• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    磁性Y-MOF@SiO2@Fe3O4催化劑的制備及其在Aza-Micheal加成反應中的性能

    2018-09-03 03:25:44穆金城季生福
    無機化學學報 2018年9期
    關鍵詞:北京化工大學阿拉爾金城

    穆金城 蔣 賽 季生福*,

    (1北京化工大學化工資源有效利用國家重點實驗室,北京 100029)

    (2塔里木大學兵團南疆化工資源利用工程實驗室,阿拉爾 843300)

    The Aza-Michael reaction is commonly used in organic synthesis to grow carbon chains.Among them the Aza-Michael addition reaction of the nitrogen nucleophiles and the lack of electron-polymer compounds is an important method for formation of CN bond[1-2].The addition of α,β-unsaturated carbonyl compounds is an effective way to synthesize β-aminocarbonyl compounds[3].The β-aminocarbonyl compounds can be further converted to β-amino acids and β-lactam.These compounds can be further synthesized to biological activity of natural products,chiral auxiliaries,antibiotics and drugs.For this reason,this reaction can be applied in the field of fine chemicals and biopharmaceuticals,and has an important application in industrial research.However,the activity of the aromatic amine is lower than that of the aliphatic amine in α,β-unsaturated carbonyl compounds addition reactions.Thus,Aza-Michael reaction of weak amphiphilic aromatic amines is reported less than that of aliphatic amines.Therefore,it is significant to be studied.

    Lewis acid catalysts are often used in the Aza-Michael reaction,such as ionic liquids[4],transition metal salts[5],Pd(N,N′-ppo)Cl2[6],samarium diiodide[7],Zn/InCl3[8],heterocyclic carbenes[9].These catalysts have a number of disadvantages.For example,the use of large amount of catalyst,the recycling and separation of catalysts from solution after reaction are difficult,and their disposal after use would cause environmental pollution.From this point of view,many researchers have converted their focus to heterogeneous catalysts.Mokhtar et al.[10]used Mg-Al hydrotalcites as a heterogeneous reusable catalyst for the synthesis of pyrazolo[1,5-]pyrimidine derivatives.The pure product yield over 90%under the condition of microwave irradiation for 15 min.

    Metal-organic frameworks (MOFs)are a kind of nano porous materials and have the larger surface area.These features give MOFs have great potential for heterogeneous catalysis[11].Some MOFs with Lewis acid sites were used in Lewis acid-catalyzed reactions,such as HKUST-1,MIL-100(Fe,Cr),MIL-101(Fe,Cr),UiO-66,MIL-100(Sc)[12].Nguyen et al.[13]used MOF-199 as an efficient heterogeneous catalyst for the Aza-Michael reaction of benzylamine with ethyl acrylate.Excellent conversions were achieved under mild reaction conditions in the presence of 5%(n/n)catalyst.

    Recently,our group also focuses the Lewis acid catalytic activity of MOFs[14,18-21],especially magnetic MOF@Fe3O4with Lewis acid which is easy to recycle.Currently,the magnetic MOF@Fe3O4is widely used for drug delivery,environmental control,catalysis,sensing and miniaturized device fabrication[15].However,it is difficult to synthesis the MOF@Fe3O4with regular structures.To solve this problem,the Fe3O4are encapsulated into SiO2.It is facilitated the in-situ growth of the MOF material with regular structures for silanol moieties on the SiO2surface greatly contribute to the hydrophilic property of silica[16-17],meanwhile helps to protect Fe3O4from oxidation[14].Therefore,our group prepared a series of magnetic MOF@SiO2@Fe3O4such as the Cu-BTC@SiO2@Fe3O4(BTC is benzene-1,3,5-tricarboxylic acid)catalyst for the Pechmann reaction of 1-naphthol with ethyl acetoacetate[18],the Zn-BTC@SiO2@Fe3O4catalyst for the toluene acylation with p-toluoyl chloride[19],the MOF-5@SiO2@Fe3O4catalyst for the Friedel-Crafts alkylation of toluene with benzyl chloride[20],the MIL-53(Al)@SiO2@Fe3O4catalyst for Friedel-Crafts acylation reaction of 2-methylindole with benzoyl chloride[21],etc.

    Lanthanide organic frameworks(Ln-MOFs)are an important rare earth metal MOF material.Because its crystal has special structure of topology,Ln-MOFs has great potentials in high performance light emitting devices[22-23],magnetic materials[24],catalyst fields[25].Ln-MOFs also exhibit the Lewis acid sites[26]and YMOF has high thermal stability[27].In this work,the magnetic Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents were synthesized.The structure of the catalyst was characterized.The performance of the catalyst for the Aza-Micheal addition reaction of aniline with methyl acrylate was evaluated.

