• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Tropical-Antarctic connections of an explosive cyclone in southern Brazil: rainfall stable isotope ratios and atmospheric analysis

    2020-12-18 08:24:36PedroAmaralREISFranciscoEliseuAQUINOVenisseSCHOSSLERRonaldoTormaBERNARDOJeffersonCardiaSIMES
    Advances in Polar Science 2020年2期

    Pedro Amaral REIS, Francisco Eliseu AQUINO, Venisse SCHOSSLER, Ronaldo Torma BERNARDO & Jefferson Cardia SIM?ES,

    1 Centro Polar e Climático, Instituto de Geociências, Universidade Federal do Rio Grande do Sul, 91501-970, Porto Alegre, Rio Grande do Sul, Brazil;

    2 Climatic Change Institute, University of Maine, Orono, ME, USA

    Abstract This study analyzes the stable isotopic ratio (δ18O) and the synoptic characteristics of a precipitation event that occurred in the southernmost state of Brazil, Rio Grande do Sul, a region sensitive to explosive cyclogenesis in years with enhanced tropic-pole interactions. The main objective was to evaluate the influence of tropical and Antarctic climate systems on the event. Cavity ring-down spectroscopy was used for the water isotopic analysis, and NCEP CFSv2 data were employed for the synoptic analysis of rainfall over a 48-h period. An Amazonian isotopic signature on precipitated water was identified. A strong, low-level meridional flow from the Amazon Basin, combined with the development of a frontal system, resulted in intense cyclogenesis that generated an explosive cyclone.

    Keywords Antarctica, Amazon, South American low-level jet (SALLJ), cyclogenesis

    1 Intr oduction*

    This study analyzes a severe precipitation event that occurred in southern Brazil. On September 13, 2016, an explosive extratropical cyclone hit the coast of the southernmost state of Brazil, Rio Grande do Sul, causing gale-force winds, floods, and hail. An anomalous cyclogenesis was observed in the austral mid-latitudes during the winter and spring of 2016. Investigations revealed that this anomaly was related to the fast and early Antarctic sea ice extent (SIE) retreat during the austral spring of 2016 (Turner et al., 2017). The intensification of the north meridional flux significantly contributed to the decrease in Antarctic sea ice cover between 2014 and 2016 (Wang et al., 2019). The year 2016, and the month of September in particular, were worldwide the hottest on modern record (from 1880 to present day; NOAA, 2017). However, South America registered multiple negative temperature anomalies during September, influenced by a positive Southern Annular Mode (SAM) and a positive zone wave 3 (ZW3), carrying polar masses to the region (Schossler et al., 2019). Moreover, when anomalous low frequency anticyclones (cyclones) are present over the southeast of South America with a +SAM (-SAM), the cyclonic activity reduces (increases) and the precipitation over the region also reduces (increases) (Silvestri and Vera, 2003).

    The La Plata Basin (LPB), a region with a population of 136 million people (41% of the population of South America) has its climate regulated by polar and tropical air masses. This region periodically undergoes precipitation extremes, often modulated by the El Ni?o-Southern Oscillation (ENSO) phenomenon and its variants. In abnormal events, as in 2015/2016, the frequency of these extremes increases (Cavalcanti et al., 2015). Several studies that have attempted to describe where cyclones happen in the South America point to the LPB region (Gan and Rao, 1991, 1994; Vera et al., 2002; Mendes et al., 2007; Reboita et al., 2010, 2018; Gramcianinov et al., 2019). By the end of the 21st century, the incidence of such systems is predicted to decrease north of the Southern Ocean (Fyfe, 2003; Reboita et al., 2018). On the other hand, according to Gramcianinov (2019), cyclogenesis over the LPB should increase up to 6.1%, responding to an increase in meridional moisture transport. Moreover, extratropical cyclones with rapid intensification (with a deepening rate of 1 mb·h-1within 24 h), classified as explosive, have a 2.4% to 4.1% frequency rate in the LPB region (Bitencourt et al., 2013).

    The low-level circulation in South America is influenced by the moisture transport from equatorial regions to the southeast of the continent by the South American low-level jet (SALLJ) (Marengo, 2002; Vera et al., 2006; Guedes do Nascimento et al., 2016; Oliveira et al., 2018). The intensity of this transport is predicted to increase during the 21st century, due to a warmer atmosphere (Soares and Marengo, 2009; Seth et al., 2010). The South Brazilian region is currently experiencing a 10% increase in precipitation compared to the 1941-1970 climatology (Viana et al., 2006), and the presence of the SALLJ increases the amount of rainfall during each event by 32% (Guedes do Nascimento et al., 2016).

    In the 1950s, the first studies on stable isotopes contributed to the understanding of the natural abundance of oxygen-18 and deuterium on Earth (Dansgaard, 1953; Epstein and Mayeda, 1953). In 1961, the International Atomic Energy Agency (IAEA) and the World Meteorological Organization (WMO) began a global study on the stable isotopic composition of monthly precipitation. This data would later be useful to describe the temporal and spatial variations in the isotopic compositions of precipitation in different parts of the planet, and used in different studies such as climatology, oceanography, and hydrometeorology (Rozanski et al., 1993). These analyses have demonstrated that latitude, altitude, distance from the coast, precipitation amount, and air surface temperature all influence the geographic distribution of the stable isotopic content (Rozanski et al., 1993; Jouzel, 2003).

