• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Regional Logistics Demand Forecast Based on Least Square and Radial Basis Function

    2020-12-08 01:10:08WEILeqinZHANGAnguo

    WEI LeqinZHANG Anguo

    1 School of Humanities and Teachers’ Education,Wuyi University,Wuyishan 354300,China 2 College of Physics and Information Engineering,F(xiàn)uzhou University,F(xiàn)uzhou 350108,China

    Abstract:Regional logistics demand forecast is the basis for government departments to make logistics planning and logistics related policies. It has the characteristics of a small amount of data and being nonlinear,so the traditional prediction method can not guarantee the accuracy of prediction. Taking Xiamen City as an example,this paper selects the primary industry,the secondary industry,the tertiary industry,the total amount of investment in fixed assets,total import and export volume,per capita consumption expenditure,and the total retail sales of social consumer goods as the influencing factors,and uses a combining model least square and radial basis function (LS-RBF) neural network to analyze the related data from years 2000 to 2019,so as to predict the logistics demand from years 2020 to 2024. The model can well fit the training data,and the experimental results obtained from the comparison between the predicted value and the actual value in 2019 show that the error rate is very small. Therefore,the prediction results are reasonable and reliable. This method has high prediction accuracy,and it is suitable for irregular regional logistics demand forecast.

    Key words:regional logistics;demand forecast;least square and radial basis function(LS-RBF)

    Introduction

    The study of logistics demand prediction mainly includes two aspects:one is the study of logistics demand related indicators;the other is the research of logistics demand forecast methods.In terms of the selection of influencing indicators related to logistics demand,Reza[1]selected the traffic flow and economic indices of Indonesia from years 1988 to 2010 as the data basis,studied the relationship between logistics volume and economic indices,and further analyzed the relationship between the growth of logistics volume and economic development.He took the freight volume of shipping,aviation and railway as logistics demand indices,and built a series of models with GDP and other related impact indicators.The results showed that logistics played an important role in promoting economic growth,and it was suggested to strengthen the construction of logistics infrastructure to ensure the sustainable and healthy development of economy.Liimatainenetal.[2]selected Finland’s road cargo transport volume as the logistics demand index,and selected seven economic development indices as the relevant impact indices of logistics demand.He used the Delphi method to analyze the impact of logistics demand related indices on the highway freight volume,and drew the conclusion that different economic development will produce different transport demand.Zeng and Zhu[3]used radial basis function (RBF) neural network and random forest algorithm to predict regional logistics demand with total regional foreign trade,per capita consumption level,total regional retail sales and three industrial production values as influencing factors.Through the calculation and analysis of Pearson’s correlation coefficient,Zhang[4]found that the main influencing factors of logistics demand forecast in Jiangsu Province were GDP,the primary industry,the secondary industry,the tertiary industry and truck ownership.Then he predicted the future logistics needs of Jiangsu Province.Researchers[5-6]also introduced a variety of economic factors such as GDP,total import and export volume,investment in fixed assets,and output value of the tertiary industry to predict logistics demand,in an attempt to reduce the prediction error of logistics demand.Based on the data related to logistics demand of Fujian Province from years 1981 to 2017,such as investment in fixed assets,gross industrial product,total retail sales of social consumer goods,total import and export volume,output value of the primary industry,the secondary industry and the tertiary industry.Huangetal.[7]constructed a logistics demand portfolio prediction model based on auto-regressive integrated moving average(ARIMA) model and principal component regression(PCR),and the logistics demand for Fujian Province from years 2018 to 2022 was forecasted.Wangetal.[8]took freight volume as the scale of logistics demand in Nanping City,and built a prediction model with GDP,industrial and agricultural output values,total retail sales of social consumer goods,total investment in fixed assets,household consumption,total import and export volume,total population,and highway mileage as influencing indicators from years 2001 to 2017.Combined with principal component regression and GM(1,1) prediction model,the region’s logistics demand from years 2018 to 2022 was predicted through mathematical calculation.