    1 Experimental

    1.1 Synthesis of magnetic Y-MOF@SiO2@Fe3O4 catalyst

    The synthesis of magnetic SiO2@Fe3O4support was carried out according to the literatures[21].The SiO2was coated on the surface of magnetic Fe3O4nanoparticles for protecting Fe3O4and preventing it from oxidation[28].The Y-MOF was synthesis according to the procedure described by Liu et al[29].The Y-MOF@SiO2@Fe3O4catalyst was prepared as follows:An amount of SiO2@Fe3O4was dispersed in a mixture of Y(NO3)3·6H2O,Trimesicacid(H3BTC),N,N-dimethylformamide (DMF)and H2O by ultrasonic method.Then the solution was transferred to a Teflon-lined steel autoclave and kept at 100℃for 12 h.After reaction,the formed powder was separated by an externalmagnetand washed severaltimeswith distilled water.Finally,solids were dried at 60℃for 8 h under vacuum.Slightly gray-white solid Y-MOF@SiO2@Fe3O4magnetic catalystwasobtained.The magnetic Y-MOF@SiO2@Fe3O4catalysts with Y-MOF contents of 15.2%,26.1%,33.5%,43.3%and 58.8%(w/w)were named as YM-1,YM-2,YM-3,YM-4 and YM-5,respectively.

    1.2 Characterizations of Y-MOF@SiO2@Fe3O4catalyst

    X-ray diffraction(XRD)patterns of samples were obtained on a Rigaku D/MAX-2500VPC with Cu Kα radiation(λ=0.154 18 nm)at 200 kV and 50 mA with a graphite monochromator and scans between 5°~80°.Transmission electron microscopy (TEM)was performed on a JEOL (JEM 2100)transmission emission microscope operated at 200 kV accelerating voltage.Fourier transform infrared spectroscopy (FT-IR)was carried out on a Bruker Tensor-27 using KBr pellet samples.The magnetic property of the samples was measured using a vibration sample magnetometer(VSM,Laker shore Model 7400)under magnetic fields up to 20 kOe.The N2adsorption-desorption isotherm were measured on an on an ASAP 2020M automatic specific surface area and aperture analyzer.

    1.3 Catalytic evaluation for Aza-Micheal addition reaction

    Aza-Micheal addition reaction was carried out in an Eggplant type flask with a condenser and stirring.A certain amount of aniline,methyl acrylate,the catalysts and n-dodecane were added in the flask and stirred at a certain temperature for specific time intervals.After reaction,the catalyst was separated from the solvent by an external magnet.The supernatant liquid was analyzed by a GC (Beijing Beifen ruili Analytical Instrument Co.,Ltd.,SP-4000A with FID ionization detector).The GC instrument was equipped with a capillary column named as HJ.PONA,50 m×0.2 mm×0.50 μm.The injector temperature was 240℃,and the detector temperature was 250℃.According to the program for GC analysis,the sample was heated from 100℃and was held at the same temperature for 1 min,then from 100 to 240℃at a heating speed of 10℃·min-1,and was held at 240℃ for 10 min.After reaction,the liquid was poured from the flask,the magnetic Y-MOF@SiO2@Fe3O4catalyst was separated by an external magnet and washed several times with ethanol.Finally,the catalysts were activated at 150℃under vacuum.Then the recovered catalyst was added to the flask reactor and used for the next run.The conversion of methyl acrylate(C),the selectivity(S)and the yield(Y)of N-(β-methoxy carbonylethyl)aniline were all calculated with ndodecane as an internal standard.

    2 Results and discussion

    2.1 Structure of Y-MOF@SiO2@Fe3O4catalysts

    XRD patterns of Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents,Fe3O4,SiO2@Fe3O4and simulated Y-MOF were shown in Fig.1.The Fe3O4shows strong characteristic diffraction peaks at 30.0°,35.6°,43.4°,57.4°and 62.8°(Fig.1(a)).These peaks are ascribed to the typical cubic spinel structure of Fe3O4and consistent with PDF No.88-0866[30].The XRD patterns of SiO2@Fe3O4shows strong diffraction peaks of Fe3O4(Fig.1(b)).The peak type and peak intensity of Fe3O4do not change significantly,but there is a weak diffusion diffraction peak,which appeared between 15°and 30°,which may be the characteristic diffraction peak of the coated SiO2[31].The XRD pattern of synthesized Y-MOF shows strong diffraction peaks at 6.6°,10.6°,18.3°,19.3°,20.3°,25.3°,26.8°,27.5°

    and 28.16°(Fig.1(h)),and consistent with simulated Y-MOF(Fig.1(i)).It proves that the synthesized MOF is Y-MOF[29,32].The XRD patterns of the magnetic YMOF@SiO2@Fe3O4catalysts with different contents of Y-MOF show(Fig.1(c~g))the characteristic diffraction of Y-MOF.This indicates that the Y-MOF@SiO2@Fe3O4still has a complete structure of Y-MOF[29].With the increase of the Y-MOF content of magnetic Y-MOF@SiO2@Fe3O4catalyst,the Y-MOF characteristic diffraction peak intensity gradually increases,and the diffraction peak intensity of Fe3O4gradually decreases,and no obvious diffraction of SiO2.

    Fig.1 XRD patterns of(a)Fe3O4,(b)SiO2@Fe3O4,(c)YM-1,(d)YM-2,(e)YM-3,(f)YM-4,(g)YM-5,(h)as-synthesized Y-MOF and(i)simulated Y-MOF

    The TEM of the samples are shown in Fig.2.The magnetic Y-MOF@SiO2@Fe3O4catalysts have a uniform particle size between 140 and 200 nm.It presents a relatively regular spherical core-shell structure.As the amount of Y-MOF coating increases,the thickness of the shell gradually increases.

