◇陳 軍
【作者單位:昆山市玉山鎮(zhèn)同心小學(xué)江蘇】
隨著科學(xué)技術(shù)的發(fā)展,3D技術(shù)等現(xiàn)代技術(shù)得到了快速普及與發(fā)展。如果將3D技術(shù)引入數(shù)學(xué)課堂,利用3D模型輔助學(xué)生理解圖形知識,就可以增強學(xué)生學(xué)習(xí)的直觀性,提高學(xué)習(xí)效果。本文基于小學(xué)數(shù)學(xué)圖形教學(xué),就如何高效地應(yīng)用3D模型進行了探析。
在新課程標準下,小學(xué)數(shù)學(xué)課程教學(xué)內(nèi)容較以往發(fā)生了較大的改變,教學(xué)要求與標準也越來越高,創(chuàng)新教學(xué)理念、方式方法與路徑顯得尤為重要。圖形教學(xué)是小學(xué)數(shù)學(xué)教學(xué)的重要內(nèi)容,其主要目標是引導(dǎo)學(xué)生認識平面圖形和立體圖形等一些基本數(shù)學(xué)圖形。由于這部分圖形知識具有很強的抽象性,對學(xué)生的空間想象力等具有較高要求,但如果創(chuàng)新運用3D模型等一些直觀性更強的實物輔助學(xué)生理解圖形知識,就可以極大地提升學(xué)生的學(xué)習(xí)效果。
3D模型主要是指立體化模型,其可以將某些平面化的圖形以直觀性更強的立體化形式展現(xiàn)出來。在以往的小學(xué)數(shù)學(xué)教學(xué)中,教師可能更加側(cè)重于利用PPT或黑板繪圖等方式為學(xué)生展示長方體、正方體、圓錐與圓柱等相關(guān)的圖形知識,這種平面展示的形式對學(xué)生自身的空間想象力和抽象思維能力具有較高要求。實踐表明,上述的這些圖形教學(xué)方式容易增加學(xué)生學(xué)習(xí)的難度;同時,這些圖形知識的展示形式不夠形象,學(xué)生在學(xué)習(xí)圖形概念等的時候可能會存在興趣不高和認識度不足等問題,影響了他們實際的學(xué)習(xí)效果。此時,如果在開展圖形基本概念的教學(xué)中,靈活地運用3D模型輔助學(xué)生進行理解,可以有效激發(fā)學(xué)生學(xué)習(xí)興趣;同時由于正方體等各種3D模型的直觀性非常強,配合教師的專項講解,可以極大地提升小學(xué)生的學(xué)習(xí)效果。
例如,在《立體圖形的認識》部分知識教學(xué)期間,其中涉及正方體、長方體、圓錐與圓柱等幾種類型的立體圖形,這些立體圖形是三維圖形,對學(xué)生的空間想象力與思維能力具有較高的要求,學(xué)生理解起來難度比較大。而如果教師在該部分知識的教學(xué)中應(yīng)用3D模型,指導(dǎo)學(xué)生對照模型去理解各種立體圖形的基本概念定義,就可以極大地降低學(xué)生理解的難度,提高他們學(xué)習(xí)的效果。同理,在為學(xué)生講解圓錐等圖形概念期間,教師也可以靈活地運用3D模型,幫助學(xué)生理解相關(guān)圖形的基本概念,如圓錐底面、圓柱的高等都可以通過直觀展現(xiàn)3D模型進行標注,提升了學(xué)生理解的效果。
立體圖形是小學(xué)數(shù)學(xué)教學(xué)中的重要內(nèi)容之一,也是學(xué)生學(xué)習(xí)的難點。其中所涉及的立體圖形體積的計算、表面積的計算等知識,對小學(xué)生的空間想象力與邏輯思維等具有較高要求。在該部分數(shù)學(xué)知識教學(xué)中如果直接采用PPT的方式為學(xué)生介紹相關(guān)的立體圖形知識,很容易影響學(xué)生學(xué)習(xí)的興趣與效果,也會限制學(xué)生空間思維能力的發(fā)展。如果在該部分圖形知識教學(xué)中有效地運用3D模型,將圓錐體等不同的立體圖形以更加直觀的形式展現(xiàn)給學(xué)生,使學(xué)生在動手操作的過程中能切實體會和掌握圓錐的底面積、圓錐的高等相關(guān)圖形知識,則能有效促進他們空間思維能力的發(fā)展。
例如,在指導(dǎo)學(xué)生學(xué)習(xí)立體圖形展開圖部分知識時,由于小學(xué)生的空間想象力等思維能力比較差,在理解立體圖形展開圖的時候常常會陷入理解瓶頸,如不知道圓錐體圖形展開之后是何種形式,這就增加了學(xué)生學(xué)習(xí)的難度,同時也不利于學(xué)生空間思維能力的發(fā)展。此時如果采用3D模型,指導(dǎo)學(xué)生親自動手操作模型,讓學(xué)生動手做一做,就能深化學(xué)生對立體圖形展開圖方面知識的理解與認識,有效地促進他們空間想象力、邏輯思維能力和分析能力的發(fā)展,這是以往PPT授課方式無法實現(xiàn)的一個重要教學(xué)優(yōu)勢。
在新課標下,空間思維能力、問題求解能力是小學(xué)數(shù)學(xué)關(guān)鍵能力培養(yǎng)的重要基礎(chǔ),其直接關(guān)乎學(xué)生數(shù)學(xué)綜合學(xué)習(xí)能力的發(fā)展。當下小學(xué)數(shù)學(xué)教學(xué)中圖形部分知識教學(xué)的一個重要目標就是提升學(xué)生對圖形問題求解能力。但在實際的圖形問題教學(xué)中,如果教師直接采取講授式授課模式,學(xué)生常常理解不透,學(xué)習(xí)效果不佳。而如果在指導(dǎo)學(xué)生解決圖形問題的時候靈活運用3D模型,就有利于輔助學(xué)生理解相關(guān)圖形問題的題干含義,優(yōu)化他們解決圖形問題的思路,從而極大地提升他們的圖形問題求解能力。
例如,在《圖形的平移》課部分知識教學(xué)中,相關(guān)的問題主要是有關(guān)圖形的平移問題,對學(xué)生的邏輯思維、空間想象力等具有較高的要求。此時,在教學(xué)相關(guān)問題的時候,教師可以靈活地運用3D模型,輔助學(xué)生進行問題求解??紤]到部分學(xué)校的3D模型材料非常有限,教師可以直接使用橡皮泥、面團或白蘿卜等自主制作一些簡易的3D模型,同樣可以輔助學(xué)生理解與掌握相關(guān)的圖形知識,提高他們解決圖形問題的能力。此外,靈活運用3D模型,同樣有利于發(fā)展小學(xué)生的模型思想,一舉多得。
總而言之,3D模型是輔助小學(xué)數(shù)學(xué)圖形教學(xué)的一個重要工具,在深化學(xué)生對圖形概念的理解與認識、發(fā)展學(xué)生空間思維能力以及提高他們圖形問題求解能力等方面具有積極的作用。為了有效應(yīng)用3D模型開展教學(xué),教師要注意結(jié)合圖形教學(xué)的目標以及小學(xué)生的學(xué)習(xí)特征與興趣,科學(xué)地制訂3D模型教學(xué)方案,避免盲目應(yīng)用3D 模型而影響了其應(yīng)用效果。