    In this study, we combine the measurements of stable isotopes in the water collected during the extreme meteorological event on September 13, 2016, with the interpretation of atmospheric fields from climate reanalysis,in an attempt to understand the physical processes regulating the hydrological cycle in the southern part of South America. This article is divided into three parts: data and methods, a description of the prevailing atmospheric environment and the origin of water precipitated during the event, and a summary of the results.

    2 Data and methods

    A description of the atmospheric environment was built using the daily data (updated once every six hours) from National Centers for Environmental Protection (NCEP) Reanalysis Climate Forecast System version 2 (CFSv2) (NCEP, 2020). The variables taken into account were: temperature ( ℃,at 925 hPa), meridional and zonal winds (m·s-1, at 850, 700, and 250 hPa), geopotential height (gpm, at 500 hPa), specific humidity (g·kg-1, at 850 hPa), and sea level pressure (hPa) between September 11 and 13, 2016. Temperature and wind anomalies during September 2016 were calculated with respect to the September climatology in 1979-2018. Then, the event daily anomalies were compared to those in September 2016.

    Precipitation data of the event were obtained from the Brazilian National Institute of Meteorology (Instituto Nacional de Meteorologia, INMET, 2020) automatic meteorological station A801, located at Porto Alegre (30°55'60"S, 51°07'29"W, altitude of 41 m). The precipitated water was collected using a Palmex Rain Sampler RS1 pluviometer located at the Federal University of Rio Grande do Sul (30°04'26.8"S; 51°07'13.9"W). Cavity ring-down spectroscopy (with a CRDS Picarro LD 2130i) was used to determine the stable isotopic ratios of each sample. Isotope data are reported as δ18O values (in ‰) relative to the VSMOW/SLAP scale with δVSMOWdefined as the zero point: δVSMOW= ((Rsample-RVSMOW)-1)×1000 (‰), whereRcorresponds to the absolute isotope abundance ratios of18O/16O.

    The tropical influence on the development of cyclogenesis was assessed by the SALLJ intensity and position 48 h prior to the event. For the intensity, the Bonner (1968) and Whitemann et al. (1997) criteria were used, while the exit jet position was determined following Nicolini et al. (2004).

    A cyclone is considered explosive when it has a deepening rate of 1 Bergeron unit (B), equivalent to a drop of 1 mb·h-1within 24 h at 60°S. The normalized deepening pressure rate in the center (NDRc, equation 1) was used to identify the cyclone intensity at the event’s latitudinal domain (Sanders and Gyakum, 1980):

    where Δpcis the system pressure variation within 24 h, andΦis the median latitude in the center of the cyclone at its maximum depth.

    3 Results and discussions

    3.1 Description of the synoptic environment

    In September 2016, we observed an anomalous south airflow at the 925 hPa and 850 hPa levels over South America. This feature is associated with a ZW3, as it directly interferes with the meridional component of the large-scale atmospheric circulation, driving cold air towards the equator and hot air towards the South Pole (Raphael, 2004). Anomalous conditions in the Tropical Indian Ocean and Western Pacific, associated with a record-breaking Indian Ocean Dipole negative event, conditioned the intense ZW3 in the spring of 2016. These intense sea level atmospheric anomalies in the Southern Hemisphere were responsible for remarkable storms over the Southern Ocean and the rapid decline of SIE from September to October 2016 (Turner et al., 2017; Wang et al., 2019). The intense meridional flow enhanced the cold and warm air advection and, consequently, the strong winds associated with intense cyclogenesis, providing conditions for sea surface warming at high latitudes in the Southern Hemisphere (Wang et al., 2019). A ZW3 index of +1.67 in September 2016 propelled southern heat exchanges, as identified by the Southern Hemisphere temperature anomalies.

    The warm air flow driven towards the Antarctic had its consequences (fast sea ice retreat and high temperatures on the surface of the Southern Ocean), while the cold air in the middle latitudes caused temperature anomalies in South America. The positive and negative extremes of the monthly and seasonal mean temperature in southern Brazil resulted partly from variations in the Antarctic Peninsula atmospheric circulation (Aquino, 2012). A contrasting ocean-continent temperature of over 10℃ was identified at the 925 hPa level on September 12 at 30°S (at 12:00 and 18:00 UTC). At the time, the Chaco Region had air temperatures above 40 ℃, while, simultaneously, the advance of a cold front caused an air temperature drop from 20℃ to 10℃ within 24 h in southwest Rio Grande do Sul. The 2015/2016 El Ni?o stationary effects followed by a weak La Ni?a and the fast transport of equatorial air by the SALLJ (Stuecker et al., 2017; Montini et al., 2019) may have been the decisive cause behind the anomalous cyclonic circulation pattern observed during the studied event (Figure 1).