    The FT-IR spectra of Y-MOF@SiO2@Fe3O4catalysts withdifferent contents of Y-MOF and the ligands H3BTC are shown in Fig.3.The strong vibration peak at 1 691 and 1 280 cm-1in Fig.3(a)can be ascribed to stretching vibration of C=O bond of COOH in organic ligand H3BTC.The bands appear at 2 500~3 300 cm-1are assigned to the stretching vibrations of O-H bonds of-OH in water[33].The sharp peak at 750~900 cm-1are attributed to the bending vibration of O-H bond[33].Two bands at 1 276 and 1 117 cm-1are assigned to the bending vibration of C-H bond in benzene ring[34].The FT-IR spectrum of Y-MOF@SiO2@Fe3O4has no peak near 1 690 cm-1,indicating that there is no free H3BTC molecule in the sample.The bands that appear at 1 400~1 700 cm-1are assigned to asymmetric stretching vibration (1 608 and 1 507 cm-1)and symmetric stretching vibration (1 445 and 1 417 cm-1)of-COO in organic ligands of Y-MOF[35],and the band which appears at 570 cm-1is assigned to vibration of Y-O bond[29].

    Fig.2 TEM images of(a)Fe3O4,(b)SiO2@Fe3O4(c)YM-3,(d)YM-4 and(e)YM-5

    Fig.3 FT-IR spectra of(a)H3BTC,(b)YM-1,(c)YM-2,(d)YM-3,(e)YM-4,(f)YM-5 and(g)Y-MOF

    Fig.4 VSM of(a)Fe3O4,(b)SiO2@Fe3O4,(c)YM-1,(d)YM-2,(e)YM-3,(f)YM-4 and(g)YM-5

    VSM analysis of the samples are shown in Fig.4.The magnetization saturation of Fe3O4is 81.9 emu·g-1,and the magnetization saturation of SiO2@Fe3O4is 77.0 emu·g-1,lower than that of Fe3O4.This behavior is mainly due to the encapsulated SiO2layer on the surface of Fe3O4particles.The magnetization saturation of all the magnetic Y-MOF@SiO2@Fe3O4catalysts with superparamagnetism is lower than that of SiO2@Fe3O4.The magnetization saturation decreases gradually with the increase of Y-MOF content in the catalyst.Due to the gradual increase of the thickness of the shell with the increase of the amount of Y-MOF coating,the magnetization saturation decreases gradually.This is consistent with the results of the work of Jiang et al[21].The magnetization saturation of YM-1,YM-2,YM-3,YM-4 and YM-5 is 57.7,41.4,33.65,24.7 and 13.4 emu·g-1,respectively.Although the magnetization of YM-5 is minimal,rapid separation is still possible under an external magnetic field.

    The N2adsorption-desorption isotherm of the samples had been shown in Table 1.The BET surface area (SBET)of Y-MOF was 592 m2·g-1.With further encapsulation of different contents of Y-MOF,the surface areas of the as-synthesized catalysts were decreased.The BET surface area of Y-MOF@SiO2@Fe3O4with different contents of Y-MOF was from 141 to 389 m2·g-1.It can be seen that the pore size distribution(D)was mainly between 1.1 and 1.2 nm.

    Table 1 BET surface area(SBET)and pores data(D)of the samples

    2.2 Performance of the catalysts for Aza-Micheal addition reaction

    Scheme 1 is Aza-Michael reaction equation using the aniline and methyl acrylate as reactants over the Y-MOF@SiO2@Fe3O4catalyst.

    After some test of the catalytic performance for Aza-Michael addition reaction were conducted.In this part,the effect of catalysts and reaction time,the reaction temperature,the values of ncatalyst/nmethylacrylateand naniline/nmethylacrylate,and the recovery and reuse times on catalytic performance over YM-4 catalyst were investigated.The results of the catalytic performance over YMOF@SiO2@Fe3O4with different Y-MOF contents are shown in Fig.5.It can be seen that the conversion of methyl acrylate increased with the increase in reaction time.Within 3.0 h,the conversion rate increased rapidly.When the reaction time was more than 3.0 h,the conversion rate increased slowly and the conversion reached the highest value at 12 h.In the absence of the addition of the catalyst,it was observed that the reaction did not occur and the conversion was 0.Using Y-MOF@SiO2@Fe3O4as catalyst,the conversion ofAza-Michealreaction increased with the increase of Y-MOF content.When YM-5 was used as catalyst,the conversion of methyl acrylate was the highest and the conversion was 80.7%at 12 h.However,the conversion of YM-4 was 77.5%lower than that of YM-5,but the difference was very small.Therefore,in this paper,the YM-4 catalyst was chosen and used for catalyst activity evaluation.However,the time over 10 h,the rate of conversion increased become slowly.So,the best reaction time was 10 h.