    As a tool to reveal the internal relationship between logistics demand indicators and the influencing indicators related to logistics demand,the logistics demand forecast method is the core research content of logistics demand forecast and has been widely concerned by scholars for a long time.Huetal.[9]selected relevant logistics data of the whole country from years 1993 to 2014,and used the multiple linear regression method,the exponential smoothing method,the polynomial fitting method and the nonlinear forecasting method to predict logistics demand,and the prediction results were highly accurate.Yuetal.[10]used the exponential smoothing method to process the data from years 2009 to 2017 and predicted the logistics demand of Yunnan Province.The results showed that the exponential smoothing method was a more practical short-term prediction method than the multiple linear regression model,the grey prediction method and the weighted arithmetic mean method.Gao[11]analyzed the major influencing factors of logistics demand in Hainan Province,and used a back propagation(BP) neural network model to predict logistics demand from years 2017 to 2022 based on relevant statistical data from years 2003 to 2016.Caoetal.[12]used genetic algorithm to optimize support vector machines(GA-SVMs),an auto-regressive integrated moving average (ARIMA) model and a grey prediction method,and selected data of Guangxi Province’s freight volume from years 1990 to 2015 to establish a logistics demand prediction model.The results showed that GA-SVM method had good predictive effect.Samvedi and Jain[13]used the data of the four-stage beer distribution game simulation model established on the MATLAB platform,and selected the moving average method,the weighted moving average method,the exponential smoothing method and the grey prediction method to establish the prediction model.The results showed that the grey prediction model had the best prediction effect and still had good prediction effect in the case of supplying chain disruption.Lauetal.[14]improved the artificial neural network with a minimum description length (MDL) method,determined the optimal hidden layer of the artificial neural network,and obtained good prediction effect,which was proved to have wide applicability.Xiaoetal.[15]took air passenger volume as a logistics demand index,established an air passenger volume prediction model based on the adaptive network fuzzy reasoning system,and used improved particle swarm optimization algorithm to predict short-term air passenger volume,so as to solve the problem of air transport demand prediction.In order to reduce inventory cost,Jaipuria and Mahapatra[16]collected logistics data of three different manufacturing enterprises,and used a discrete wavelet transform analysis and artificial neural network (DWT-ANN) model and an ARIMA model to predict regional logistics demand respectively.The research showed that the DWT-ANN model had comparatively good prediction accuracy.

    The establishment of a regional logistics demand forecast index system is the basis of accurate and reliable forecast,and the selection of a reasonable and scientific regional logistics demand forecast index system is the premise of building a perfect logistics demand forecast index system.The rationality of index selection and the scientific reliability of index system construction are the keys to improve the prediction accuracy.In order to ensure the scientific nature of the regional logistics demand forecast index system and the accuracy and reliability of the forecast results,the selection of a regional logistics demand forecast index system should follow the principles:comprehensive,systematic,relevant and accessible[17].

    1 Index System Construction:Data and Methodology

    1.1 Data collection

    Considering the data availability and statistical consistency[18],this paper considers that it is feasible to use freight volumeYas the research object.Seven other indices,including output value in the primary industryX1,output value in the secondary industryX2,output value in the tertiary industryX3,investment in fixed assetsX4,total import and export volumeX5,per capita consumption expenditureX6,and total retail sales of social consumer goodsX7,are selected as the influencing factors of Xiamen’s freight volume.The specific index system is shown in Table 1.

    1.2 Correlation analysis

    In order to test whether the selected indices are reasonable,the Pearson correlation coefficient method[19-20]is used to test the correlation degree and significance level among variables,and the correlation coefficientPX,Ybetween variables is calculated by Eq.(1).

    (1)

    Generally,it can be divided into three levels:|P|<0.4 refers to low linear correlation,0.4≤|P|<0.7 refers to significant correlation and 0.7≤|P|<1 refers to high linear correlation.According to Eq.(1),we calculate the Pearson correlation value between the seven external indices and the total freight volume,as shown in Table 2.It can be seen that each index is highly related to the total freight volume,although the primary industry is relatively low.

    Table 1 Statistical data of economic indicators related to logistics demand volume of Xiamen City from years 2000 to 2019

    Table 2 Correlation value between indicators and total freight volume

    1.3 Methodology

    The seven indices were modeled independently.The least square (LS) method was used to fit the parameters,and the fitting variance was recorded.After establishing an accurate mathematical model,the change of each index in the next five years was predicted.Then,according to the incremental changes of seven indices year by year,the artificial RBF neural network was constructed by the MATLAB2020a software to study the incremental changes,so as to obtain the development trend of freight volume in the next five years,as shown in Fig.1.