    Figure 1 Vector wind at 850 hPa and temperature anomaly at 925 hPa for September 2016 (a, b), and for the studied event anomaly (c, d).

    The SALLJ is one of the major mechanisms at low levels in South America, where its intensity is higher during the warm months (Marengo et al., 2009), and trade winds deviate to the southeast by the Andes, supplying moisture to the middle latitudes. During the 48-h period prior to the event, this meridional flow met the criteria for a low-level jet category, with a minimum intensity of 12 m·s-1at 00:00 UTC on September 11, reaching a peak of 30 m·s-1at 18:00 UTC on September 12, 50% above the LLJ-3 category threshold (Figure 2). From Nicolini et al. (2004), this SALLJ is classified as the Chaco Jet Event, sustaining an exit between 25°S and 32°S during the preceding 48 h, which favors convective development over the LPB (Nascimento, 2008). The 850 hPa specific humidity fields indicate the moisture flux coming primarily from the Amazonian region (Figure 3).

    Figure 2 SALLJ wind speed at 850 hPa on September 12, 2016, 18:00 UTC. Red triangle locates Porto Alegre.

    Figure 3 Mean vector wind and specific humidity at 850 hPa on September 13, 2016.

    Extreme precipitation events in the LPB usually begin with a low-pressure area, positioned longitudinally to the east of the Andes at approximately 30°S, generated by a horizontal air flow and frontal systems approach called the Northwestern Argentinean Low (Seluchi et al., 2003). A forced downstream subsidence in the Andes favors its formation, and it has been correlated with precipitation and transportation of moisture to northeastern Argentina, southern Brazil, and Uruguay (Lichtenstein, 1980).

    In the high troposphere, the presence of jet streams also intensifies convective systems. In South America, the preferred paths of the propagation waves at the synoptic scale are on subtropical jets at 30°S and on subpolar jets at 60°S, as they speed up and bend when crossing the narrow channel between the Andes and the top of the troposphere (Vera et al., 2002). In cold and transition seasons, the coupling frequency between the subtropical and subpolar sections are high, as the polar jet section displacement is associated with cold fronts at lower levels. During the entirety of the studied event, the SALLJ was associated with the subtropical jet and the northern section of the subpolar jet over Rio Grande do Sul (Figure 4). Thus, the divergence of air at high levels favored its convergence at lower levels, where warm and humid air next to surface rises, fueling the formation of convective clouds in the region.

    Figure 4 Vector wind at 250 hPa at 18:00 UTC on September 13, 2016.

    On September 11 at 00:00 UTC, the Northwestern Argentinean Low was found at approximately 30°S. On the following day, a low-pressure system located to the west of South America at 40°S began moving towards the northeast. On September 13 at 00:00 UTC, this low met the Northwestern Argentinean Low over the LPB, forming a center of 998 hPa (Figure 5a). While constantly intensifying until 18:00 UTC on September 13, the cyclone migrated to the southeast—the preferred direction of displacement in this area—positioning itself over the Atlantic Ocean and reaching its maximum deepening of 973 hPa (Figure 5b). Once a cyclone is displaced to the east of the Andes and settles over the Atlantic Ocean, it is boosted by the heat flow from the Brazilian Stream (Gan and Rao, 1991; Vera et al., 2002). In this case, the mountain range played a key role in establishing instability, by favoring the arrival of cold Antarctic air and driving it to the east, towards the tropics, allowing the jet to approach and the advance of the cold front over warm air. Thus, the meridional flow coming from the Amazon and the Antarctic regions were the thermal sources of the traditional instability over the Northwestern Argentinean Low.

    Cyclone development at subtropical latitudes is generally characterized by a higher baroclinicity and a lower influence of low-level moisture transport (Gramcianinov et al., 2019). Consequently, the unusual activity of the SALLJ in September contributed to the exceptional intensity of the cyclone. It caused intense precipitation on September 13 and was classified as an explosive cyclone of intermediate intensity. At its mid-latitudinal point (38°30'S), a 25 hPa fall occurred in 24 h, resulting in anNDRcof 1.45 B. Explosive cyclones are predominantly oceanic and cold season phenomena, and their occurrence over the ocean indicates a remarkable exchange of energy between the surface and low atmosphere (Kuo et al., 1991).

    Figure 5 Mean sea level pressure (hPa) showing the cyclogenesis evolution between 00:00 UTC(a) and 18:00 UTC (b) on September 12, 2016.

    3.2 Precipitation and isotopic composition

    To analyze the precipitation, it is necessary to consider the crucial role that the SALLJ plays on the hydrological cycle of the LPB. At lower latitudes, the SALLJ is more intense in summer, but there is a phase change south of 15°S, and the strongest moisture flux can be found in winter and spring. This is an uncommon feature not detected in other regions such as the Great Plains of the USA, where the LLJ develops during the hot season (Berbery and Barros, 2002).