    Scheme 1 Aza-Michael addition reaction equation of aromatic amines to α,β-unsaturated compounds

    Fig.5 Catalytic performance of(a)YM-1,(b)YM-2,(c)YM-3,(d)YM-4 and(e)YM-5 at different times

    Table 2 Effect of ncatalyst/nmethyl acrylateon catalytic performance

    The results of the catalytic performance over the YM-4 catalyst on different ncatalyst/nmethylacrylateare shown in Table 2.When the ncatalyst/nmethylacrylatewas below 0.18,the conversion of methyl acrylate and the yield of product increased with the increase of ncatalyst/nmethylacrylate.When the ncatalyst/nmethylacrylatewas 0.18,the conversion of methyl acrylate was 86.1%,and the yield of product was 86.0%.When the ncatalyst/nmethylacrylatewas increased to 0.22,the conversion and yield were the highest and reached 88.2%and 88.0%,respectively.Thus,the ncatalyst/nmethylacrylate=0.18 can meet the current reaction requirement.When the ncatalyst/nmethylacrylatefurther increased,the conversion and yield were not significantly improved.Thus,the optimum the ncatalyst/nmethylacrylatewas 0.18.

    The results of the catalytic performance over the YM-4 catalyst at different reaction temperatures are shown in Table 3.The reaction temperature had a great effect on the Aza-Micheal addition reaction of aniline and methyl acrylate.When the reaction temperature was 50℃,the conversion of methyl acrylateand the yield of the product were low,because the reaction proceeded very slowly at lower temperatures.The conversion of methyl acrylate and the yield of the product increased with increasing temperature.When the reaction temperature was 80℃,the conversion and yield were the highest and have reached 86.1%and 86.0%,respectively.After the reaction temperature was beyond 80℃,the conversion of methyl acrylate and the yield of the product began to decline significantly.It is speculated that the reason may be that an excessively high temperature is not conducive to the stabilization of the skeletal structure of the YMOFs in the magnetic composite catalyst.Therefore,the most suitable reaction temperature was 80℃.

    Table 3 Catalytic performance at different reaction temperatures

    The results of the catalytic performance on the molar ratios of aniline to methyl acrylate over the YM-4 catalyst are shown in Table 4.When naniline/nmethylacrylatewas 1.0,the conversion of methyl acrylate and the yield of the product were lower,and merely achieved 63.2%and 63.0%,respectively.When naniline/nmethylacrylatewas below 2.5,the conversion of methyl acrylate and the yield of the product was proportional to the molar ratio of aniline to methyl acrylate.When naniline/nmethylacrylatewas 2.5,the conversion of methyl acrylate and the yield of the product were high,and reached 88.3%and 88.1%,respectively.When the amount of aniline was increased,the conversion of methyl acrylate and the yield of the product decreased with the increase of aniline to methyl acrylatemolar ratio.This may be due to the excessive amount ofaniline reduced the concentration of methyl acrylate during the reaction.Aniline can be used as a solvent.The selectivity of the product was less affected by the molar ratios of aniline to methyl acrylate and was maintained in the range of 98.9%to 99.8%.Thus,the optimum molar ratio between aniline and methyl acrylate is naniline/nmethylacrylatewas 2.5.

    Table 4 Effect of molar ratio between aniline and methyl acrylate on catalytic performance

    Fig.6 Reusability of the Y-MOF@SiO2@Fe3O4catalysts

    The reusability of Y-MOF@SiO2@Fe3O4catalyst are shown in Fig.6.After reuse five times,the conversion of methyl acrylate reaction was reduced from 88.3% to 75.2%,and the yield of product was reduced from 88.1%to 74.5%,while the selectivity of product remained at 99.8%~99.2%.It was indicated that the catalyst has a good reusability performance.We speculate that the decline of catalytic performance is mainly due to the loss of the catalyst and the longterm high-temperature drying leading to the destruction of its skeleton structure.

    3 Conclusions

    The Y-MOF was uniformly coated on the surface of magnetic SiO2@Fe3O4nanospheres through in-situ method to form a core-shell magnetic Y-MOF@SiO2@Fe3O4catalyst with a controlled particle size ranging from 140 to 200 nm.The magnetization saturation of the magnetic Y-MOF@SiO2@Fe3O4catalysts with different Y-MOF contents was between 13.4~57.7 emu·g-1.After reaction the magnetic catalyst can be quickly separated by the external magnetic field.In Aza-Micheal addition reaction of aniline and methyl acrylate,the Y-MOF@SiO2@Fe3O4catalysts exhibited a good catalytic performance.Under the reaction conditions:the naniline/nmethylacrylatewas 0.18,naniline/nmethylacrylatewas 2.5,reaction temperature was 80℃,reaction time was 10 h,the conversion of methyl acrylate was 88.3%and the selectivity of N-(β-methoxycarbonylethyl)aniline was 99.8%over the 43.3%(w/w)Y-MOF@SiO2@Fe3O4catalyst.After reaction,the catalyst can be separated by the external magnetic field and reused five times still has high conversion and selectivity.

    Acknowledgments:This work was supported by the National Natural Science Foundation of China (Grant No.21573015,21173018).

