• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    First-principles Study on Mg Doping in Cu2ZnSnS4

    2020-12-11 03:39:58SUNDingDINGYanyanKONGLingweiZHANGYuhongGUOXiujuanWEILimingZHANGLiZHANGLixin
    無機材料學報 2020年11期

    SUN Ding,DING Yanyan,KONG Lingwei,ZHANG Yuhong,GUO Xiujuan,WEI Liming,ZHANG Li,ZHANG Lixin

    (1. School of Physics,Nankai University,Tianjin 300071,China; 2. School of Electrical and Computer Engineering,Jilin Jianzhu University,Changchun 130118,China; 3. School of Materials Science and Engineering,Jilin Jianzhu University,Changchun 130118,China; 4. Institute of Photo Electronics thin Film Devices and Technology,Nankai University,Tianjin 300071,China)

    Abstract: To date,solar cells with efficiency of 12.6% has been demonstrated via a hydrazine-based solution approach. Despite this progress,performance of Cu2ZnSn(S,Se)4 solar cells remains far lower than the Shockely-Quiser theoretical limit. We performed density functional theory calculations with hybrid functional approach to investigate the Mg-related defects in the kesterite structure of the Cu2ZnSnS4 (CZTS) solar cell material. The substitution energies of Mg atom in CZTS were calculated in consideration of the atomic chemical potentials of the constituent elements of Cu,Zn,Sn,and the doping atom of Mg. From our calculation results,Mg doping in CZTS under certain Sn-rich growth condition is expected to convert the conduction from p-type to n-type. The present study provides a theoretical basis for exploring practical applications of Mg doping in CZTS solar cells.

    Key words:kesterite; Mg; first-principle; solar cell

    The kesterite Cu2ZnSn(S,Se)4(CZTSSe) based compound solar cells has attracted a great number of attentions because of the non-toxicity and abundance of the constituent elements[1]. To date,solar cells with efficiency of 12.6% was demonstratedviaa hydrazine-based solution approach[2]. Despite this progress,performance of CZTSSe solar cells remains far lower than the Shockely-Quiser theoretical limit[3]. The existence of abundant antisite defects (CuZnor ZnCu) in the CZTSSe absorber are considered to be an important factor that deteriorates the solar cell performances[4]. Therefore,a wide variety of research has been done to find the alternatives for kesterite CZTSSe and an approach to substitute other elements for Cu or Zn to suppress the formation of antisite defects and thus improve the device performance. Substitution of Cd,Fe and Mn for Zn to form Cu2CdSnS4[5],Cu2FeSnS4[6]and Cu2MnSnS4[7]thin film and Cr doping[8]had been experimentally achieved. Whereas,these elements are toxic and may bring undesirable magnetism into device.By contrast,Mg element is environmentally friendly,and Mg-doped ZnO window layer was used in CIGS thin film solar cell to improve short circuit current[9].

    Recently,Mg-doped CZTS(Se) materials have been synthesized by many techniques such as ultrasonic co-spray method[10],pulsed laser deposition method (PLD)[11],and a liquid-phase reactive sintering technique[12]. In these works,structural,electronic and optical properties of Mg-doped CZTS(Se) were studied. Nevertheless,Mg-doped CZTS deposited by PLD showed p-type conductivity behavior while Mg-doped CZTSe prepared by reactive sintering technique exhibited n-type electrical conductivity. To the best of our knowledge,no experimental or theoretical work has been done to clarify which element in CZTS(Se) is more likely substituted by Mg and what kind of defects might be introduced into CZTS(Se) by Mg doping. Rapidlydeveloping first-principles calculation methods make it possible to study substitution of Zn in CZTS(Se) theoretically[13-15]. Therefore,in this work we studied the formation energies of Mg impurities in kesterite CZTSviahybrid functional calculations. On the basis of our results,we identified the energetics of the most likely positions in CZTS for the incorporation of Mg extrinsic defects,which may help improving the further application of CZTS(Se) solar cells.

    1 Computational details

    In the present work,all calculations have been performed based on density functional theory (DFT) as implanted in the VASP code[16]. The interaction between ions and electrons is described by the projector augmented wave (PAW) method[17]with a plane-wave cutoff energy of 400 eV. For defect calculations,a 2×2×1 supercell containing 64 atoms is adopted,as shown in Fig. 1. A 2×2×2 Monkhorst-Pack k-point mesh is used for the Brillouin-zone integration of the 64-atom cell.

