• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    A numerical study of the early-stage dynamics of a bubble cluster *

    2020-12-16 02:20:48YazhenShiKaiLuoXiaopengChenDaijinLi

    Ya-zhen Shi, Kai Luo, Xiao-peng Chen, , Dai-jin Li

    1. School of Marine Science and Technology, Northwestern Polytechnical University, Xi’an 710072, China

    2. School of Mechanics, Civil Engineering and Architecture, Northwestern Polytechnical University, Xi’an 710129,China

    Abstract: The dynamics of multiple cavitating bubbles is numerically simulated, with the ambient pressure lower than the saturated vapor pressure, using a pseudopotential lattice Boltzmann method (LBM) coupled with the Carnahan-Starling equation of state.Dual-bubble and multi-bubble systems are tested, and the method for the bubble cluster is validated. It is found that the bubble can either grow or collapse in the early stage, depending on the configuration of the bubble cluster, characterized by the bubble number, the inter-bubble distance and the initial radii. In the induced flow, the bubbles are mutually interacted. Scaling relations of the interaction are proposed according to the numerical results. With consideration of the interactions, the simplified Rayleigh-Plesset equations(RPEs) for multiple bubbles can describe the evolution of the bubbles approximately. The results may serve as the basis for improved cavitation models.

    Key words: Cavitation, bubble dynamics, interaction, lattice Boltzmann method (LBM), Rayleigh-Plesset equation (RPE)

    Introduction

    The cavitation involves a liquid-to-vapor phase transition due to the low ambient pressure to form small vapor cavities. It occurs in various hydraulic machineries, such as pump, propeller, artificial heart and ultrasonic cleaner[1]. It is found that the snapping shrimp can induce cavitation for predation, the maximum swimming speed of the dolphin is limited by the occurrence of cavitation[2], and the coastal erosion has a special cavitating mechanism. The pioneering work dates back to Besant and Lord Rayleigh,who explored the dynamics of a bubble in the fluidic environment. The analyses were further extended with considering the effects of the surface tension by Plesset. Hitherto, the Rayleigh-Plesset equation (RPE) is one of the most widely used equations in hydrodynamics. The theories provide support for the development of modern technologies,including HIFU[3], sonochemical reactions[4]and so forth.

    In real constitutions, large or huge number of bubbles may exist in the liquid phase. The bubbles are in sophisticated motions, such as expanding,oscillation and translation. The motions are coupled with the flow field, to induce extra influences on the behaviors of the bubbles[5]. Mettin et al.[6]employed Keller-Miksis equations, coupled with the bubble pressure emission terms, to study the interaction between bubbles in a strong acoustic field. Ida[7]found the suppression effect of the cavitation inception due to the interactions. It is suggested that a larger bubble can prominently decrease the cavitation threshold pressure of a smaller bubble nearby. On the side of experimental study, Bremond et al.[8]explored the expansion and the collapse of the bubbles confined on a patterned plate. The evolution of the inner bubbles is shielded by the outer ones, and an extended RPE is validated. In the recent years, the study is extended to more specific fields for the purpose of the bubble manipulation[9-11]. Meanwhile, the numerical simulation was developed as a powerful tool in exploring the bubble dynamics[12]. Zhang et al.[13]used a volume of fluid (VOF) method to simulate the deformation, the growth and the interaction of bubbles in the rising process. The effects of the fluid properties and the bubble volume were analyzed. Ma et al.[14]employed a Eulerian- Lagrangian approach to study the dynamics of a bubble cloud exposed in a sinusoidal pressure field. The cloud was shown to have a nonlinear resonance to the excitation.

    Lattice Boltzmann methods (LBMs) were developed as an efficient method for the flow simulation[15]. Compared with the conventional numerical methods, the LBM does not need anad hocmodel to track the free surface in multiphase flows. A typical multiphase LBM model is the Shan-Chen model. High density ratio can be achieved by incorporating different equations of state (EOS) of the real gas. Sukop and Or[16]employed the Shan-Chen LBM to simulate the bubble dynamics. The growth of a natural cavitating bubble in the quiescent liquid and the shear flow was simulated by Chen et al.[17-18]. It is shown that the shear flow seldom influences the bubble growth. The stress-induced cavitation was captured by using a multirange Shan-Chen LBM[19],and it is found that the cavitation number is not a good predictor of the onset of the cavitation.