    猜你喜歡
    北京化工大學阿拉爾金城
    金城所致 金石為開
    金城謎朦
    金城化學(江蘇)有限公司
    不死的慈善家
    北京化工大學流體密封技術研究中心
    機電工程(2021年3期)2021-03-25 01:23:48
    北京化工大學流體密封技術研究中心
    機電工程(2021年2期)2021-02-25 03:35:16
    北京化工大學學報(社會科學版)采編系統(tǒng)正式啟用公告
    北京化工大學學報(社會科學版)采編系統(tǒng)正式啟用公告
    金城造紙廠研制成功以草代木的新型紙
    蘭臺世界(2017年4期)2017-03-08 08:13:26
    阿拉爾地區(qū)機采棉種植關鍵措施
    欧美日韩一区二区视频在线观看视频在线| 精品酒店卫生间| 女性被躁到高潮视频| 美女国产高潮福利片在线看| 在现免费观看毛片| 日韩 亚洲 欧美在线| 欧美成人午夜精品| 在线观看一区二区三区激情| 99国产综合亚洲精品| 久久99精品国语久久久| 99热网站在线观看| 国产成人a∨麻豆精品| a 毛片基地| 飞空精品影院首页| kizo精华| 亚洲av欧美aⅴ国产| 亚洲国产av新网站| 丰满迷人的少妇在线观看| 2021少妇久久久久久久久久久| 丰满饥渴人妻一区二区三| 日本欧美视频一区| 黄频高清免费视频| 成人国产av品久久久| 午夜av观看不卡| 久久久久久久国产电影| 精品少妇一区二区三区视频日本电影 | 国产在线一区二区三区精| 少妇 在线观看| 亚洲av免费高清在线观看| 少妇猛男粗大的猛烈进出视频| 亚洲情色 制服丝袜| 亚洲一码二码三码区别大吗| 亚洲第一区二区三区不卡| 国产成人精品在线电影| 欧美激情高清一区二区三区 | 国产一区二区激情短视频 | videos熟女内射| 伦理电影大哥的女人| 日本色播在线视频| 卡戴珊不雅视频在线播放| 在线观看www视频免费| 亚洲视频免费观看视频| 香蕉国产在线看| 久久久久人妻精品一区果冻| 国产精品国产三级国产专区5o| 80岁老熟妇乱子伦牲交| 91国产中文字幕| 国产亚洲最大av| 美女国产高潮福利片在线看| 亚洲视频免费观看视频| 日本色播在线视频| 大片免费播放器 马上看| 中文字幕制服av| 日本黄色日本黄色录像| 一区二区av电影网| 精品久久久精品久久久| 天天躁狠狠躁夜夜躁狠狠躁| 永久免费av网站大全| 婷婷色综合大香蕉| 交换朋友夫妻互换小说| 欧美日韩国产mv在线观看视频| 精品一区在线观看国产| 国产成人av激情在线播放| 青春草国产在线视频| 18+在线观看网站| 日韩av不卡免费在线播放| 国产亚洲午夜精品一区二区久久| 建设人人有责人人尽责人人享有的| 免费看不卡的av| 亚洲精品视频女| 一级毛片电影观看| 97人妻天天添夜夜摸| 日韩一区二区视频免费看| 欧美精品一区二区大全| 成人影院久久| 晚上一个人看的免费电影| 亚洲精品美女久久久久99蜜臀 | 99国产精品免费福利视频| 黄片无遮挡物在线观看| 国产av国产精品国产| 欧美成人精品欧美一级黄| 不卡视频在线观看欧美| 日韩一卡2卡3卡4卡2021年| 丝袜美足系列| 在线观看一区二区三区激情| 视频在线观看一区二区三区| 日本爱情动作片www.在线观看| 美女国产高潮福利片在线看| 纵有疾风起免费观看全集完整版| 熟女电影av网| 制服丝袜香蕉在线| 一级毛片电影观看| 秋霞在线观看毛片| 五月开心婷婷网| 亚洲美女视频黄频| 免费日韩欧美在线观看| 午夜免费男女啪啪视频观看| 婷婷色综合大香蕉| 又黄又粗又硬又大视频| 欧美精品高潮呻吟av久久| 99精国产麻豆久久婷婷| 欧美中文综合在线视频| 蜜桃国产av成人99| 国产成人精品在线电影| 亚洲精品国产一区二区精华液| 黄色视频在线播放观看不卡| 91精品三级在线观看| 日本午夜av视频| 国产一区二区 视频在线| 国产一区二区 视频在线| 国产成人精品福利久久| h视频一区二区三区| 日韩精品免费视频一区二区三区| 女人被躁到高潮嗷嗷叫费观| 婷婷成人精品国产| 亚洲成人av在线免费| av片东京热男人的天堂| 亚洲国产色片| 在线精品无人区一区二区三| 日本vs欧美在线观看视频| 夜夜骑夜夜射夜夜干| 亚洲第一av免费看| 久久99蜜桃精品久久| 观看美女的网站| 狠狠精品人妻久久久久久综合| 国产免费现黄频在线看| 精品午夜福利在线看| 亚洲一区中文字幕在线| 99国产精品免费福利视频| 日韩伦理黄色片| 亚洲婷婷狠狠爱综合网| 两个人免费观看高清视频| 日韩av不卡免费在线播放| 