    Screened Coulomb hybrid functional Heyd-Scuseria-Ernzerhof (HSE06)[18]is used to calculate the electronic structures and defect properties. The range-separation screening parameterμis set to 0.02 nm-1and the amount of Hartree-Fock exchange is set to 0.25 in the HSE06 functional. Our calculations are done in two steps. In the first step we optimize the atomic structure by using GGA in the Perdew-Burke-Ernzerhof (PBE) form[19]. In this step,the lattice parameters were optimized through the minimization of total energy. In the second step we do the static electronic calculation by the HSE06 hybrid functional. All lattice vectors and atomic positions were fully relaxed by minimizing the quantum mechanical stresses and forces. It shows that the band gap obtained by this two-step procedure is in excellent agreement with the experimental value in previous work[20]. These parameters and methods ensure the calculated band gap for CZTS close to the experimental values.

    Mg-related point defects including three antisites MgCu,MgZnand MgSnare considered (one Mg atom substitutes Cu,Zn and Sn site,respectively). The defect formation energies are calculated as[21]

    Fig. 1 Supercell used to calculate the defect properties ofMg-doped CZTS,where the red circles denote the locations of the antisite defects

    whereEα,qandEhis the total energy of the supercell with and without a defect α,respectively.Eiis the total energy of the component elementiin its pure phase;niis the number of atomsiremoved from the supercell in forming the defect with the chemical potentialμiin forming the defect α. Theμiis referenced to the total energyEiof the elemental solid andμi=0 means the element is so rich that the pure element phase can form.EFis the Fermi energy,which varies from valence band maximum (VBM) of the host,denoted byεVBM,to the conduction band minimum (CBM) for non-degenerate semiconductors. Because of the finite size of supercells,the Lany and Zunger correction method[22]is used to correct the image-charge interaction with a relative dielectric constant (εr) of 8.1[23]of the monopole correction.And potential alignment correction is applied by aligning the core-averaged electrostatic potentials far from the defect[24].

    2 Results and discussion

    The predicted lattice parameters and bandgap results by using two types of exchange-correlation functionals are presented in Table 1. HSE06 functional predicts a bandgap of 1.45 eV for CZTS,in consistent with the experimental values. By contrast,the PBE functional largely underestimate the bandgap. Therefore,HSE06 is used to calculate the electronic structures and defect properties of Mg-doped CZTS.

    A defect often produces states within the band gap,with the stronger the gap states,the more localization of the defect charge distribution. The charge localization feature can be seen from the band structures,as shown in Fig. 2. The charge states of MgCuand MgSnare similar to ZnCuand ZnSnwhich are both charge delocalized defects[26]. For these defects,defect-induced states hybridize with the conduction band or the valence band and are difficult to be separated,thus there is invisible defectinduced levels within the band gap[27]. The electrons on these charge delocalized defects are loosely bounded and easy to be ionized and will not produce deep defect levels within the band gap.

    Whether a defect level could significantly affect the solar cell performance also depends on its concentration which is related to the formation energy,a function of the elemental chemical potentials and Fermi level according to eq. (1). And the stable region of chemical potential is needed to be determined before performing the calculationof formation energies of the Mg-related defects. A series of thermodynamic conditions must be satisfied by the chemical potentials:

    Table 1 Lattice parameters a and c and band gaps of CZTS as obtained using PBE and HSE compared to experimental values

    Fig. 2 Band structures of the host CZTS and the MgCu,MgZn and MgSn with different charge states

    (I) The sum of the chemical potentials of the component elements should maintain a stable host compound,which means:

    where ΔHf(Cu2ZnSnS4)relates to the formation energy of Cu2ZnSnS4.

