜豆| 精品久久久久久久久久久久久| 国产成年人精品一区二区| 国产精品野战在线观看| 天美传媒精品一区二区| 两人在一起打扑克的视频| av中文乱码字幕在线| 91麻豆av在线| 国产精品免费一区二区三区在线| 成人一区二区视频在线观看| 舔av片在线| 内射极品少妇av片p| 日韩av在线大香蕉| 精品一区二区三区视频在线观看免费| 可以在线观看的亚洲视频| 日本与韩国留学比较| 亚洲人成网站在线播| 国产精品免费一区二区三区在线| 真人做人爱边吃奶动态| 搡老妇女老女人老熟妇| 亚洲人成网站在线播放欧美日韩| 女警被强在线播放| 亚洲欧美日韩无卡精品| 日韩欧美国产在线观看| 国产一区二区激情短视频| 欧美+日韩+精品| 18禁裸乳无遮挡免费网站照片| 每晚都被弄得嗷嗷叫到高潮| 99久久精品国产亚洲精品| 美女免费视频网站| 高清在线国产一区| 免费高清视频大片| 国产午夜精品论理片| 老鸭窝网址在线观看| 亚洲精品在线美女| 国产精华一区二区三区| 一区二区三区激情视频| 欧美黑人欧美精品刺激| 国产一区二区三区在线臀色熟女| 日日摸夜夜添夜夜添小说| 麻豆国产97在线/欧美| 免费一级毛片在线播放高清视频| 国产国拍精品亚洲av在线观看 | 婷婷亚洲欧美| 免费人成视频x8x8入口观看| 岛国在线观看网站| 18美女黄网站色大片免费观看| 亚洲人成网站在线播放欧美日韩| 午夜精品在线福利| 三级国产精品欧美在线观看| 一进一出抽搐动态| 久久欧美精品欧美久久欧美| 美女 人体艺术 gogo| 婷婷精品国产亚洲av在线| 精品一区二区三区视频在线 | 久久久国产成人免费| 国产99白浆流出| 欧美成狂野欧美在线观看| 国内精品美女久久久久久| 久久久色成人| 久久久久久九九精品二区国产| 午夜精品久久久久久毛片777| ponron亚洲| 国产中年淑女户外野战色| 日韩免费av在线播放| 在线观看免费午夜福利视频| 国产三级中文精品| 在线看三级毛片| 女人高潮潮喷娇喘18禁视频| 老司机午夜福利在线观看视频| 在线视频色国产色| 国产精品久久电影中文字幕| 他把我摸到了高潮在线观看| 国产av一区在线观看免费| 色吧在线观看| 一级毛片女人18水好多| 天堂动漫精品| 真人做人爱边吃奶动态| 国产一区二区亚洲精品在线观看| 看片在线看免费视频| 免费高清视频大片| 午夜日韩欧美国产| 嫩草影院精品99| 香蕉久久夜色| 搡老妇女老女人老熟妇| 国产精品98久久久久久宅男小说| 欧美成人a在线观看| 午夜福利在线观看免费完整高清在 | 三级国产精品欧美在线观看| 国产亚洲av嫩草精品影院| 动漫黄色视频在线观看| 欧美成狂野欧美在线观看| 又紧又爽又黄一区二区| 精品免费久久久久久久清纯| 免费看光身美女| 国内毛片毛片毛片毛片毛片| 国产av麻豆久久久久久久| 久久久久久久久久黄片| 亚洲精品乱码久久久v下载方式 | 亚洲久久久久久中文字幕| 国产高清激情床上av| 久久久久精品国产欧美久久久| 99热只有精品国产| 国产激情欧美一区二区| 亚洲无线在线观看| 成人永久免费在线观看视频| 欧美成人性av电影在线观看| av天堂中文字幕网| a在线观看视频网站| 精品国产亚洲在线| 国产成人av教育| 免费看a级黄色片| 亚洲av不卡在线观看| 搡女人真爽免费视频火全软件 | 亚洲人成网站高清观看| 天堂√8在线中文| 一区二区三区国产精品乱码| 露出奶头的视频| 日本熟妇午夜| 成人无遮挡网站| 国内精品美女久久久久久| 成人av在线播放网站| 日韩精品青青久久久久久| 成年免费大片在线观看| 国产真实伦视频高清在线观看 | 99热只有精品国产| 一级毛片女人18水好多| 淫秽高清视频在线观看| 91九色精品人成在线观看| 亚洲av一区综合| 老司机深夜福利视频在线观看| 免费大片18禁| 久久久久免费精品人妻一区二区| 一个人免费在线观看的高清视频| 国产激情偷乱视频一区二区| 国产三级黄色录像| 精品久久久久久久人妻蜜臀av| 床上黄色一级片| 18+在线观看网站| 国产高清有码在线观看视频| 免费无遮挡裸体视频| 国产亚洲精品久久久com| 精品人妻偷拍中文字幕| 日本撒尿小便嘘嘘汇集6| 最好的美女福利视频网| 99久国产av精品| 久久中文看片网| 美女被艹到高潮喷水动态| 精品久久久久久久毛片微露脸| 91九色精品人成在线观看| 狠狠狠狠99中文字幕| 亚洲专区国产一区二区| 欧美乱妇无乱码| 国产乱人视频| 久久精品国产99精品国产亚洲性色| 草草在线视频免费看| 国产成人a区在线观看| 精品久久久久久久毛片微露脸| 两性午夜刺激爽爽歪歪视频在线观看| 成人无遮挡网站| 好男人电影高清在线观看| 国产69精品久久久久777片| 精品国产美女av久久久久小说| 成人一区二区视频在线观看| 欧美日韩乱码在线| 国产视频一区二区在线看| 女警被强在线播放| 在线视频色国产色| 国产高清三级在线| 乱人视频在线观看| 黄色成人免费大全| 热99re8久久精品国产| 国产一区二区在线观看日韩 | 精品一区二区三区人妻视频| av片东京热男人的天堂| 免费电影在线观看免费观看| 欧美乱码精品一区二区三区| 欧美在线一区亚洲|