    1. Numerical method and validations

    1.1 Multiphase lattice Boltzmann method

    The LBM is based on the classical particle kinetic theories. By discretizing time and space according to the lattice model (see Fig. 1), the governing equation can be expressed as

    wherefi(i= 1,2,…) denotes the density population of thei-th microscopic velocity,ei. The left-hand-side (LHS) of the equation indicates a streaming process: the particles jump fromxtox+eiΔtin a time interval Δt, while the right-hand-side (RHS) shows the gain/loss of the populations due to the collision (the first term) and the external force (the second term). In the equation, the Bhatnagar-Gross-Krook (BGK) collision model is applied, which implies that the density distribution approaches an equilibrium one BGK after the collision,andτis a relaxation time. The equilibrium distribution is assumed to be Maxwellian, and for the D3Q19 cubic model (Fig. 1), it is expressed as

    In the expression, the weightsωiare 1/18 fori= 1,2,… ,6, 1/36 fori=7,8,…,18, and 1/3 for the rest particles (i=0), respectively. Furthermore, the local macroscopic velocity and the density of the fluid can be estimated by using the moments offi:. The Navier-Stokes equations can be recovered by applying the Chapman-Enskog analysis

    where the forcing term is neglected. Meanwhile, it can be deduced that the kinematic viscosity[17].

    Fig. 1 A schematic diagram of three-dimensional and nineteen velocity (D3Q19) lattice model

    According to the mean field theories[20], the phase separation can be explained by the concept of the inter-molecular force, which can be introduced into the LB equation by using a properly designed forcing term. Following Shan and Chen[20], we set the force as

    whereGdenotes the interacting strength (among the particles), andψ(x,t) is the effective density. To achieve a high density ratio in the simulations,ψis determined according a certain EOS of the fluid[21]

    wherep≡p(ρ) for an isothermal process. Then,various EOS’s can be used. Among various EOS’s,the Carnahan-Starling (C-S) EOS enjoys a better performance with a large liquid-vapor density ratio, a wide stable temperature range and a lower spurious current[21]. The C-S EOS is expressed as

    Since the bubble dynamics is our main concern,the fundamentals and the details of the method are not described here and can be found in our previous papers[17-18]and other papers[16,20].

    1.2 Modified RPE’s

    With the spherical bubble assumption, the RPE is applied to describe the dynamics of a cavitation bubble in a space filled with liquid[22]

    wherer∞?Ris the location of the far field boundary with the pressureP∞,Ris the instantaneous bubble radius.lρ,lμandSare the liquid density, viscosity and interfacial tension,respectively. The subscriptBdenotes “bubble”, and the over-dot represents time derivatives. The first term on the RHS is the pressure difference, the second term represents the effect of the viscosity forces, and the third term shows the surface tension effects,respectively.

    As can be shown, the RPE describes the liquid phase flow. The bubbles in a bubble cluster would affect each other, if they are in a certain motion, and an interacting force will be induced. If only the volumetric motions of the spherical bubbles with fixed locations are considered and modelled as the monopoles in the flow field, the pressure disturbed by theith bubbles can be expressed as

    whereDiis the distance between the bubble and a probe point[6]. The local increment of the pressure in a multi-bubble system is ∑pi. Adding this extra pressure to Eq. (8), the modified RPE becomes

    In the later analyses, the above equations are solved by the Runge-Kutta method, and the initial condition matches the numerical setup. At last, it should be known that the equations can be improved if we consider more details, such as the time dependentDi(t). However, according to our preliminary tests,these details could be ignored in the early-stage evolution.

    1.3 The numerical setups and validations

    The dimension of our computational domain is 2 000×2 000×1 000 (Fig. 2). Owing to the symmetry of the computation results, the symmetric boundary condition is imposed on the bottom face of the domain,while a fixed pressure is imposed on other faces by using the non-equilibrium extrapolation method[23].The applied pressure is set to be lower than the saturated vapor pressurePL, and higher than a critical one,Pcr=S/2R. In the computations, the dimensionless temperatureand kinematic viscosityν=0.1667(τ=1) are adopted,respectively. The surface tensionσis 1.38×10-2.

    Fig. 2 A schematic diagram of computational domain

    Two cases are simulated to validate our numerical method: a single bubble’s expansion(R0=20) and two identical bubbles withR10=R20=20,D0=50. As is known, given a proper interfacial tension, a critical bubble radius is obtained, above which the bubble will grow, and it will collapse otherwise[24]. As shown in Fig. 3, the results are consistent with the theoretical predictions. It indicates that the evolution of the bubble dynamics and the interaction between the bubbles can be well captured with the LBM.Meanwhile, Fig. 3 also shows that the interacting pressure suppresses the growth of the bubble. On the other hand, notingin the present work,the convergence of the calculation is also implied by the results, where the ratio of the interface thickness(ε~4) to the bubble radius varies. The parameter corresponds to a bubble (R=27μm) with ΔP=34 200 Pa in the water.

    Fig. 3 Comparison between the LBM simulations and the theoretical predictions(Eqs.(8)and (10)). t is time in lattice unit

    2. Numerical results and discussions

    There are usually many bubbles (a bubble cluster)in the liquid phase in real cavitating flows. The interactions among the bubbles should surely be considered[7]. In this section, various bubble systems are simulated and analyzed.