    (II) The formation of pure elemental phase should be avoided. Thus,the atomic chemical potentials in CZTS should be smaller than that of the corresponding elemental solid. That is:

    (III) The formation of all other secondary compounds including CuS,Cu2S,ZnS,SnS,SnS2,Cu2SnSe3and MgS should be avoided,as described by the following relations:

    With the thermodynamic conditions established,the stable chemical potential region of CZTS is confined in a three-dimensional space. As a result of Equation 2,there can be only three independent variables for CZTS,such asμCu,μZnandμSn. Here we take the chemical potential range determined by Zhanget al.[28]for CZTS. When Mg induced secondary phase MgS is considered,the stable chemical potential region is surrounded by ABCD,as shown in Fig. 3. The chemical potential values for each element at points A-D are listed in Table 2. Point D is more Zn-rich in growth condition compared to that of points A-C.

    To figure out the microscopic mechanism of Mg-doping,the formation energies as a function ofEFfor Mg-related defects at points A-D are calculated. Whereas we only show the results at point D since Zn-rich growth condition is preferred by CZTS solar cells with high efficiency.As shown in Fig. 4,the formation energies of MgCu+and MgZn0are lower than 2 eV in the wholeEFrange,which means these defects can exist in large amount in CZTS.By contrast,the formation energy of MgSn2-is higher than 2 eV whenEFis closed to the VBM.

    Fig. 3 Stable chemical potential region of CZTS(considering the Mg induced secondary phase MgS) with μCu = -0.5 eV

    Table 2 Chemical potentials at the A-D points labeled in Fig. 3/eV

    Fig. 4 The formation energies of Mg-related defects as a function of Fermi energy at point D shown in Fig. 3

    It is also found that the formation energy of MgZn0is even smaller than that of MgCu+in largeEFrange,which indicates that the Mg atom prefers to substitute the Zn atomic site in CZTS. Since Mg and Zn are isovalent,the MgZnwill not affect the conduction type. Moreover,the existence of MgZnmakes it easy for other Cu atoms to be substituted by Mg atom. The comparison of the formation energy of MgCuin the supercell with and without a Mg dopant on the Zn site is shown in Fig. 5. With Mg dopant,the formation energy of MgCu+decreases by 52 meV than that without Mg atom. The Bader charge shows that the amount of transferred electron from Mg to S is larger than that of Zn in CZTS,as shown in Fig. 6.Thus,it compensates electrons transferred from other Cu atoms to obey the Octet rule which makes the Coulomb attraction between Cu-S weaker than that in pure CZTS.As a result,it is easier for Cu atom to be substituted by Mg atom,and Mg doping promotes the population of MgCudonor.

    A buried p-n junction in Cu(InGa)Se2(CIGS) film facilitates electron-hole separation of photogenerated carriers. Some groups attempted doping of Cd into CIGS films to convert the near-interface region from p-type CIGS to n-type to improve the performances[29]. However,intentional doping of CZTS to n-type through extrinsic elements is challenging,and may be one reason CZTS suffers from poor efficiencies[30]. In addition to nontoxicity of Mg element,MgCudonor has a relatively low formation energy which can be further lowered with the existence of MgZn. Therefore,we propose the doping of Mg at the CZTS surface need to be further studied by a theoretical and experimental approach. Besides the Cu-poor and Zn-rich condition which are preferred in the high efficiency solar cells,previous work[26]has discussed that Sn-rich growth condition is important in the CZTS synthesis procedure to suppress CuSn. We propose the Sn-rich growth condition is also important to suppress MgSnwhenEFis close to the CBM. As a result,Mg prefers to substitute the Cu atomic site and acts as shallow donor in CZTS. Hence,Mg is a promising dopant to further improve the performance of Cu2ZnSnS4-based solar cell.

    Fig. 5 The comparison of the formation energy of MgCu in pure CZTS and Mg doped CZTS as a function of chemical potential at points A,B,C and D shown in Fig. 3

    Fig. 6 The difference density charge (including Bader charges)for Mg doped CZTS

    3 Conclusions

    In this work,we have carried out hybrid functional computations on the Mg-related defect properties in CZTS. According to our results,all Mg-related defects are not charge localized defects and will not produce deep defect levels within the bandgap. Furthermore,MgCuand MgZnhave very low formation energies in largeEFrange. Besides the well-established Cu-poor and Zn-rich growth conditions,Sn-rich growth condition is proposed to suppress MgSn. Under these conditions,Mg prefers to occupy the Cu atomic site and acts as shallow donor. Finally,we suggest that Mg doping on the surface might be an effective method to further improve the efficiency of Cu2ZnSnS4-based solar cells.