    Fig.1 Five-year prediction method in this paper

    2 Data Analysis and Prediction

    2.1 Related indices of mathematical modeling

    Some special indices are needed to evaluate the fitting effect in the numerical fitting of each index.In this paper,we mainly selectR-square and adjustedR-square for evaluation,as explained below[21].

    (1)R-squareRS:multiple measurement coefficient.The value is between 0 and 1,which indicates that the closer you get to 1,the better your equation will be at interpretingy.

    (2)

    (3)

    whereFis the characteristic number.

    2.2 Mathematical modeling of seven external indices

    2.2.1Modelforprimaryindustry

    As shown in Fig.2,the fitting result of the output value of the primary industry is (95% confidence interval),fp(x)=54.24 sin (0.118 7x-0.445 1)+34.44×sin (0.215 3x+1.469)+8.042 sin (0.420 4x+2.208),wherefpis the fitting value for primary industry,andx=1,2,…,nwhich represents the serial number of the special year from 2000,with 1 as the initial value and increasing year by year,the same to that in Figs.3-8 below.

    Fig.2 Model fitting of 20-year data of output value of primary industry with abscissa representing years starting from 2000

    2.2.2Modelforsecondaryindustry

    As shown in Fig.3,the fitting result of the output value of the secondary industry is (95% confidence interval),fs(x)=0.157 6x3-1.824x2+80.03x+143.6,wherefsis the fitting value for the secondary industry.

    Fig.3 Model fitting of 20-year data of output value of secondary industry with abscissa representing years starting from 2000

    2.2.3Modelfortertiaryindustry

    As shown in Fig.4,the fitting result of the output value of the tertiary industry is (95% confidence interval),ft(x)=9.144x2-37.38x+298.1,whereftis the fitting value for the tertiary industry.

    Fig.4 Model fitting of 20-year data of output value of tertiary industry with abscissa representing years starting from 2000

    2.2.4Modelforinvestmentinfixedassets

    As shwon in Fig.5,the fitting result of investment in fixed assets is (95% confidence interval),ff(x)=0.286 4x3-3.408x2+100.6x-44.59,whereffis the fitting value for investment in fixed asserts.

    THERE was, once upon a time, a man and his wife fagot-makers2 by trade, who had several children, all boys. The eldest1 was but ten years old, and the youngest only seven.3

    Fig.5 Model fitting of 20-year data of investment in fixed assets with abscissa representing years starting from 2000

    2.2.5Modelfortotalimportandexportvolume

    As shown in Fig.6,the fitting result of total import and export volume is (95% confidence interval),fi(x)=36 560 sin (0.118 1x+0.447 6)+36 070 sin(0.119x+3.595)+40.16 sin(0.649 7x-0.557 9),wherefiis the fitting value for total import and export volume.

    Fig.6 Model fitting of 20-year data of total import and export volume with abscissa representing years starting from 2000

    2.2.6Modelforpercapitaconsumptionexpenditure

    As shown in Fig.7,the fitting result of per capita consumption expenditure is (95% confidence interval),fc(x)=31.48x2+954.3x+5 926,wherefcis the fitting value for per capita consumption expenditure.

    Fig.7 Model fitting of 20-year data of per capita consumption expenditure with abscissa representing years starting from 2000

    As shown in Fig.8,the fitting result of total retail sales of social consumer goods is (95% confidence interval),fr(x)=3.859x2+2.498x+144.8,wherefris the fitting value for total retail sales of social consumer goods.

    Fig.8 Model fitting of 20-year data of total retail sales of social consumer goods with abscissa representing years starting from 2000

    2.3 Multivariate forecasting based on external indices

    Based on the mathematical modeling of the seven external indicators in section 2.2,we can independently predict the values of these seven indicators in the next five years,as shown in Table 3.

    Table 3 Predictive values of seven indices in next five years

    As shown in Table 3,the total import and export volume in 2020 and 2021 is increasing year by year,but then begins to decline year by year.The main reasons are as follows.Firstly,the historical data show a certain pattern of wave rise,as shown in Fig.9.After several years of rising,there will be a short slow decline process,and then it continues to rise.Secondly,it can be seen from Table 4 that since 2006,the proportion of China’s import and export volume in GDP has been declining year by year,which also shows that the focus of China’s economic development has shifted from import and export volume trade to domestic consumption and investment.