    2.1 Dynamics of two unequal bubbles in quiescent liquid

    We first consider a dual bubble system, with the initial radii of. Both of them will grow, if they are set in the domain individually, as the case in Section 1.3.However, when the bubbles are set in the domain with the distanceD0=50, the small bubble collapses (see Fig. 4). Meanwhile the large bubble grows nonuniformly, and a tip pointing to the small one appears gradually. The phenomenon was also reported by Quinto-Su and Ohl[25]. Equation (9) (the right-hand side) shows that the neighboring bubble exerts additional pressure on the target one. The force depends on the inter-bubble distance and their growing speeds.

    The evolution of the small bubble is shown in Fig.5 with variousD0. The results show that the simulations are consistent with the theory again. It is revealed that the small bubble grows similarly as the individual one as the inter-bubbles distance is large. With the decrease ofD0, the growth of the small bubble is suppressed drastically and it may collapse due to the inter-bubble actions. It is interesting to note that the small bubble undergoes a non-monotone growth asD0~100. It expands slightly at first. AfterDdecreases andD0increases a little, the additional pressure increases to compress the small bubble quickly.

    Fig. 4 The evolution of two bubbles with R L 0=25, R S 0=20.Both of them would grow, if they are put in the domain individually.The subscripts S and L denote small and large bubbles, respectively

    Fig. 5(a) The evolution of the small bubbles with different D0.The symbols (single bubble result) indicate the simulating results, and the curves are calculated from Eq. (10).

    A semi-qualitative analysis of the suppression is conducted as follows. The evolution of the smaller bubble in the presented system is influenced not only by the ambient pressure, but also by the growth of the neighbouring one. The driven pressure on the smaller bubble is estimated as (see Eq. (10))

    Fig. 5(b) Comparison of the small bubble

    By combining it with the critical radiusR*, a dynamic critical radius,R*(t), is obtained. The bubble will expand when the instantaneous radiusRS(t) is greater thanR*(t), and otherwise it will collapse. Figure 5 shows that, forD0=50,R*(t) is always greater thanRS(t) and the smaller bubble collapses. ForD0=100,in a short period of time, which leads to a slight expansion.Nevertheless,R*(t) surpassesRS(t) aftert=300,and the bubble collapses eventually. ForD0=350,D(t) is so large that the expansion of the large bubble hardly affects the small one. Then, the small bubble keeps expanding. So, the behaviours of the bubbles can be qualitatively evaluated by the critical pressure[7].

    2.2 Dynamics of multi-bubble systems

    The presented dual-bubble analysis shows that the lattice Boltzmann method predicts the bubble evolutions correctly, and the mechanism of the interbubble action is briefly explored. More sophisticated cases are presented by using “multi-bubble” systems.Figure 6 shows the spatial arrangements of the multi-bubble systems. There is always a smaller bubble surrounded by some equal-sized larger ones in the systems. We aim to understand the influences of the following parameters: the bubble number, the topology of the system, the bubble size and the inter-bubbles distance, from the simulations. As shown in Fig. 6,D0is identical in the systems and

    2.2.1Effects of bubble number and topology of the bubbles

    The influences of the bubble number (NB) and the topology of the large bubbles are studied in this subsection. Figure 7 shows the collapsing time (t*,defined in the inset) of the small bubble and two features can be observed.t*decreases more quickly by increasingNBto the extent thatt*∝NB-0.3. On the other hand, for lowerNB, the topology of the bubbles impacts the shrink of the central small bubble.One can get a hint from the growth of equal-sized bubbles in Section 2.1. The growth of the large bubbles is influenced by their interaction, which is influenced by the distance between themselves. Such effects are shown in Fig. 8, where the growths of the large bubbles in two 3-bubble systems are compared.Smaller inter-large-bubble distance leads to a stronger interaction, and the large bubble grows slower.Consequently, the small bubble is compressed less.On the contrary, highNBsystems with different topologies have closer inter-large-bubble distances,and the influence of the topology is weak (see models 5a, 5b in Fig. 6).

    Fig. 6 (Color online) Topologies of multi -bubble systems. The initial radius RL 0=25 for the larger bubble(light blue), and R S 0=20 (yellow) for the smaller one. The figure in the model name indicates the bubble number

    Fig. 7 NB-dependence of collapsing time ( t*), which is defined in the inset. The circles show the numerical results,and the dashed line shows a slope of -0.3. D 0 =100 is adopted

    Fig. 8 The large bubble growth in models 3a and 3b with D0=100. The inter-large-bubble distances are 200 and 100 for models 3a and 3b, respectively

    The interacting pressures, exerted by the large bubbles on the small one, are presented in Fig. 9 for a further investigation. As shown in Fig. 8, the large bubble grows almost with a constant speed (t>400).In fact, the bubble growth speed is estimated aswith some cavitating models[26-28](although not very precisely). Meanwhile, the estimation also leads to a collapsing time of. Hereinafter, we consider the impact of the interacting pressure on the collapsing time. It is convenient and reasonable to focus on the equal-sized large bubbles and neglect the influence of the small one. Eq. (10) is modified with the unknown functionRL