    夜夜看夜夜爽夜夜摸| 村上凉子中文字幕在线| 51国产日韩欧美| 午夜福利高清视频| 欧美激情久久久久久爽电影| 波野结衣二区三区在线| 黄色欧美视频在线观看| 久久精品国产亚洲网站| 亚洲av第一区精品v没综合| 日韩三级伦理在线观看| 久久久久久久久中文| 校园人妻丝袜中文字幕| 婷婷精品国产亚洲av| 国产精华一区二区三区| 成人av一区二区三区在线看| 国产美女午夜福利| 亚洲乱码一区二区免费版| 老司机福利观看| 日韩欧美一区二区三区在线观看| 日韩一本色道免费dvd| 日本免费一区二区三区高清不卡| 午夜a级毛片| 欧美一区二区亚洲| 久久中文看片网| 人人妻,人人澡人人爽秒播| 国产毛片a区久久久久| 淫妇啪啪啪对白视频| 亚洲成a人片在线一区二区| 亚洲国产欧洲综合997久久,| 日日摸夜夜添夜夜添av毛片| 一个人观看的视频www高清免费观看| 精品不卡国产一区二区三区| 禁无遮挡网站| 波多野结衣高清无吗| 免费看日本二区| 免费av毛片视频| 99热精品在线国产| 美女xxoo啪啪120秒动态图| 成年版毛片免费区| 亚洲va在线va天堂va国产| ponron亚洲| 国产精品伦人一区二区| 99热网站在线观看| 99热精品在线国产| 午夜亚洲福利在线播放| 一个人看的www免费观看视频| 国产亚洲av嫩草精品影院| 日韩一本色道免费dvd| 人妻久久中文字幕网| 免费不卡的大黄色大毛片视频在线观看 | 婷婷精品国产亚洲av| 国产亚洲av嫩草精品影院| 欧美+亚洲+日韩+国产| 亚洲欧美精品综合久久99| 久久中文看片网| 在线国产一区二区在线| 成人午夜高清在线视频| 国产午夜福利久久久久久| 精品久久久久久久末码| 国产免费一级a男人的天堂| 亚洲成a人片在线一区二区| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 免费看美女性在线毛片视频| 免费无遮挡裸体视频| 午夜精品在线福利| 亚洲国产精品sss在线观看| 老师上课跳d突然被开到最大视频| 国国产精品蜜臀av免费| 婷婷亚洲欧美| 午夜爱爱视频在线播放| 欧美日韩精品成人综合77777| 久久久精品大字幕| 日韩成人av中文字幕在线观看 | 久久久久久国产a免费观看| 久久鲁丝午夜福利片| 欧美色视频一区免费| 五月伊人婷婷丁香| 免费观看精品视频网站| 亚洲av第一区精品v没综合| 亚洲中文字幕一区二区三区有码在线看| 国产一区二区亚洲精品在线观看| 久久久久国产精品人妻aⅴ院| av女优亚洲男人天堂| 一个人免费在线观看电影| av女优亚洲男人天堂| 久久久久久久久久久丰满| 久久鲁丝午夜福利片| 日产精品乱码卡一卡2卡三| 国产精品免费一区二区三区在线| 岛国在线免费视频观看| 最近的中文字幕免费完整| 日韩欧美国产在线观看| 成人漫画全彩无遮挡| 午夜福利在线观看免费完整高清在 | 亚洲真实伦在线观看| 日本一本二区三区精品| 精品免费久久久久久久清纯| 成人av一区二区三区在线看| 国产精品久久电影中文字幕| a级毛片免费高清观看在线播放| 九九在线视频观看精品| 国产单亲对白刺激| 久久精品综合一区二区三区| 99视频精品全部免费 在线| 欧美中文日本在线观看视频| АⅤ资源中文在线天堂| 波野结衣二区三区在线| 欧美3d第一页| 色综合站精品国产| 你懂的网址亚洲精品在线观看 | 国产精品嫩草影院av在线观看| 午夜福利在线观看吧| 欧美日韩乱码在线| 欧美性猛交黑人性爽| 亚洲av成人av| 一区二区三区四区激情视频 | 亚洲成人av在线免费| 校园春色视频在线观看| 