精品第一国产精品| videos熟女内射| 亚洲欧美一区二区三区黑人 | 欧美av亚洲av综合av国产av | 中文欧美无线码| 欧美日韩一区二区视频在线观看视频在线| 性高湖久久久久久久久免费观看| 国产伦理片在线播放av一区| 欧美bdsm另类| 国产片特级美女逼逼视频| 亚洲精品久久成人aⅴ小说| 午夜福利在线观看免费完整高清在| 最近最新中文字幕免费大全7| 在线观看国产h片| 麻豆乱淫一区二区| 国产精品国产av在线观看| 黑丝袜美女国产一区| 大片电影免费在线观看免费| 国产精品久久久久久精品古装| 久久久久国产网址| 欧美精品国产亚洲| 女人被躁到高潮嗷嗷叫费观| 亚洲欧美一区二区三区黑人 | 免费大片黄手机在线观看| 美女国产视频在线观看| 少妇人妻精品综合一区二区| 波野结衣二区三区在线| 国产激情久久老熟女| 亚洲av综合色区一区| 成人免费观看视频高清| 97在线视频观看| 亚洲精品在线美女| 免费观看av网站的网址| 亚洲精品国产色婷婷电影| 久久久久久人人人人人| 纵有疾风起免费观看全集完整版| 亚洲精品久久午夜乱码| 日韩精品免费视频一区二区三区| 99香蕉大伊视频| 欧美人与性动交α欧美软件| 99国产精品免费福利视频| 亚洲综合色惰| 韩国高清视频一区二区三区| 国产免费现黄频在线看| 成人18禁高潮啪啪吃奶动态图| 国产精品蜜桃在线观看| 伊人亚洲综合成人网| 我的亚洲天堂| 亚洲三级黄色毛片| 制服诱惑二区| 成年人午夜在线观看视频| 欧美人与善性xxx| 亚洲国产av新网站| 黄网站色视频无遮挡免费观看| 亚洲av电影在线进入| 中文精品一卡2卡3卡4更新| 国产精品一二三区在线看| 久久鲁丝午夜福利片| 亚洲av男天堂| 欧美成人精品欧美一级黄| 你懂的网址亚洲精品在线观看| 国产高清国产精品国产三级| 午夜福利视频在线观看免费| 一区二区三区精品91| 性色avwww在线观看| 人妻 亚洲 视频| 欧美日韩一级在线毛片| 一二三四在线观看免费中文在| 九草在线视频观看| 欧美中文综合在线视频| 成年人午夜在线观看视频| 女性被躁到高潮视频| 国产成人免费观看mmmm| 国产高清国产精品国产三级| 欧美国产精品va在线观看不卡| 久久人人97超碰香蕉20202| 亚洲国产日韩一区二区| freevideosex欧美| 可以免费在线观看a视频的电影网站 | 亚洲国产色片| 国产高清不卡午夜福利| 欧美国产精品一级二级三级| 亚洲av在线观看美女高潮| 亚洲av欧美aⅴ国产| 高清不卡的av网站| 赤兔流量卡办理| 国产麻豆69| 最近的中文字幕免费完整| 日本午夜av视频| 久久久久久伊人网av| 久久女婷五月综合色啪小说| 日本免费在线观看一区| 欧美bdsm另类| 久久久久久久久免费视频了| 一区二区三区激情视频| a级片在线免费高清观看视频| freevideosex欧美| 成人漫画全彩无遮挡| 国产乱来视频区| 国产白丝娇喘喷水9色精品| 欧美日韩亚洲国产一区二区在线观看 | 亚洲激情五月婷婷啪啪| 美国免费a级毛片| 秋霞伦理黄片| 色吧在线观看| 晚上一个人看的免费电影| 久久99一区二区三区| 久久青草综合色| 欧美在线黄色| 亚洲av男天堂| 韩国精品一区二区三区| 国产精品一国产av| 在线免费观看不下载黄p国产| 久久国产精品大桥未久av| 9色porny在线观看| 成年女人在线观看亚洲视频| 亚洲一级一片aⅴ在线观看| 免费看av在线观看网站| 午夜福利在线观看免费完整高清在| av国产精品久久久久影院| 亚洲国产看品久久| 色婷婷av一区二区三区视频| 欧美日韩亚洲高清精品| 久久99精品国语久久久| 五月天丁香电影| av有码第一页| 两个人看的免费小视频| 日韩电影二区| 精品久久蜜臀av无| 亚洲图色成人| 看非洲黑人一级黄片| 最近的中文字幕免费完整| 国产精品av久久久久免费| 在线观看美女被高潮喷水网站| 免费少妇av软件| 久久久精品国产亚洲av高清涩受| 如何舔出高潮| 日韩av不卡免费在线播放| 午夜福利影视在线免费观看| 国产在线免费精品| 啦啦啦中文免费视频观看日本| 日韩电影二区| av网站在线播放免费| www.