    Fig.9 Trend of total import and export volume in Xiamen City from years 2000 to 2019

    Table 4 Proportion of total import and export volume in GDP in China from years 1999 to 2019

    3 RBF Prediction of Total Freight Volume

    In this paper,we use the RBF neural network to forecast the total freight volume in the next five years.The structure of RBF is shown in Fig.10.The left is the input node,and each node inputs one characteristic datum.The activation function (kernel function) of the intermediate hidden layer node is the radial basis function,and the activation value of the hidden layer node is weighted and added by the output node as the final output of the network[22].

    Fig.10 Structure of RBF neural network

    The kernel function of hidden nodes is Gaussian function.

    (4)

    where,xis the input eigenvector,ciis the center point of the nodei,andσis the center width of the node.

    In order to verify the rationality of the method based on the RBF neural network to predict the total freight volume in the future,we first conduct a preliminary verification on the existing data.After the nonlinear functions of variables in Figs.2-8 are obtained to fit the parameters,we use these functions to predict the external variables in 2019.The predicted values are shown in Table 5.

    Based on the data from years 2000 to 2018,the RBF neural network was trained,and the network and the external index prediction data in Table 5 were used to predict the total freight volume in 2019.The predicted value is 353 million tons,which is very close to the actual value of 356 million tons so that the effectiveness of the method is proved.

    Then,the annual change of seven external indices (i.e.the difference between the current year and the previous year) in the 18 years from years 2001 to 2019 is used to take the normalized value as the network input.The annual change of total freight volume was normalized into the expected output of the network,and the RBF neural network was trained.

    Table 5 Forecast of related variables in 2019

    Figure 11 shows the prediction results of the RBF neural network after training from years 2000 to 2024.We can see that in the period from years 2000 to 2019,the network can well fit the training data,i.e.,the network has been well trained,so the prediction results of the next five years are basically reliable.Based on the training error of RBF from years 2000 to 2019,we can predict the total freight volume data in the next five years.It can also be seen from Fig.11 that the network can well fit the annual increase in freight volume over the past 20 years.Therefore,the predictive values of total freight volume from the years 2020 to 2024 can be respectively predicted as shown in Table 6.

    Fig.11 Fitting error effect of RBF neural network after training

    Table 6 Predictive values of total freight volume in Xiamen City

    4 Practical Implications and Theoretical Contributions

    Accurate and reliable prediction of regional logistics demand can not only truly measure the development status and scale of regional logistics,but also provide important technical support for the government scientific decision-making and ensure the reasonable allocation of regional resources.The accurate prediction of logistics demand can provide reliable quantitative support and important decision-making basis for the planning of logistics system development,the calculation of logistics related infrastructure construction scale and the formulation of regional logistics system management scheme.Accurate prediction of regional logistics demand helps government departments solve the contradiction between supply and demand in the logistics market,reasonably adjust and control the development scale and speed of logistics industry,and has practical guiding significance for avoiding resource waste and promoting sustainable and healthy development of regional economy[23-25].

    Xiamen City is located in the southeast of Fujian Province.It is one of the first four state special economic zones.At present,Xiamen City is also a national pilot zone for comprehensive reform,a national logistics hub,an international shipping center in southeast China and a pilot free trade zone.The accurate prediction of regional logistics demand in Xiamen City provides support for the rational allocation of regional logistics resources and the construction of scientific and efficient regional logistics system,and provides guarantee for the improvement of government governance capacity and the construction and development of Xiamen Special Economic Zone.At present,there are few researches on the prediction of regional logistics demand for Xiamen City.The establishment of regional logistics demand forecast index system and the related research contents enrich theoretical and practical analyses of regional logistics demand.