嫩草影院新地址| 午夜福利在线在线| 麻豆一二三区av精品| 亚洲欧美日韩高清专用| 日日撸夜夜添| 亚洲经典国产精华液单| 中出人妻视频一区二区| 能在线免费观看的黄片| 久久久精品大字幕| 三级国产精品欧美在线观看| 精品午夜福利在线看| 亚洲四区av| 尤物成人国产欧美一区二区三区| 国产白丝娇喘喷水9色精品| 亚洲精品日韩av片在线观看| 听说在线观看完整版免费高清| 久久国内精品自在自线图片| 成年免费大片在线观看| 日韩一区二区视频免费看| 日本-黄色视频高清免费观看| 看黄色毛片网站| 成人特级黄色片久久久久久久| 亚洲美女视频黄频| 成人午夜高清在线视频| 亚洲一区高清亚洲精品| 91在线观看av| 国产精品一区二区性色av| 3wmmmm亚洲av在线观看| 日日摸夜夜添夜夜爱| 精品99又大又爽又粗少妇毛片| 日韩在线高清观看一区二区三区| 老熟妇仑乱视频hdxx| 久久精品影院6| 日韩欧美精品免费久久| 国产精品永久免费网站| 亚洲色图av天堂| 日本 av在线| 18禁在线播放成人免费| 日本黄色片子视频| 亚洲无线观看免费| 欧美+亚洲+日韩+国产| 欧美性猛交黑人性爽| 国产麻豆成人av免费视频| 成人综合一区亚洲| 国语自产精品视频在线第100页| 久久精品国产自在天天线| 欧美激情在线99| 亚洲美女搞黄在线观看 | 欧美性猛交╳xxx乱大交人| 国产成人aa在线观看| 麻豆一二三区av精品| 久久欧美精品欧美久久欧美| 国产一区二区三区在线臀色熟女| 日本欧美国产在线视频| 亚洲av成人精品一区久久| 日韩,欧美,国产一区二区三区 | 成年av动漫网址| 国产精品乱码一区二三区的特点| 日本与韩国留学比较| 一级毛片久久久久久久久女| 成年免费大片在线观看| 91狼人影院| 国产精品福利在线免费观看| 嫩草影院新地址| 又爽又黄无遮挡网站| 国产成人a区在线观看| 看免费成人av毛片| 国产午夜精品久久久久久一区二区三区 | www日本黄色视频网| 搡老妇女老女人老熟妇| 啦啦啦啦在线视频资源| 久久久久久久久久成人| av天堂在线播放| 91久久精品国产一区二区三区| 亚洲成人久久爱视频| 精品一区二区三区av网在线观看| 久久久久国产精品人妻aⅴ院| 日产精品乱码卡一卡2卡三| 少妇的逼好多水| 夜夜爽天天搞| 久久草成人影院| 97超碰精品成人国产| 国产免费一级a男人的天堂| 在线免费观看的www视频| 国产精品久久视频播放| 国产精品伦人一区二区| 成人永久免费在线观看视频| 久久人人精品亚洲av| 亚洲性夜色夜夜综合| 日本三级黄在线观看| 亚洲精品亚洲一区二区| 午夜福利视频1000在线观看| 大香蕉久久网| 亚洲国产欧美人成| 久久久a久久爽久久v久久| 欧美日本亚洲视频在线播放| 18禁裸乳无遮挡免费网站照片| 99久久精品一区二区三区| 男女下面进入的视频免费午夜| 国产欧美日韩一区二区精品| 国产黄片美女视频| 一夜夜www| 联通29元200g的流量卡| 欧美日韩精品成人综合77777| 精品久久久久久久末码| 亚洲人成网站高清观看| 精品一区二区三区视频在线观看免费| 国产 一区精品| 精品久久国产蜜桃| 久久久国产成人免费| 啦啦啦韩国在线观看视频| 国产高清视频在线播放一区| 91麻豆精品激情在线观看国产| 久久6这里有精品| 久久人人爽人人片av| 日韩欧美在线乱码| 深夜a级毛片| 免费人成视频x8x8入口观看| 最新在线观看一区二区三区| 免费看光身美女| 日本色播在线视频| 偷拍熟女少妇极品色| 亚洲欧美中文字幕日韩二区| 欧美最黄视频在线播放免费| 