    Fig. 9 The disturbed part of pressure exerted by a large bubble on the small bubble . DIda denotes the effective interbubble distance for large bubbles (Eq. (13)). The solid curve indicates the simplified relation pi ∝DIda/(DIda +RL ), and the dashed one is a fitting curve of pi ∝

    2.2.2Effects of D0and RL0

    We adjustD0andRL0in models 7 and 9 to explore the influences of the inter-bubble distance and the bubble size. The corresponding collapsing timesare shown in Fig. 10. Relationsandare obtained from the simulations. We can normally anticipate that for a largerD0or a smaller, a longer collapsing time is obtained according to Eqs. (9) and (11), due to a lowerpi.

    Fig. 10 Collapsing time of the small bubble as functions. The results for models 7 and 9 are presented, with RS0=20

    The presented analyses demonstrate that the bubble cloud can be regarded as a whole. The bubbles in the cloud grow with interactions. The cloud evolution should be considered when we focus on the evolution of a single bubble.

    3. Concluding remarks

    The evolution of multi-bubble systems is simulated by using a pseudopotential multiphase lattice Boltzmann method. The collapse of the central bubble is investigated particularly, although it will grow if it is put in an environment with the applied ambient pressure. The interaction among the bubbles is analyzed in the framework of the Rayleigh-Plesset theory. Empirical scaling relations are proposed associated with the numerical results. The geometrical parameters and the topology of the bubble system are studied. The concluding remarks are summarized as follows:

    (1) With the LBM, the bubble dynamics can well be captured when the bubble is surrounded by many other bubbles. The additional pressure exerted by the other bubbles may compress the target bubble,although it is located in an environment with a low pressure.

    (2) The evolution of the bubbles is well predicted by using the modified Rayleigh-Plesset equations, if they are equal-sized. The influences of the bubble size and the inter-bubble distance can be well predicted in the early stage. For the large bubble, we may haveand, respectively. That further leads toscalings, correspondingly.

    (3) Given the number density, it is easy to determine the strength of the driven pressure on the central bubble, which includes the environmentaland interactingcomponents. The collapsing time for the bubble is estimated as

    The present study implies a strong nonlinearity of the bubble cloud evolution. Based on the numerical and theoretical results, scaling laws are proposed,which implies a possibility to build a simple new cavitation model with the consideration of the bubble interaction. The studies of more general situations are desirable, such as the bubbles with distributed sizes.The study also lays solid fundamentals to explore an improved cavitation model with considerations of the bubble interactions.