    Table 1 compares the precipitation contribution of the September 2016 event to the total accumulation during September 2016 and the 1990-2018 historical record. The Porto Alegre automatic meteorological station recorded on September 13, 2016 a total precipitation of 32.3 mm. This figure is 35.6% of the month accumulation and 23% of the historical September mean (1990-2018). The amount and number of days of precipitation in September 2016 were lower than the long-term mean for September and may be further explained by +SAM, which is known to curb cyclogenesis in the study area (Schossler et al., 2018).

    Table 1 Precipitation on September 13, 2016 compared to September 2016 and to the climatology in September 1990-2018 at Porto Alegre, Brazil (INMET, 2020)

    The water precipitated at Porto Alegre on September 13 had a δ18O = 1.05‰, which is highly positive anomalous when compared to the historical monthly mean for this city (Figure 6) and to the September 2016 mean (δ18O= -3.85‰; Griebler Júnior, 2018). The isotopic composition of precipitation events is dominated by large-scale synoptic systems—specifically, by the history/source of the air masses involved—while it is independent of local factors like the precipitation intensity (Rindsberger et al., 1990). One of the controls of the δ18O ratio is the latitude, with a higher ratio in the tropics and a lower ratio towards the polar regions, mainly due to the difference in air temperature.

    Figure 6 September δ18O ratio from Porto Alegre, Brazil. Sources: IAEA, 2018 (1965-1983) and Griebler Júnior, 2018 (2016-2017).

    Porto Alegre registered three precipitation events during September 2016 (Figure 7), all related to the passage of frontal systems. The isotopic ratio of the precipitation during the first week, when two of these events occurred, was anomalously low (δ18O = -6.30‰). The synoptic context of the studied event affirms that the anomalously high δ18O ratio at Porto Alegre was due to the presence of the high-intensity SALLJ. Although the SALLJ speed is irrelevant to the quantity of moisture transported in South America (Montini et al., 2019), it played a crucial role in preventing the depletion of the hot air mass during this event, ensuring an Amazonian isotopic signature. In addition, this positive delta value presents an isotopically heavy rain, which characterizes moisture sources resulting from recycling processes that occur in the Amazon Basin.

    Figure 7 September 2016 precipitation (blue columns, INMET, 2020) and δ18O ratio (the black line represents one sample, the black dot on top represents the event analyzed in this article) from Porto Alegre, Brazil.

    The southern Brazilian region lacks studies on the isotopic composition of individual precipitation events. Therefore, it is difficult to classify the event’s unique nature. However, the synoptic and isotopic analyses contribute to the understanding of the dynamics of air masses and hydrological behavior on a warming planet. Future scenarios suggest an increased frequency of such extreme precipitation events in the LPB (Liebmann et al., 2004; Cavalcanti et al., 2015).

    4 Conclusions

    The synoptic and isotopic analysis of an extreme precipitation event in southern Brazil indicated that the transport of Amazonian moisture by the SALLJ can interact with cold front passages and enhance the cyclogenesis process. This event analysis is significant in the context of the persistent contrast in tropic-pole interactions during the austral spring of 2016, which were under the influence of El Ni?o 2015/2016 and a positive SAM, causing a record SIE retreat and higher cyclonic activity in the middle latitudes. The synoptic pattern found in September 2016 corresponds to the anomalous temperature dipole between southern Brazil and the Antarctic Peninsula, which intensified the extreme temperature and precipitation events in the LPB and South Brazil.

    Events like this may become more common on a warmer planet, particularly with a greater Amazon- Antarctic thermal contrast. Thus, we must understand how teleconnections between the tropics and poles contribute to extreme precipitation events in southeast South America.

    AcknowledgmentsThis work was supported by grants from the INCT da Criosfera—Instituto Nacional de Ciência e Tecnologia da Criosfera (Research Support Foundation of Rio Grande do Sul— FAPERGS project, Grant no.17/25510000518-0),Geography Graduate Program (POSGEA/UFRGS) and Coordination for the Improvement of Higher Education Personnel (CAPES). The authors thank NCEP for the reanalysis data. The authors also thank three anonymous reviewers for their important comments and suggestions.