波野结衣二区三区在线| 草草在线视频免费看| 日日干狠狠操夜夜爽| 亚洲国产精品国产精品| 亚洲欧美精品自产自拍| 亚州av有码| 成人av在线播放网站| 少妇的逼水好多| www日本黄色视频网| 中国美女看黄片| 日本一本二区三区精品| 永久网站在线| 日本精品一区二区三区蜜桃| 春色校园在线视频观看| 黄色欧美视频在线观看| 国产极品精品免费视频能看的| 色吧在线观看| 亚洲国产色片| 成人综合一区亚洲| 麻豆久久精品国产亚洲av| АⅤ资源中文在线天堂| 熟女人妻精品中文字幕| 日韩一区二区视频免费看| 寂寞人妻少妇视频99o| 国产亚洲91精品色在线| 欧美成人一区二区免费高清观看| 国产又黄又爽又无遮挡在线| 亚洲av免费高清在线观看| 乱码一卡2卡4卡精品| 天天躁夜夜躁狠狠久久av| 听说在线观看完整版免费高清| 成人鲁丝片一二三区免费| 久久鲁丝午夜福利片| 亚洲美女视频黄频| 欧美激情在线99| 午夜精品国产一区二区电影 | 久久国内精品自在自线图片| 级片在线观看| 在线观看66精品国产| 久久久久久伊人网av| 18禁裸乳无遮挡免费网站照片| 国产色爽女视频免费观看| 亚洲成人av在线免费| 国产一区二区亚洲精品在线观看| 免费看av在线观看网站| 九九在线视频观看精品| 精品久久久久久久久av| 97超级碰碰碰精品色视频在线观看| 伊人久久精品亚洲午夜| 五月伊人婷婷丁香| 亚洲av第一区精品v没综合| 成人亚洲精品av一区二区| 国产亚洲精品久久久久久毛片| 高清日韩中文字幕在线| 免费观看的影片在线观看| 免费人成在线观看视频色| 欧美一区二区精品小视频在线| 久久久久久大精品| 亚洲精品456在线播放app| 特级一级黄色大片| 少妇丰满av| 日韩亚洲欧美综合| 色5月婷婷丁香| 日日撸夜夜添| 国产麻豆成人av免费视频| 国产老妇女一区| 99久久无色码亚洲精品果冻| 成年版毛片免费区| 国产成人a∨麻豆精品| 内射极品少妇av片p| 91久久精品国产一区二区三区| 啦啦啦观看免费观看视频高清| 99热网站在线观看| 别揉我奶头 嗯啊视频| 欧美日韩精品成人综合77777| 久久99热6这里只有精品| 久久精品人妻少妇| 中文字幕精品亚洲无线码一区| 99久久久亚洲精品蜜臀av| 免费观看的影片在线观看| av天堂中文字幕网| 亚洲精品久久国产高清桃花| 99视频精品全部免费 在线| 性插视频无遮挡在线免费观看| 久久久久国产网址| 久久6这里有精品| 国产探花极品一区二区| 天美传媒精品一区二区| 亚洲国产精品合色在线| 亚洲国产精品成人综合色| 日日摸夜夜添夜夜添av毛片| 亚洲av一区综合| 国产亚洲精品av在线| 九九热线精品视视频播放| av专区在线播放| 哪里可以看免费的av片| 精品国内亚洲2022精品成人| 女生性感内裤真人,穿戴方法视频| 久久久精品大字幕| 变态另类丝袜制服| 麻豆一二三区av精品| 国产一区二区在线av高清观看| 日韩大尺度精品在线看网址| 精品久久久久久久久av| 小蜜桃在线观看免费完整版高清| 亚洲最大成人av| 看黄色毛片网站| 久久精品综合一区二区三区| 精品久久久久久久人妻蜜臀av| 麻豆国产97在线/欧美| 联通29元200g的流量卡| 国产精品日韩av在线免费观看| 啦啦啦韩国在线观看视频| 长腿黑丝高跟| 波多野结衣巨乳人妻| 男女边吃奶边做爰视频| 日韩在线高清观看一区二区三区| 免费大片18禁| 国产精品乱码一区二三区的特点| 日韩av在线大香蕉| 欧美日韩综合久久久久久| 国模一区二区三区四区视频| 欧美日韩一区二区视频在线观看视频在线 | 欧美一区二区国产精品久久精品| 看黄色毛片网站| 日韩强制内射视频| 国产精品99久久久久久久久| 亚洲七黄色美女视频| 人妻制服诱惑在线中文字幕| 国产高清有码在线观看视频| 亚洲av二区三区四区| 六月丁香七月| 全区人妻精品视频| 精品一区二区三区视频在线| 亚洲av中文av极速乱| 免费在线观看成人毛片| 国产真实伦视频高清在线观看| 男人狂女人下面高潮的视频| 亚洲欧美成人综合另类久久久 | 一级av片app| 美女免费视频网站| 直男gayav资源| 久久久久久久久大av| 国产aⅴ精品一区二区三区波| 九九久久精品国产亚洲av麻豆| 又爽又黄a免费视频| 国产精品一及| 啦啦啦韩国在线观看视频| 麻豆国产97在线/欧美| 波多野结衣巨乳人妻| 最近视频中文字幕2019在线8| 在线国产一区二区在线| 一夜夜www| 黄色一级大片看看| 亚洲va在线va天堂va国产| 欧美三级亚洲精品| 亚洲成人久久爱视频| 午夜福利在线在线| 亚洲欧美精品综合久久99| 男人舔女人下体高潮全视频| 老女人水多毛片| 亚洲熟妇中文字幕五十中出| 免费一级毛片在线播放高清视频| 国产精品女同一区二区软件| 亚洲色图av天堂| 中国美女看黄片| av.在线天堂| 在线免费十八禁| 亚洲av中文av极速乱| 最新在线观看一区二区三区| 午夜a级毛片| 中文字幕人妻熟人妻熟丝袜美| 99热只有精品国产| 波多野结衣巨乳人妻| 99九九线精品视频在线观看视频| 色综合色国产| 一本久久中文字幕| 两个人的视频大全免费| 亚洲成a人片在线一区二区| 97人妻精品一区二区三区麻豆| 女的被弄到高潮叫床怎么办| 国产精品一及| 天堂av国产一区二区熟女人妻| 舔av片在线| 日韩国内少妇激情av| 卡戴珊不雅视频在线播放| 九九在线视频观看精品| 精品人妻熟女av久视频| 少妇人妻一区二区三区视频| 在线播放国产精品三级| 欧美精品国产亚洲| 亚洲无线观看免费| 99久久无色码亚洲精品果冻| 不卡一级毛片| 非洲黑人性xxxx精品又粗又长| 国产一区二区三区av在线 | 国产白丝娇喘喷水9色精品| 亚洲va在线va天堂va国产| 免费在线观看影片大全网站| 色视频www国产| 男女下面进入的视频免费午夜| 男人狂女人下面高潮的视频| 此物有八面人人有两片| 麻豆乱淫一区二区| avwww免费| 真实男女啪啪啪动态图| 综合色av麻豆| 99久久九九国产精品国产免费| 18禁在线无遮挡免费观看视频 | 97超级碰碰碰精品色视频在线观看| 美女免费视频网站| 亚洲天堂国产精品一区在线| 国产黄a三级三级三级人| 欧美日本视频| 亚洲五月天丁香| 国内精品美女久久久久久| 99热全是精品| 色噜噜av男人的天堂激情| 国产 一区 欧美 日韩| 哪里可以看免费的av片| 国产免费男女视频| 俺也久久电影网| 大型黄色视频在线免费观看| 成熟少妇高潮喷水视频| 国产高清视频在线观看网站| 91狼人影院| 六月丁香七月| 国产高潮美女av| 最新在线观看一区二区三区| 色综合亚洲欧美另类图片| 国产探花在线观看一区二区| 日韩成人av中文字幕在线观看 | 日韩 亚洲 欧美在线| 国产真实伦视频高清在线观看| 国产av一区在线观看免费| 亚洲内射少妇av| 国产伦在线观看视频一区| 国产成人a∨麻豆精品| 三级国产精品欧美在线观看| 桃色一区二区三区在线观看| 国产精品久久久久久精品电影| 国产精品电影一区二区三区| 搡老妇女老女人老熟妇| 久久精品91蜜桃| 韩国av在线不卡| 久久精品国产自在天天线| 精品久久久久久久久久免费视频| 