    av在线播放精品| 三上悠亚av全集在线观看 | 午夜激情福利司机影院| 国产极品粉嫩免费观看在线 | 好男人视频免费观看在线| 99热国产这里只有精品6| 内射极品少妇av片p| 男女无遮挡免费网站观看| 亚洲精品456在线播放app| 亚洲国产最新在线播放| 爱豆传媒免费全集在线观看| 日本av免费视频播放| 美女脱内裤让男人舔精品视频| 国产午夜精品一二区理论片| 新久久久久国产一级毛片| 国产精品国产三级国产专区5o| 精品少妇内射三级| 激情五月婷婷亚洲| 国产成人91sexporn| 欧美日韩精品成人综合77777| 久久久久久久久久久久大奶| 国产成人精品福利久久| 国产成人一区二区在线| 99久久精品一区二区三区| 国产亚洲av片在线观看秒播厂| 女的被弄到高潮叫床怎么办| 国产乱来视频区| 最近的中文字幕免费完整| 99九九在线精品视频 | 国产日韩欧美亚洲二区| 国产精品蜜桃在线观看| 天堂俺去俺来也www色官网| 国产 精品1| 欧美日韩av久久| 免费观看的影片在线观看| 观看美女的网站| 爱豆传媒免费全集在线观看| 国内揄拍国产精品人妻在线| 我的老师免费观看完整版| 欧美xxⅹ黑人| 国产男女超爽视频在线观看| 国产一区二区三区综合在线观看 | 爱豆传媒免费全集在线观看| 极品人妻少妇av视频| 五月伊人婷婷丁香| 91aial.com中文字幕在线观看| 天天躁夜夜躁狠狠久久av| 黑丝袜美女国产一区| 看免费成人av毛片| 色5月婷婷丁香| tube8黄色片| 在线亚洲精品国产二区图片欧美 | 国模一区二区三区四区视频| 日本av手机在线免费观看| 国产国拍精品亚洲av在线观看| 国产精品国产三级国产av玫瑰| 最黄视频免费看| 欧美精品一区二区大全| 国产有黄有色有爽视频| 九草在线视频观看| 亚洲久久久国产精品| 精品久久久噜噜| 免费黄频网站在线观看国产| 又爽又黄a免费视频| 久久久久久久大尺度免费视频| 国产精品一二三区在线看| 2021少妇久久久久久久久久久| 一本一本综合久久| 99热这里只有是精品在线观看| 水蜜桃什么品种好| 春色校园在线视频观看| 最近手机中文字幕大全| 亚洲高清免费不卡视频| 日日爽夜夜爽网站| 哪个播放器可以免费观看大片| 国产精品国产三级专区第一集| 日日啪夜夜撸| 在线观看免费日韩欧美大片 | 天天操日日干夜夜撸| 国产精品一区二区性色av| 成年美女黄网站色视频大全免费 | 久久久久久久久久久免费av| 国产一区二区三区综合在线观看 | a级毛片免费高清观看在线播放| 久久影院123| 国产日韩一区二区三区精品不卡 | 免费观看a级毛片全部| 亚洲一区二区三区欧美精品| 欧美日韩在线观看h| 国产熟女午夜一区二区三区 | 婷婷色麻豆天堂久久| 寂寞人妻少妇视频99o| 日韩人妻高清精品专区| 91久久精品电影网| 国产免费一级a男人的天堂| 国产成人精品无人区| 男女啪啪激烈高潮av片| 亚洲精品乱码久久久久久按摩| 亚洲精品亚洲一区二区| 亚洲精品,欧美精品| 日本午夜av视频| 哪个播放器可以免费观看大片| 成人国产麻豆网| 99久久精品热视频| 久久久久久伊人网av| www.色视频.com| 最近最新中文字幕免费大全7| 美女国产视频在线观看| 欧美精品一区二区免费开放| 欧美精品人与动牲交sv欧美| 亚洲av欧美aⅴ国产| 伊人亚洲综合成人网| 中文天堂在线官网| 精品人妻偷拍中文字幕| 蜜臀久久99精品久久宅男| 亚洲精品视频女| 日韩av在线免费看完整版不卡| 成人毛片a级毛片在线播放| 美女大奶头黄色视频| 亚洲激情五月婷婷啪啪| 日韩一本色道免费dvd| 亚洲精品自拍成人| 天天躁夜夜躁狠狠久久av| 精品人妻偷拍中文字幕| freevideosex欧美| 日本色播在线视频| 在线观看免费日韩欧美大片 | 男女边摸边吃奶| 自拍偷自拍亚洲精品老妇| 日本午夜av视频| 十分钟在线观看高清视频www | 最后的刺客免费高清国语| 人妻少妇偷人精品九色| 丰满饥渴人妻一区二区三| 成年av动漫网址| 国产色爽女视频免费观看| 亚洲av成人精品一区久久| 美女中出高潮动态图| 两个人免费观看高清视频 | 国产伦精品一区二区三区视频9| 各种免费的搞黄视频| 国产精品免费大片| 天堂8中文在线网| 日本av手机在线免费观看| 久久青草综合色| 大片免费播放器 马上看| 伦理电影免费视频| 国产在线视频一区二区| 亚洲精华国产精华液的使用体验| 午夜免费观看性视频| 日韩欧美一区视频在线观看 | 