    5 Conclusions

    Based on the theory of regional logistics demand prediction and combined with the actual development of regional logistics in Xiamen City,this paper uses the correlate analysis method to select the relevant indicators of regional logistics,and establishes the index system of regional logistics prediction.Then,LS-RBF is applied to analyze the relevant indices of regional logistics demand in Xiamen City from years 2000 to 2019 and forecast the regional logistics demand from years 2020 to 2024.The results show that the logistics demand in Xiamen City will maintain a sustained growth trend in the next five years,and the contribution of logistics industry to the economy will increase year by year.On this basis,the departments in Xiamen Municipal Government can scientifically plan the logistics system according to the logistics demand in the next five years,accelerate the investment in logistics nodes and transportation lines,strengthen the connection of various transportation modes,and further promote the efficient operation of the logistics industry.Logistics enterprises should improve the service level,change the mode of economic development,and enhance the ability of coordination and linkage with manufacturing enterprises.This paper mainly focuses on the selection of indicators from the perspective of economics.In the future research,comprehensive selection of indicators can be carried out from more levels,such as increasing the quantitative analysis and the selection of relevant qualitative impact indicators,so as to make the logistics demand forecasting index system more comprehensive and objective.

    精品国产三级普通话版| 日日摸夜夜添夜夜爱| 国产成人精品一,二区| 国产精品日韩av在线免费观看| 免费av观看视频| 欧美成人一区二区免费高清观看| 日韩伦理黄色片| 日韩视频在线欧美| 青青草视频在线视频观看| 久久亚洲国产成人精品v| 大片免费播放器 马上看| www.色视频.com| 不卡视频在线观看欧美| 亚洲精品影视一区二区三区av| 亚洲av日韩在线播放| 一级黄片播放器| 国产成年人精品一区二区| ponron亚洲| 亚洲精品国产av蜜桃| 2018国产大陆天天弄谢| 一个人看的www免费观看视频| 欧美一级a爱片免费观看看| 一个人观看的视频www高清免费观看| 三级国产精品欧美在线观看| 国产v大片淫在线免费观看| 色综合站精品国产| 亚洲欧美日韩无卡精品| 久久久久免费精品人妻一区二区| 最后的刺客免费高清国语| 亚洲自拍偷在线| 中国美白少妇内射xxxbb| 女人被狂操c到高潮| 天堂√8在线中文| 中国美白少妇内射xxxbb| 简卡轻食公司| 九色成人免费人妻av| 三级国产精品欧美在线观看| 成人亚洲精品av一区二区| 九色成人免费人妻av| 国产熟女欧美一区二区| 一级爰片在线观看| 日韩欧美精品免费久久| 国产真实伦视频高清在线观看| 国产色婷婷99| 