99九九线精品视频在线观看视频| 亚洲国产精品合色在线| 久久久色成人| 日本与韩国留学比较| 国内久久婷婷六月综合欲色啪| 亚洲内射少妇av| 免费看光身美女| 国产亚洲精品久久久com| 亚洲真实伦在线观看| 色尼玛亚洲综合影院| 床上黄色一级片| 内射极品少妇av片p| 一本久久中文字幕| 免费看a级黄色片| 99久久成人亚洲精品观看| 色综合站精品国产| 三级经典国产精品| 国产美女午夜福利| 热99在线观看视频| 国产精品野战在线观看| 女人十人毛片免费观看3o分钟| 不卡一级毛片| 国产v大片淫在线免费观看| 亚洲av免费在线观看| 搡老熟女国产l中国老女人| 一边摸一边抽搐一进一小说| 日韩精品青青久久久久久| 亚洲不卡免费看| 国产一区二区激情短视频| 国产精品一区二区三区四区免费观看 | 国产毛片a区久久久久| 日韩亚洲欧美综合| av国产免费在线观看| 人妻丰满熟妇av一区二区三区| 观看美女的网站| 精品一区二区三区视频在线观看免费| 女人被狂操c到高潮| 国产私拍福利视频在线观看| 搡老熟女国产l中国老女人| 性色avwww在线观看| 日本五十路高清| 精品人妻一区二区三区麻豆 | 联通29元200g的流量卡| 岛国在线免费视频观看| 日韩欧美 国产精品| 中出人妻视频一区二区| 天堂√8在线中文| 欧美激情久久久久久爽电影| 国产精品一区www在线观看| 最新中文字幕久久久久| 麻豆一二三区av精品| 亚洲精品影视一区二区三区av| 国产爱豆传媒在线观看| 高清毛片免费看| 久久久久久大精品| 在线观看免费视频日本深夜| 99热这里只有是精品在线观看| 国产精品,欧美在线| 国产伦一二天堂av在线观看| 日本欧美国产在线视频| 精品久久久久久久久亚洲| 亚洲丝袜综合中文字幕| 欧美成人a在线观看| 久久欧美精品欧美久久欧美| 中文在线观看免费www的网站| 美女xxoo啪啪120秒动态图| 成年女人看的毛片在线观看| 国产精品久久久久久久久免| 精品久久久久久久久av| 婷婷精品国产亚洲av| 久久久久性生活片| 久久精品国产清高在天天线| 亚洲,欧美,日韩| 1024手机看黄色片| 男女下面进入的视频免费午夜| 真人做人爱边吃奶动态| 午夜老司机福利剧场| 亚洲乱码一区二区免费版| 久久久a久久爽久久v久久| 校园人妻丝袜中文字幕| 国产精品综合久久久久久久免费| 久久精品国产亚洲av天美| 国产一区二区三区在线臀色熟女| 夜夜看夜夜爽夜夜摸| 蜜桃亚洲精品一区二区三区| 麻豆国产97在线/欧美| 免费av不卡在线播放| 在线看三级毛片| 亚洲自偷自拍三级| 伦理电影大哥的女人| 久久人人爽人人片av| 亚州av有码| 看免费成人av毛片| 午夜激情欧美在线| 精品乱码久久久久久99久播| 久久鲁丝午夜福利片| 热99re8久久精品国产| 久久99热这里只有精品18| 国产午夜精品论理片| 1024手机看黄色片| 男人舔女人下体高潮全视频| 18+在线观看网站| 给我免费播放毛片高清在线观看| 欧美bdsm另类| 在线国产一区二区在线| 给我免费播放毛片高清在线观看| 在线观看一区二区三区| 亚洲成av人片在线播放无| 在现免费观看毛片| 草草在线视频免费看| av中文乱码字幕在线| 欧美国产日韩亚洲一区| 免费大片18禁| 99久久久亚洲精品蜜臀av| 亚洲第一电影网av| 搡老妇女老女人老熟妇| 91午夜精品亚洲一区二区三区| 最近最新中文字幕大全电影3| 成人午夜高清在线视频| 午夜福利在线在线| 人妻丰满熟妇av一区二区三区| 六月丁香七月| 深夜a级毛片| 亚洲人成网站在线观看播放| 亚洲四区av|