极品人妻少妇av视频| 国产伦理片在线播放av一区| 亚洲真实伦在线观看| 97精品久久久久久久久久精品| 青春草视频在线免费观看| 一本色道久久久久久精品综合| 国产精品人妻久久久久久| 国产亚洲午夜精品一区二区久久| 久久国产精品男人的天堂亚洲 | 亚洲国产欧美在线一区| 国产成人freesex在线| 欧美精品亚洲一区二区| 91久久精品国产一区二区三区| 亚洲av在线观看美女高潮| 亚洲国产欧美在线一区| 成人免费观看视频高清| 国产精品熟女久久久久浪| 中文欧美无线码| 亚洲久久久国产精品| 国产日韩一区二区三区精品不卡 | 午夜久久久在线观看| 插逼视频在线观看| 晚上一个人看的免费电影| 嫩草影院新地址| 少妇人妻一区二区三区视频| 人人妻人人爽人人添夜夜欢视频 | 菩萨蛮人人尽说江南好唐韦庄| 午夜91福利影院| 99热这里只有是精品50| 高清黄色对白视频在线免费看 | www.av在线官网国产| 日韩精品有码人妻一区| 老司机影院成人| 国产欧美日韩精品一区二区| 亚洲美女黄色视频免费看| av国产精品久久久久影院| 久久久久久人妻| 人体艺术视频欧美日本| 欧美国产精品一级二级三级 | 亚洲国产av新网站| 水蜜桃什么品种好| 精品人妻熟女毛片av久久网站| 国产极品粉嫩免费观看在线 | 在线免费观看不下载黄p国产| 日韩成人伦理影院| 菩萨蛮人人尽说江南好唐韦庄| 在现免费观看毛片| 十八禁网站网址无遮挡 | 大又大粗又爽又黄少妇毛片口| 亚洲激情五月婷婷啪啪| 在线观看免费高清a一片| videos熟女内射| 国产女主播在线喷水免费视频网站| 成人特级av手机在线观看| 妹子高潮喷水视频| 夜夜看夜夜爽夜夜摸| 国产亚洲午夜精品一区二区久久| 纯流量卡能插随身wifi吗| 日韩在线高清观看一区二区三区| 亚洲国产精品成人久久小说| 边亲边吃奶的免费视频| 亚洲欧美清纯卡通| 亚洲精品久久久久久婷婷小说| 夜夜爽夜夜爽视频| 乱系列少妇在线播放| 国模一区二区三区四区视频| 精品久久国产蜜桃| 不卡视频在线观看欧美| 男人添女人高潮全过程视频| 涩涩av久久男人的天堂| 纯流量卡能插随身wifi吗| 人妻人人澡人人爽人人| 国产黄片美女视频| 99久久精品一区二区三区| 91在线精品国自产拍蜜月| 久久久国产精品麻豆| 91精品伊人久久大香线蕉| 日韩精品有码人妻一区| 97在线人人人人妻| 亚洲精品久久午夜乱码| 日产精品乱码卡一卡2卡三| 不卡视频在线观看欧美| 秋霞伦理黄片| 自线自在国产av| 草草在线视频免费看| 欧美激情国产日韩精品一区| 亚洲四区av| 午夜av观看不卡| 亚洲久久久国产精品| 91精品伊人久久大香线蕉| 视频区图区小说| 欧美日韩综合久久久久久| 国产色爽女视频免费观看| 在线 av 中文字幕| 久久97久久精品| 97在线视频观看| 久久久久久久久大av| 精品人妻偷拍中文字幕| 精品少妇黑人巨大在线播放| 久久久久久久久久久久大奶| 一区二区av电影网| 在线观看av片永久免费下载| 精品熟女少妇av免费看| 国产精品99久久久久久久久| 我要看黄色一级片免费的| 天堂中文最新版在线下载| 国产亚洲91精品色在线| 男女边摸边吃奶| 久久99蜜桃精品久久| 日本av免费视频播放| 亚洲av成人精品一二三区| av又黄又爽大尺度在线免费看| 亚州av有码| 亚洲av男天堂| 黑人高潮一二区| 日本猛色少妇xxxxx猛交久久| 精品午夜福利在线看| 国产亚洲午夜精品一区二区久久| 日日爽夜夜爽网站| 高清欧美精品videossex| 少妇 在线观看| 丝瓜视频免费看黄片| 成人美女网站在线观看视频| 久久这里有精品视频免费| 久久毛片免费看一区二区三区| 亚洲丝袜综合中文字幕| 国产欧美日韩一区二区三区在线 | 男女啪啪激烈高潮av片| 一级,二级,三级黄色视频| 男人舔奶头视频| 黄片无遮挡物在线观看| 日日啪夜夜撸| 综合色丁香网| 丝袜喷水一区| 三级经典国产精品| 精品久久久久久电影网| 大片免费播放器 马上看| 国产精品久久久久久精品古装| 欧美变态另类bdsm刘玥| 亚洲一区二区三区欧美精品| 成人漫画全彩无遮挡| 妹子高潮喷水视频| 日韩,欧美,国产一区二区三区| 亚洲美女视频黄频| 一级毛片我不卡| 国产乱人偷精品视频| 国产精品一区二区在线观看99| 国产欧美另类精品又又久久亚洲欧美| 夜夜骑夜夜射夜夜干| 涩涩av久久男人的天堂| 不卡视频在线观看欧美| 又爽又黄a免费视频| 免费大片黄手机在线观看| 十分钟在线观看高清视频www | 久久人妻熟女aⅴ| 高清不卡的av网站| 久久久久久久久久成人| 18禁在线播放成人免费| 蜜桃在线观看..