自偷自拍.com| 欧美bdsm另类| 国产精品久久久久久久久免| 亚洲第一区二区三区不卡| 一本—道久久a久久精品蜜桃钙片| 国产av码专区亚洲av| 国产一区二区三区av在线| 一二三四中文在线观看免费高清| 18禁动态无遮挡网站| 18禁国产床啪视频网站| 麻豆av在线久日| √禁漫天堂资源中文www| 夜夜骑夜夜射夜夜干| 亚洲国产看品久久| 超色免费av| 久久 成人 亚洲| 欧美精品高潮呻吟av久久| 亚洲精品久久久久久婷婷小说| 色视频在线一区二区三区| 亚洲精品一区蜜桃| 午夜福利网站1000一区二区三区| 久久午夜综合久久蜜桃| 丝袜在线中文字幕| 黄频高清免费视频| 伦理电影免费视频| 欧美 日韩 精品 国产| 国产福利在线免费观看视频| 中文字幕色久视频| 人妻少妇偷人精品九色| 成人午夜精彩视频在线观看| 亚洲精品,欧美精品| 久久人人爽av亚洲精品天堂| 亚洲精品一区蜜桃| 丝袜人妻中文字幕| 一级毛片我不卡| 日韩一区二区视频免费看| 少妇被粗大猛烈的视频| 9热在线视频观看99| 亚洲av电影在线观看一区二区三区| 97精品久久久久久久久久精品| 久久久久精品人妻al黑| 搡女人真爽免费视频火全软件| 亚洲精品日本国产第一区| 赤兔流量卡办理| 成年女人毛片免费观看观看9 | 亚洲欧洲精品一区二区精品久久久 | 最近2019中文字幕mv第一页| 在线看a的网站| 性色avwww在线观看| 精品酒店卫生间| 夫妻午夜视频| 老熟女久久久| 日韩av在线免费看完整版不卡| 多毛熟女@视频| 久久精品夜色国产| 日韩精品免费视频一区二区三区| 电影成人av| 成人漫画全彩无遮挡| 国产精品99久久99久久久不卡 | 日韩,欧美,国产一区二区三区| 国产麻豆69| 秋霞在线观看毛片| 午夜福利在线免费观看网站| 中文字幕av电影在线播放| 国产毛片在线视频| 国产成人av激情在线播放| 免费看不卡的av| 久久久精品94久久精品| 国产午夜精品一二区理论片| 国产片内射在线| 日韩电影二区| 丰满乱子伦码专区| 少妇的逼水好多| 亚洲精品国产一区二区精华液| tube8黄色片| av免费在线看不卡| 国产成人精品一,二区| av片东京热男人的天堂| 国产精品麻豆人妻色哟哟久久| 国产麻豆69| 乱人伦中国视频| 人人妻人人澡人人看| 国产爽快片一区二区三区| 欧美日韩视频精品一区| 成人二区视频| 99热国产这里只有精品6| 婷婷色av中文字幕| 中文字幕人妻熟女乱码| 中文字幕制服av| 精品国产乱码久久久久久小说| 黄色 视频免费看| 日本av免费视频播放| 国产片内射在线| 一区二区三区激情视频| 久久久久久久久久人人人人人人| 亚洲一级一片aⅴ在线观看| 最近的中文字幕免费完整| 亚洲国产精品一区二区三区在线| 国产片特级美女逼逼视频| 熟女电影av网| 2021少妇久久久久久久久久久| 天堂中文最新版在线下载| 一级毛片我不卡| 国产有黄有色有爽视频| 欧美 亚洲 国产 日韩一| 国产免费福利视频在线观看| 色婷婷久久久亚洲欧美| 男女边摸边吃奶| 日韩 亚洲 欧美在线| 亚洲av中文av极速乱| 亚洲精品第二区| 超色免费av| 黄网站色视频无遮挡免费观看| 亚洲精品,欧美精品| 青春草国产在线视频| 一区二区三区精品91| 久久精品久久久久久久性| 青草久久国产| 久久久久久人人人人人| 国产麻豆69| 国产野战对白在线观看| 久久久久国产一级毛片高清牌| 在线观看一区二区三区激情| 亚洲精品国产一区二区精华液| 精品人妻在线不人妻| 欧美少妇被猛烈插入视频| 蜜桃在线观看..| 久久影院123| 91精品三级在线观看| 最近中文字幕高清免费大全6| 国产成人精品福利久久| 午夜91福利影院| 国产有黄有色有爽视频| 色婷婷久久久亚洲欧美| 视频在线观看一区二区三区| 精品国产超薄肉色丝袜足j| 哪个播放器可以免费观看大片| 国产一级毛片在线| 看非洲黑人一级黄片| 亚洲av在线观看美女高潮| 99热网站在线观看| 精品视频人人做人人爽| av天堂久久9| 亚洲在久久综合| 黄色怎么调成土黄色| 国产精品.久久久| 9191精品国产免费久久| 在线看a的网站| 黄色视频在线播放观看不卡| 街头女战士在线观看网站| 美女视频免费永久观看网站| 日本vs欧美在线观看视频| 一个人免费看片子| 丰满乱子伦码专区| 91精品三级在线观看| 久久韩国三级中文字幕| 国产熟女欧美一区二区| 久久久久精品性色| 欧美日韩成人在线一区二区| 欧美日韩亚洲高清精品| 国产成人91sexporn| 日本欧美视频一区| 国产片内射在线| 久久久久精品人妻al黑| av国产久精品久网站免费入址| 亚洲欧美一区二区三区黑人 | 欧美日韩视频精品一区| 亚洲图色成人| 亚洲内射少妇av| 午夜免费男女啪啪视频观看| 亚洲精品av麻豆狂野| 亚洲人成77777在线视频| 免费在线观看视频国产中文字幕亚洲 | 国产免费视频播放在线视频| 色网站视频免费| 高清欧美精品videossex| 天天躁夜夜躁狠狠久久av| 人妻系列 视频| 国产熟女午夜一区二区三区| 极品少妇高潮喷水抽搐| 