    午夜福利高清视频| 国产精品永久免费网站| 给我免费播放毛片高清在线观看| av在线天堂中文字幕| 色综合亚洲欧美另类图片| 亚洲美女黄片视频| 老熟妇仑乱视频hdxx| 亚洲专区国产一区二区| 大香蕉久久网| 赤兔流量卡办理| 精品久久久久久成人av| 日韩 亚洲 欧美在线| 观看美女的网站| 亚洲18禁久久av| 97超视频在线观看视频| 色噜噜av男人的天堂激情| 人人妻人人澡欧美一区二区| 国产午夜福利久久久久久| 亚洲色图av天堂| 看黄色毛片网站| 青春草视频在线免费观看| 一本精品99久久精品77| 九九爱精品视频在线观看| 成熟少妇高潮喷水视频| 女的被弄到高潮叫床怎么办| 校园春色视频在线观看| 国产69精品久久久久777片| 成人av在线播放网站| 性色avwww在线观看| 美女cb高潮喷水在线观看| 日日摸夜夜添夜夜爱| 91久久精品国产一区二区成人| 久久久精品欧美日韩精品| 听说在线观看完整版免费高清| 久久精品综合一区二区三区| 亚洲内射少妇av| 国产精品人妻久久久影院| 热99在线观看视频| 国内揄拍国产精品人妻在线| 午夜福利在线在线| 丰满的人妻完整版| 国产男靠女视频免费网站| 亚洲中文字幕日韩| 免费av不卡在线播放| 一个人看的www免费观看视频| 国产亚洲精品av在线| 亚洲国产日韩欧美精品在线观看| 美女被艹到高潮喷水动态| 免费人成在线观看视频色| 国产伦精品一区二区三区四那| 午夜视频国产福利| 亚洲av成人精品一区久久| 淫妇啪啪啪对白视频| 啦啦啦观看免费观看视频高清| 又黄又爽又刺激的免费视频.| 精品久久久噜噜| 久久人妻av系列| 老师上课跳d突然被开到最大视频| 亚洲av不卡在线观看| 在线看三级毛片| 熟女人妻精品中文字幕| 好男人在线观看高清免费视频| 国产片特级美女逼逼视频| 99久国产av精品国产电影| 亚洲va在线va天堂va国产| 男女视频在线观看网站免费| 天天躁日日操中文字幕| 观看美女的网站| 69人妻影院| 久久6这里有精品| 我要看日韩黄色一级片| 十八禁网站免费在线| 女生性感内裤真人,穿戴方法视频| 国产成人福利小说| 日韩三级伦理在线观看| 草草在线视频免费看| 国产成人91sexporn| 亚洲美女视频黄频| 丰满的人妻完整版| 亚州av有码| 久久精品人妻少妇| 日本-黄色视频高清免费观看| 在线观看66精品国产| 欧美人与善性xxx| 国产午夜精品论理片| 欧美高清成人免费视频www| 欧美一级a爱片免费观看看| 欧美另类亚洲清纯唯美| 亚洲一区高清亚洲精品| 女人被狂操c到高潮| 国产成人aa在线观看| 国产一区二区亚洲精品在线观看| 国产高清激情床上av| 99久久久亚洲精品蜜臀av| 欧美三级亚洲精品| 99久久九九国产精品国产免费| 午夜日韩欧美国产| 黄色欧美视频在线观看| 色尼玛亚洲综合影院| 欧美色欧美亚洲另类二区| a级毛色黄片| 桃色一区二区三区在线观看| 性欧美人与动物交配| 美女高潮的动态| 成年免费大片在线观看| 秋霞在线观看毛片| 中文字幕精品亚洲无线码一区| 国产亚洲精品久久久com| 国产欧美日韩一区二区精品| 能在线免费观看的黄片| 在现免费观看毛片| 午夜激情福利司机影院| 国产精品久久久久久av不卡| 最近手机中文字幕大全| 亚洲久久久久久中文字幕| 国产又黄又爽又无遮挡在线| 丝袜喷水一区| 欧美一级a爱片免费观看看| 日日摸夜夜添夜夜添小说| 国产在线男女| 看免费成人av毛片| 女同久久另类99精品国产91| 全区人妻精品视频| 亚洲第一区二区三区不卡| 97碰自拍视频| 亚洲精品成人久久久久久| 美女免费视频网站| 国产精品一及| 国国产精品蜜臀av免费| 日韩欧美免费精品| 69av精品久久久久久| 男女视频在线观看网站免费| 春色校园在线视频观看| 亚洲最大成人手机在线| 1024手机看黄色片| 99热6这里只有精品| 亚洲成a人片在线一区二区| 在线看三级毛片| 女的被弄到高潮叫床怎么办| 又黄又爽又刺激的免费视频.