| 一级片'在线观看视频| 中文在线观看免费www的网站| 免费观看av网站的网址| 80岁老熟妇乱子伦牲交| kizo精华| 亚洲第一区二区三区不卡| 爱豆传媒免费全集在线观看| av国产久精品久网站免费入址| 亚洲精品国产色婷婷电影| 少妇熟女欧美另类| 国产伦理片在线播放av一区| 男女边摸边吃奶| 久久ye,这里只有精品| 国产精品久久久久久精品电影小说| 80岁老熟妇乱子伦牲交| av播播在线观看一区| 卡戴珊不雅视频在线播放| 精品亚洲成a人片在线观看| a级毛片在线看网站| 偷拍熟女少妇极品色| 丝瓜视频免费看黄片| 国产免费一级a男人的天堂| 偷拍熟女少妇极品色| 黑人巨大精品欧美一区二区蜜桃 | 免费观看的影片在线观看| 80岁老熟妇乱子伦牲交| 婷婷色综合大香蕉| 日韩亚洲欧美综合| 精品少妇黑人巨大在线播放| 日韩三级伦理在线观看| 欧美丝袜亚洲另类| 国产一区二区三区av在线| 日韩一区二区三区影片| av播播在线观看一区| 国产日韩欧美视频二区| 国产精品成人在线| 国产日韩欧美视频二区| 国产午夜精品久久久久久一区二区三区| 亚洲精品第二区| 精品人妻偷拍中文字幕| 少妇熟女欧美另类| 日本av免费视频播放| 在线观看www视频免费| 亚洲精品,欧美精品| a级毛色黄片| 一级,二级,三级黄色视频| a 毛片基地| 永久免费av网站大全| 亚洲av免费高清在线观看| 日本-黄色视频高清免费观看| 性色avwww在线观看| 大陆偷拍与自拍| 亚洲国产最新在线播放| 国产高清不卡午夜福利| 高清欧美精品videossex| 欧美日韩一区二区视频在线观看视频在线| 国产精品久久久久成人av| 国产av码专区亚洲av| 一区二区三区乱码不卡18| 亚洲成人av在线免费| 亚洲婷婷狠狠爱综合网| 国产精品久久久久久久电影| 2021少妇久久久久久久久久久| 精品熟女少妇av免费看| 欧美日韩av久久| 中文天堂在线官网| 韩国av在线不卡| 国产精品国产三级专区第一集| 99热6这里只有精品| 亚洲精品久久久久久婷婷小说| 免费在线观看成人毛片| 欧美日韩在线观看h| 美女视频免费永久观看网站| 人人妻人人澡人人看| 蜜桃久久精品国产亚洲av| 国产伦精品一区二区三区视频9| 久久精品国产鲁丝片午夜精品| 99热网站在线观看| 少妇精品久久久久久久| 一级a做视频免费观看| 久久这里有精品视频免费| 黑人猛操日本美女一级片| 国产午夜精品一二区理论片| 欧美性感艳星| 久久久久国产网址| 热re99久久国产66热| 欧美最新免费一区二区三区| 亚洲欧美清纯卡通| 伊人亚洲综合成人网| 97精品久久久久久久久久精品| 久久久午夜欧美精品| 青春草国产在线视频| 一区二区三区精品91| 一级av片app| 少妇丰满av| 亚洲精品乱码久久久v下载方式| 亚洲怡红院男人天堂| 精品亚洲成a人片在线观看| 国产一区亚洲一区在线观看| 99久久精品一区二区三区| 亚洲欧洲精品一区二区精品久久久 | 日日爽夜夜爽网站| 国产av精品麻豆| 中文字幕精品免费在线观看视频 | 大陆偷拍与自拍| 高清欧美精品videossex| 午夜福利网站1000一区二区三区| 熟女人妻精品中文字幕| 国产黄频视频在线观看| 免费黄网站久久成人精品| 亚洲av男天堂| av专区在线播放| 成人18禁高潮啪啪吃奶动态图 | 亚洲第一区二区三区不卡| 成年人午夜在线观看视频| 22中文网久久字幕| 国产69精品久久久久777片| 久久精品国产自在天天线| 亚洲图色成人| 欧美精品国产亚洲| 97超碰精品成人国产| 色视频在线一区二区三区| 欧美激情极品国产一区二区三区 | 亚洲欧美日韩卡通动漫| 人体艺术视频欧美日本| av在线老鸭窝| 极品教师在线视频| 精品久久久久久电影网| 青春草视频在线免费观看| 男女国产视频网站| 亚洲性久久影院| 黄色毛片三级朝国网站 | 亚洲欧美日韩另类电影网站| 成人黄色视频免费在线看| 亚洲精品国产av蜜桃| 色婷婷av一区二区三区视频| 欧美一级a爱片免费观看看| 97在线视频观看| 久久久久久久久久成人| 精品国产国语对白av| 亚洲欧美一区二区三区黑人 | 熟女电影av网| 热re99久久国产66热| 一区二区三区乱码不卡18| 久久婷婷青草| 十分钟在线观看高清视频www | 青春草视频在线免费观看| 丰满人妻一区二区三区视频av| 亚洲精品乱码久久久v下载方式| 如日韩欧美国产精品一区二区三区 | 男人舔奶头视频| 夜夜骑夜夜射夜夜干| 另类亚洲欧美激情| 日日撸夜夜添| 久久久久久人妻| 婷婷色综合大香蕉| 国产精品伦人一区二区| 国产精品偷伦视频观看了| 少妇熟女欧美另类| 亚洲精品亚洲一区二区| 曰老女人黄片| 亚洲精品aⅴ在线观看| 老司机亚洲免费影院| 国产免费福利视频在线观看| 久久国内精品自在自线图片| av.