欧美少妇被猛烈插入视频| 亚洲男人天堂网一区| 国产免费视频播放在线视频| 久久人妻熟女aⅴ| 久久久久国产精品人妻一区二区| 免费在线观看完整版高清| 国产人伦9x9x在线观看 | 国产精品久久久久成人av| 男女免费视频国产| 精品少妇一区二区三区视频日本电影 | 美女大奶头黄色视频| 国产乱来视频区| 最黄视频免费看| 精品亚洲成a人片在线观看| 自拍欧美九色日韩亚洲蝌蚪91| 国产午夜精品一二区理论片| av在线播放精品| 精品国产露脸久久av麻豆| 亚洲国产精品成人久久小说| 成人黄色视频免费在线看| 日韩制服丝袜自拍偷拍| 2018国产大陆天天弄谢| 伦精品一区二区三区| 男男h啪啪无遮挡| 在线天堂最新版资源| 国产精品99久久99久久久不卡 | 国产av国产精品国产| 精品国产一区二区三区久久久樱花| a 毛片基地| 91aial.com中文字幕在线观看| 狠狠精品人妻久久久久久综合| 日韩大片免费观看网站| 蜜桃在线观看..| 亚洲精品av麻豆狂野| 制服丝袜香蕉在线| 韩国高清视频一区二区三区| 99热网站在线观看| 考比视频在线观看| 国产免费视频播放在线视频| 国产福利在线免费观看视频| 欧美亚洲日本最大视频资源| 一级毛片 在线播放| 国产精品国产av在线观看| 亚洲精品av麻豆狂野| 寂寞人妻少妇视频99o| 久久人人爽人人片av| 视频区图区小说| 国产色婷婷99| 色视频在线一区二区三区| 一级毛片黄色毛片免费观看视频| 免费黄色在线免费观看| 日本wwww免费看| 久久婷婷青草| 国产1区2区3区精品| 免费观看av网站的网址| 啦啦啦啦在线视频资源| 一级毛片 在线播放| 18禁国产床啪视频网站| 王馨瑶露胸无遮挡在线观看| 亚洲av国产av综合av卡| 久久人人97超碰香蕉20202| 亚洲内射少妇av| 免费大片黄手机在线观看| 2021少妇久久久久久久久久久| 久久99蜜桃精品久久| 久久精品国产鲁丝片午夜精品| 国产精品欧美亚洲77777| 久久久久国产网址| 久久久久精品性色| 日韩中字成人| 精品视频人人做人人爽| 久久97久久精品| 永久免费av网站大全| 丝袜在线中文字幕| 一级片'在线观看视频| 中文字幕人妻丝袜一区二区 | 青春草视频在线免费观看| 国产成人av激情在线播放| 久久人妻熟女aⅴ| 一区二区三区激情视频| 免费不卡的大黄色大毛片视频在线观看| 亚洲国产精品999| av国产久精品久网站免费入址| freevideosex欧美| 伊人久久国产一区二区| 久久午夜综合久久蜜桃| 日本免费在线观看一区| 久久国内精品自在自线图片| 久久精品国产亚洲av高清一级| 久久97久久精品| 婷婷色综合www| 老司机影院毛片| 欧美日韩国产mv在线观看视频| 香蕉丝袜av| 亚洲综合精品二区| 最近中文字幕2019免费版| 亚洲婷婷狠狠爱综合网| 性高湖久久久久久久久免费观看| 菩萨蛮人人尽说江南好唐韦庄| 自线自在国产av| 国产男女内射视频| 五月开心婷婷网| 侵犯人妻中文字幕一二三四区| 久久久精品国产亚洲av高清涩受| 久热这里只有精品99| 91精品国产国语对白视频| 成人毛片60女人毛片免费| 999久久久国产精品视频| 久久久国产一区二区| 成人免费观看视频高清| 99热全是精品| 女人精品久久久久毛片| 精品少妇黑人巨大在线播放| 亚洲精品日本国产第一区| 日韩精品有码人妻一区| 日韩一区二区视频免费看| 王馨瑶露胸无遮挡在线观看| 国产精品国产三级专区第一集| 天天躁狠狠躁夜夜躁狠狠躁| 一区二区三区四区激情视频| 久久久久久久久久久久大奶| 久久精品国产亚洲av天美| 国产亚洲最大av| av.在线天堂| 国产成人欧美| √禁漫天堂资源中文www| 久久女婷五月综合色啪小说| 国产亚洲一区二区精品| 高清av免费在线| 国产成人精品福利久久| 亚洲精品成人av观看孕妇| 亚洲av.av天堂| 老汉色av国产亚洲站长工具| a级毛片黄视频| 少妇人妻久久综合中文| 午夜福利,免费看| 99久国产av精品国产电影| 又大又黄又爽视频免费| 国产又色又爽无遮挡免| 日本欧美国产在线视频| 少妇被粗大猛烈的视频| 蜜桃在线观看..| 免费日韩欧美在线观看| 日韩精品有码人妻一区| 久久亚洲国产成人精品v| 中文字幕精品免费在线观看视频| 亚洲熟女精品中文字幕| 午夜福利乱码中文字幕| 亚洲精品国产av成人精品| 亚洲天堂av无毛| h视频一区二区三区| 亚洲综合精品二区| 国产熟女午夜一区二区三区| 国产精品国产av在线观看| 日本欧美国产在线视频| 又大又黄又爽视频免费| 深夜精品福利| 国产老妇伦熟女老妇高清| 少妇人妻久久综合中文|