| 在现免费观看毛片| 日韩 亚洲 欧美在线| 精品人妻熟女av久视频| 99热这里只有是精品在线观看| 一级av片app| 蜜桃久久精品国产亚洲av| 亚洲在线观看片| 日韩在线高清观看一区二区三区| 日韩成人伦理影院| 欧美不卡视频在线免费观看| 在线a可以看的网站| 久久精品91蜜桃| 大型黄色视频在线免费观看| 亚洲美女黄片视频| eeuss影院久久| 久久精品久久久久久噜噜老黄 | 综合色av麻豆| 俄罗斯特黄特色一大片| 成人漫画全彩无遮挡| 午夜亚洲福利在线播放| 日日摸夜夜添夜夜爱| 俺也久久电影网| 国产欧美日韩一区二区精品| aaaaa片日本免费| 欧美高清性xxxxhd video| 午夜免费男女啪啪视频观看 | 九九热线精品视视频播放| 毛片一级片免费看久久久久| 一本一本综合久久| 成人鲁丝片一二三区免费| 国产aⅴ精品一区二区三区波| 日韩成人伦理影院| 精品一区二区三区人妻视频| 2021天堂中文幕一二区在线观| 国产精品久久久久久精品电影| 九九热线精品视视频播放| 99国产精品一区二区蜜桃av| 在线观看午夜福利视频| 久久99热6这里只有精品| 国产高清三级在线| 看十八女毛片水多多多| 欧美又色又爽又黄视频| 五月伊人婷婷丁香| 精品午夜福利在线看| 露出奶头的视频| 一级毛片我不卡| 99热6这里只有精品| 一级av片app| 天堂av国产一区二区熟女人妻| 插逼视频在线观看| 少妇被粗大猛烈的视频| 国产黄a三级三级三级人| 男女之事视频高清在线观看| 卡戴珊不雅视频在线播放| 可以在线观看的亚洲视频| 亚洲美女搞黄在线观看 | 日韩欧美精品v在线| 精品一区二区免费观看| 亚洲国产欧美人成| 嫩草影院入口| 亚洲精品456在线播放app| 午夜精品一区二区三区免费看| h日本视频在线播放| 中文字幕av成人在线电影| 香蕉av资源在线| 亚洲欧美日韩卡通动漫| 亚洲成人久久爱视频| 中文字幕人妻熟人妻熟丝袜美| 国产亚洲精品av在线| 成人毛片a级毛片在线播放| 国产高清视频在线播放一区| 日韩欧美 国产精品| 亚洲一区二区三区色噜噜| 日本五十路高清| 99热只有精品国产| 久久6这里有精品| 99热这里只有是精品在线观看| 成人欧美大片| 国产高清不卡午夜福利| 少妇丰满av| 日本免费a在线| 国产人妻一区二区三区在| 亚洲久久久久久中文字幕| 国产伦一二天堂av在线观看| 精品一区二区三区人妻视频| 久久亚洲精品不卡| 欧美日韩乱码在线| 免费在线观看成人毛片| 99久久成人亚洲精品观看| 日韩一区二区视频免费看| 一个人看的www免费观看视频| 日本五十路高清| 黑人高潮一二区| 欧美在线一区亚洲| 99热全是精品| 人妻丰满熟妇av一区二区三区| 欧美区成人在线视频| 美女大奶头视频| 久久久精品欧美日韩精品| 国产精品嫩草影院av在线观看| 99久久成人亚洲精品观看| 伊人久久精品亚洲午夜| 久久热精品热| 天堂√8在线中文| 亚洲欧美日韩高清专用| 国产综合懂色| 亚洲av二区三区四区| 日本色播在线视频| 欧美性感艳星| 久久久色成人| 午夜久久久久精精品| 国产精品美女特级片免费视频播放器| 中文字幕精品亚洲无线码一区| 99久久精品一区二区三区| 国产视频一区二区在线看| 日日撸夜夜添| 性插视频无遮挡在线免费观看| 在线看三级毛片| 成人综合一区亚洲| 亚洲欧美精品自产自拍| 国产一区二区在线观看日韩| 床上黄色一级片| 久久久色成人| 十八禁国产超污无遮挡网站| 成年版毛片免费区| 亚洲精品在线观看二区| 淫秽高清视频在线观看| 日本欧美国产在线视频| 天堂影院成人在线观看| 婷婷亚洲欧美| 美女大奶头视频| av在线天堂中文字幕| 久久人人爽人人片av| 日日摸夜夜添夜夜添小说| 人妻夜夜爽99麻豆av| 久久久久久伊人网av| 99久久无色码亚洲精品果冻| 非洲黑人性xxxx精品又粗又长| 精品久久久久久久人妻蜜臀av| 一区二区三区高清视频在线| 99久久中文字幕三级久久日本| 久久午夜福利片| 极品教师在线视频| 国产伦一二天堂av在线观看| 人人妻,人人澡人人爽秒播| 日韩制服骚丝袜av| 天美传媒精品一区二区| 欧美中文日本在线观看视频| 赤兔流量卡办理| 99国产极品粉嫩在线观看| 99在线人妻在线中文字幕| 日韩欧美精品免费久久| 成人二区视频| 欧美日韩国产亚洲二区| 国产男靠女视频免费网站| 99九九线精品视频在线观看视频| 精品无人区乱码1区二区| 看黄色毛片网站| 亚洲精品一区av在线观看| 深爱激情五月婷婷| 日本黄色片子视频| 一个人看的www免费观看视频| 免费av毛片视频| 夜夜爽天天搞| 亚洲久久久久久中文字幕| 日本熟妇午夜| 深夜a级毛片| 69av精品久久久久久| 免费看日本二区| 少妇熟女aⅴ在线视频| 男人舔女人下体高潮全视频| 