在线天堂| 国产在视频线精品| 99视频精品全部免费 在线| 国产精品一区www在线观看| 日本av免费视频播放| 伊人久久国产一区二区| 久久久精品94久久精品| 国产在线免费精品| 国产亚洲精品久久久com| 亚洲精品亚洲一区二区| 亚洲美女搞黄在线观看| 九色成人免费人妻av| 午夜福利,免费看| 18禁在线无遮挡免费观看视频| 边亲边吃奶的免费视频| 国产精品蜜桃在线观看| av又黄又爽大尺度在线免费看| 91精品一卡2卡3卡4卡| 热re99久久国产66热| 交换朋友夫妻互换小说| 晚上一个人看的免费电影| 久久久久视频综合| 欧美+日韩+精品| 亚洲综合精品二区| 免费高清在线观看视频在线观看| 亚洲美女搞黄在线观看| 黑人猛操日本美女一级片| 国产成人精品福利久久| 久久久久精品性色| 3wmmmm亚洲av在线观看| 久久国产精品男人的天堂亚洲 | av一本久久久久| www.av在线官网国产| 女性被躁到高潮视频| 亚洲精品久久久久久婷婷小说| 老熟女久久久| 国产视频首页在线观看| 少妇高潮的动态图| 乱系列少妇在线播放| 少妇丰满av| 精品一品国产午夜福利视频| 久久97久久精品| 成人毛片60女人毛片免费| 香蕉精品网在线| 国产男人的电影天堂91| 成年人免费黄色播放视频 | 亚洲成色77777| 日韩 亚洲 欧美在线| 99热国产这里只有精品6| 国产色婷婷99| 久久精品久久精品一区二区三区| 国产成人精品久久久久久| 妹子高潮喷水视频| 国产精品人妻久久久影院| 内射极品少妇av片p| 夜夜骑夜夜射夜夜干| 中文欧美无线码| 欧美精品高潮呻吟av久久| 国产日韩一区二区三区精品不卡 | 免费高清在线观看视频在线观看| 新久久久久国产一级毛片| 亚洲av电影在线观看一区二区三区| 欧美区成人在线视频| 国产精品一二三区在线看| 桃花免费在线播放| 午夜福利,免费看| 免费观看的影片在线观看| 欧美精品一区二区免费开放| 精品久久久噜噜| 少妇裸体淫交视频免费看高清| 午夜福利在线观看免费完整高清在| 婷婷色av中文字幕| 在线观看三级黄色| 国产成人精品福利久久| 久久精品夜色国产| 国产成人免费观看mmmm| 人人妻人人爽人人添夜夜欢视频 | 久久久久久久久久人人人人人人| 99热6这里只有精品| 99久久中文字幕三级久久日本| 麻豆成人av视频| 国内精品宾馆在线| 婷婷色综合大香蕉| 国产伦精品一区二区三区四那| 热re99久久国产66热| 汤姆久久久久久久影院中文字幕| 丝袜喷水一区| av国产精品久久久久影院| 国内少妇人妻偷人精品xxx网站| 99热这里只有精品一区| 97在线视频观看| 99精国产麻豆久久婷婷| 婷婷色av中文字幕| 精品久久久久久久久av| 国产高清不卡午夜福利| 欧美丝袜亚洲另类| 一边亲一边摸免费视频| av天堂中文字幕网| 超碰97精品在线观看| 国产亚洲欧美精品永久| 性高湖久久久久久久久免费观看| 亚洲精品成人av观看孕妇| 亚洲一级一片aⅴ在线观看| 亚洲在久久综合| 国产 精品1| 少妇人妻久久综合中文| 在线精品无人区一区二区三| 简卡轻食公司| 色婷婷av一区二区三区视频| 国产精品99久久久久久久久| 国产精品久久久久久精品电影小说| 亚洲怡红院男人天堂| 国产成人一区二区在线| 久久久久精品性色| 久久久久久伊人网av| 18+在线观看网站| 国内精品宾馆在线| 少妇人妻 视频| 91精品一卡2卡3卡4卡| 国产精品嫩草影院av在线观看| 日韩精品有码人妻一区| 欧美老熟妇乱子伦牲交| 在线 av 中文字幕| 精品久久久久久电影网| 久久精品国产亚洲av涩爱| a 毛片基地| 日韩大片免费观看网站| 免费大片黄手机在线观看| 免费在线观看成人毛片| 国产成人精品婷婷| 久久国产精品大桥未久av | 久久久久视频综合| 女人久久www免费人成看片| 国产日韩欧美视频二区| 又粗又硬又长又爽又黄的视频| 亚洲成色77777| 一级av片app| 亚洲精品国产色婷婷电影| 男女免费视频国产| 伊人久久国产一区二区|