99国产精品一区二区蜜桃av| 校园春色视频在线观看| 在线a可以看的网站| 久久99热这里只有精品18| 亚洲精品久久国产高清桃花| 午夜久久久久精精品| 在线天堂最新版资源| 免费电影在线观看免费观看| 18禁裸乳无遮挡免费网站照片| 亚洲在线观看片| 国产乱人视频| 淫秽高清视频在线观看| 久99久视频精品免费| 亚洲欧美成人精品一区二区| 亚洲乱码一区二区免费版| 日韩欧美免费精品| 色av中文字幕| 免费av不卡在线播放| 国产精品av视频在线免费观看| videossex国产| 国产探花在线观看一区二区| 亚洲av中文av极速乱| 久久综合国产亚洲精品| 精品午夜福利视频在线观看一区| 欧美不卡视频在线免费观看| 亚洲综合色惰| 亚洲av免费高清在线观看| 人妻丰满熟妇av一区二区三区| 日韩一本色道免费dvd| 国产一区二区三区在线臀色熟女| 美女高潮的动态| 国产免费男女视频| 亚洲欧美成人综合另类久久久 | 91狼人影院| 免费看a级黄色片| 日韩成人av中文字幕在线观看 | 国产精品久久久久久亚洲av鲁大| av在线天堂中文字幕| 如何舔出高潮| 亚洲精品一卡2卡三卡4卡5卡| 日韩三级伦理在线观看| 三级毛片av免费| 两性午夜刺激爽爽歪歪视频在线观看| 久久国产乱子免费精品| 亚洲婷婷狠狠爱综合网| 午夜久久久久精精品| 两个人的视频大全免费| 黄色视频,在线免费观看| 97超级碰碰碰精品色视频在线观看| 亚洲国产日韩欧美精品在线观看| 少妇被粗大猛烈的视频| 欧美xxxx黑人xx丫x性爽| 亚洲在线自拍视频| 色哟哟哟哟哟哟| 舔av片在线| 午夜福利成人在线免费观看| 插逼视频在线观看| 国产一区二区激情短视频| 99热这里只有是精品在线观看| 大香蕉久久网| 免费不卡的大黄色大毛片视频在线观看 | 村上凉子中文字幕在线| 精品国内亚洲2022精品成人| 欧美成人a在线观看| 丝袜喷水一区| 亚洲丝袜综合中文字幕| 国产精品综合久久久久久久免费| 日韩强制内射视频| 国产91av在线免费观看| 免费av不卡在线播放| 亚州av有码| 99热这里只有是精品在线观看| 免费看光身美女| 亚洲av美国av| 欧美丝袜亚洲另类| 国产黄片美女视频| 综合色av麻豆| 一卡2卡三卡四卡精品乱码亚洲| 日本成人三级电影网站| 久久久久久大精品| 又爽又黄无遮挡网站| 免费av不卡在线播放| 色哟哟·www| 国产单亲对白刺激| 国产视频一区二区在线看| a级毛片a级免费在线| 欧美极品一区二区三区四区| 日本-黄色视频高清免费观看| 久久久久久大精品| 又爽又黄无遮挡网站| 中文亚洲av片在线观看爽| 丰满乱子伦码专区| 啦啦啦啦在线视频资源| 欧美日韩综合久久久久久| 国产精品日韩av在线免费观看| 久久人人爽人人片av| 老熟妇乱子伦视频在线观看| 黑人高潮一二区| 欧美中文日本在线观看视频| 在线观看66精品国产| АⅤ资源中文在线天堂| 少妇人妻精品综合一区二区 | 老司机午夜福利在线观看视频| 亚洲av二区三区四区| АⅤ资源中文在线天堂| 国产v大片淫在线免费观看| 国产女主播在线喷水免费视频网站 | 亚洲中文字幕一区二区三区有码在线看| 欧美一区二区国产精品久久精品| 直男gayav资源| 99国产极品粉嫩在线观看| 国模一区二区三区四区视频| 国产精品野战在线观看| 日本色播在线视频| 亚洲va在线va天堂va国产| 国产精品人妻久久久久久| 色综合亚洲欧美另类图片| 久久99热6这里只有精品| 免费在线观看影片大全网站| 一夜夜www| 亚洲在线观看片| 欧美日韩精品成人综合77777| 亚洲最大成人手机在线| av在线亚洲专区| 国产高清视频在线观看网站| 午夜福利成人在线免费观看| 一进一出抽搐gif免费好疼| а√天堂www在线а√下载| 日本一本二区三区精品| 免费看a级黄色片| 人妻少妇偷人精品九色| 三级男女做爰猛烈吃奶摸视频| 听说在线观看完整版免费高清| av在线老鸭窝| 91av网一区二区| 国产精品嫩草影院av在线观看| 看免费成人av毛片| 欧美性猛交黑人性爽| 天堂影院成人在线观看| 最好的美女福利视频网| 久久国内精品自在自线图片| 熟妇人妻久久中文字幕3abv| 国产av不卡久久| 精品久久久久久成人av| 嫩草影视91久久| 最近手机中文字幕大全| 日日摸夜夜添夜夜添av毛片| 十八禁网站免费在线| 高清毛片免费看| 最好的美女福利视频网| 日韩欧美精品免费久久| 人妻制服诱惑在线中文字幕| 国国产精品蜜臀av免费| 国产又黄又爽又无遮挡在线| 深夜a级毛片| 最近在线观看免费完整版| 亚洲成人av在线免费| 免费在线观看影片大全网站| 免费人成视频x8x8入口观看| 免费av观看视频| 亚洲av免费在线观看| 色av中文字幕| 久久精品人妻少妇| 毛片女人毛片| 亚洲成人av在线免费| 亚洲欧美日韩卡通动漫| 在线播放无遮挡| 波多野结衣高清作品| 国产久久久一区二区三区| 无遮挡黄片免费观看| 精品人妻熟女av久视频| 欧美最新免费一区二区三区| 亚洲性夜色夜夜综合| 免费人成在线观看视频色| 一进一出好大好爽视频| 极品教师在线视频| 免费看a级黄色片| 一级黄片播放器| 国产高清视频在线播放一区| 日韩高清综合在线| 大香蕉久久网| 舔av片在线| 精品久久久久久久久久免费视频| 日韩精品有码人妻一区| 夜夜夜夜夜久久久久| 在线观看av片永久免费下载| 久久国内精品自在自线图片| .国产精品久久| 91久久精品国产一区二区成人| 国产免费男女视频| 国产精品精品国产色婷婷| 亚洲av成人精品一区久久| 国产成人91sexporn| 亚洲av电影不卡..在线观看| 无遮挡黄片免费观看| 99热6这里只有精品| 精品一区二区三区人妻视频| 一级毛片我不卡| 黄色配什么色好看| 国产一区二区三区在线臀色熟女| 精品国内亚洲2022精品成人| 美女黄网站色视频| 欧美国产日韩亚洲一区| 草草在线视频免费看| 午夜精品国产一区二区电影 | 春色校园在线视频观看| 国产伦在线观看视频一区| 成年女人永久免费观看视频| 久久久精品大字幕| 亚洲av.av天堂| 国产av一区在线观看免费| 少妇被粗大猛烈的视频| 国产单亲对白刺激| 日本与韩国留学比较| 国产麻豆成人av免费视频| 两个人的视频大全免费| 一本一本综合久久| 在线天堂最新版资源| 一本久久中文字幕| 全区人妻精品视频| 欧美成人一区二区免费高清观看| 欧美最新免费一区二区三区| 丝袜美腿在线中文| 看免费成人av毛片| 少妇裸体淫交视频免费看高清| 中国美白少妇内射xxxbb| 噜噜噜噜噜久久久久久91| 人人妻人人看人人澡| 狂野欧美激情性xxxx在线观看| 波多野结衣巨乳人妻| 久久久久久国产a免费观看| 久久久久久久亚洲中文字幕| 色吧在线观看| 国内久久婷婷六月综合欲色啪| 男人舔女人下体高潮全视频| 精品日产1卡2卡| 日本色播在线视频| 亚洲精品456在线播放app| 国产 一区精品| 晚上一个人看的免费电影| 亚洲成人中文字幕在线播放| 99久国产av精品| 97人妻精品一区二区三区麻豆| 亚洲人与动物交配视频| 日韩av不卡免费在线播放| 99热6这里只有精品| 男人舔奶头视频| 可以在线观看的亚洲视频| 免费在线观看影片大全网站| 精品欧美国产一区二区三| 午夜福利在线观看免费完整高清在 | 久久亚洲精品不卡| 欧美高清性xxxxhd video| 热99在线观看视频| 亚洲国产精品国产精品| 国产成人91sexporn| 别揉我奶头 嗯啊视频| 久久婷婷人人爽人人干人人爱| 久久精品国产鲁丝片午夜精品| 久久精品国产清高在天天线| 久久人妻av系列| 亚洲国产欧洲综合997久久,| 亚洲欧美日韩高清在线视频| 亚洲18禁久久av| 免费观看精品视频网站| 亚洲av成人av| 麻豆一二三区av精品| 中文字幕熟女人妻在线| 搡老熟女国产l中国老女人| 深爱激情五月婷婷| 久久鲁丝午夜福利片| 男女视频在线观看网站免费| 成人亚洲欧美一区二区av| 夜夜爽天天搞| 国产亚洲精品久久久久久毛片| 国产亚洲精品久久久com| 日本免费一区二区三区高清不卡| 午夜激情福利司机影院| 日韩欧美 国产精品| 51国产日韩欧美| 中文字幕av成人在线电影| 一进一出抽搐动态| 亚洲精品日韩在线中文字幕 | 成人av在线播放网站| 午夜福利在线在线| 国产亚洲欧美98| 精品人妻视频免费看| 成人鲁丝片一二三区免费| 黄片wwwwww| 内地一区二区视频在线| 菩萨蛮人人尽说江南好唐韦庄 | 精品熟女少妇av免费看| 1024手机看黄色片| 此物有八面人人有两片| 欧美色欧美亚洲另类二区| 日本色播在线视频| 色尼玛亚洲综合影院| 亚洲自偷自拍三级| 赤兔流量卡办理| 乱人视频在线观看| 看免费成人av毛片| 一个人观看的视频www高清免费观看| 在线天堂最新版资源| 国产淫片久久久久久久久|