国产成人a∨麻豆精品| 久久99热这里只有精品18| 精品国产一区二区三区久久久樱花 | 免费观看在线日韩| 精品人妻熟女av久视频| 又粗又硬又长又爽又黄的视频| 你懂的网址亚洲精品在线观看| 中国国产av一级| 建设人人有责人人尽责人人享有的 | 中文欧美无线码| 亚洲国产精品成人综合色| 在线观看人妻少妇| 人人妻人人澡欧美一区二区| 国产老妇伦熟女老妇高清| 人妻制服诱惑在线中文字幕| 99久久中文字幕三级久久日本| 成人av在线播放网站| 3wmmmm亚洲av在线观看| 精品国产露脸久久av麻豆 | 国产亚洲5aaaaa淫片| 亚洲欧美成人精品一区二区| 性色avwww在线观看| 26uuu在线亚洲综合色| 九草在线视频观看| 久久这里有精品视频免费| 日本一二三区视频观看| 99久久精品热视频| 国内精品美女久久久久久| 看黄色毛片网站| 禁无遮挡网站| 日韩制服骚丝袜av| 国产午夜福利久久久久久| 国产免费又黄又爽又色| 久久韩国三级中文字幕| 2022亚洲国产成人精品| 特级一级黄色大片| 高清在线视频一区二区三区| 午夜亚洲福利在线播放| 中文字幕av成人在线电影| 久久久久免费精品人妻一区二区| 久久精品国产亚洲av天美| 久久综合国产亚洲精品| 亚洲激情五月婷婷啪啪| 久久久久久久久久成人| 内地一区二区视频在线| 最近中文字幕高清免费大全6| 日韩中字成人| 日韩一本色道免费dvd| 成人一区二区视频在线观看| 国产亚洲av嫩草精品影院| 精品久久久久久电影网| 人妻夜夜爽99麻豆av| 夜夜爽夜夜爽视频| 午夜免费激情av| 亚洲精品色激情综合| 亚洲精品乱码久久久久久按摩| 秋霞伦理黄片| 国产精品一区www在线观看| 欧美精品国产亚洲| 只有这里有精品99| 91精品一卡2卡3卡4卡| 久久人人爽人人片av| 噜噜噜噜噜久久久久久91| 国产 一区精品| 免费看光身美女| 又爽又黄无遮挡网站| 一级二级三级毛片免费看| 热99在线观看视频| 免费无遮挡裸体视频| 精品99又大又爽又粗少妇毛片| 成人无遮挡网站| 有码 亚洲区| 亚洲精华国产精华液的使用体验| 五月玫瑰六月丁香| av播播在线观看一区| 日韩 亚洲 欧美在线| 全区人妻精品视频| 精品久久久久久久末码| 欧美精品一区二区大全| 97热精品久久久久久| 九草在线视频观看| 日韩免费高清中文字幕av| 中文欧美无线码| 精品亚洲成a人片在线观看| av女优亚洲男人天堂| 国产免费一区二区三区四区乱码| 日韩一卡2卡3卡4卡2021年| 在线天堂最新版资源| av视频免费观看在线观看| 丝瓜视频免费看黄片| 一级毛片我不卡| 欧美精品国产亚洲| 中文精品一卡2卡3卡4更新| 亚洲av欧美aⅴ国产| 人妻一区二区av| 日本免费在线观看一区| 交换朋友夫妻互换小说| 哪个播放器可以免费观看大片| 亚洲精品国产一区二区精华液| 久久99热这里只频精品6学生| 99九九在线精品视频| 欧美日韩精品网址| 亚洲精品国产av蜜桃| 国产野战对白在线观看| 国产一区二区三区综合在线观看| 国产有黄有色有爽视频| 男女免费视频国产| 免费人妻精品一区二区三区视频| 少妇被粗大猛烈的视频| 汤姆久久久久久久影院中文字幕| 国产极品天堂在线| 超色免费av| 日本午夜av视频| 桃花免费在线播放| 国产成人av激情在线播放| 天美传媒精品一区二区| 日日爽夜夜爽网站| 高清欧美精品videossex| 曰老女人黄片| 国产成人aa在线观看| 一区二区三区激情视频| 欧美日韩亚洲高清精品| 国产日韩欧美亚洲二区| 久久国产精品男人的天堂亚洲| 老汉色av国产亚洲站长工具| 久久精品人人爽人人爽视色| 国产av码专区亚洲av| 亚洲一码二码三码区别大吗| 精品久久久久久电影网| 久久人人爽av亚洲精品天堂| 国产精品免费视频内射| 成人午夜精彩视频在线观看| 国产女主播在线喷水免费视频网站| 可以免费在线观看a视频的电影网站 | 亚洲av日韩在线播放| 欧美bdsm另类| 久久影院123| 老司机影院成人| 婷婷色av中文字幕| 国产精品国产av在线观看| 中文字幕人妻丝袜制服| 国产欧美日韩综合在线一区二区| 久久影院123| 亚洲三区欧美一区| 亚洲国产精品999| 久久久亚洲精品成人影院| 七月丁香在线播放| 亚洲成人手机| 91精品伊人久久大香线蕉| 欧美国产精品va在线观看不卡| 热re99久久精品国产66热6| 日韩视频在线欧美| 久久久久久久久久人人人人人人| 精品人妻偷拍中文字幕| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区久久| 伊人久久国产一区二区| 观看美女的网站| 国产精品.久久久| 国产 精品1| 久久这里有精品视频免费| 人成视频在线观看免费观看| 视频区图区小说| 哪个播放器可以免费观看大片| av一本久久久久| 亚洲精品中文字幕在线视频| 黄色配什么色好看| 国产精品一国产av| 天美传媒精品一区二区| 婷婷成人精品国产| 五月开心婷婷网| 亚洲av中文av极速乱| 成人影院久久| 亚洲五月色婷婷综合| 97在线人人人人妻| 久久精品aⅴ一区二区三区四区 | 一个人免费看片子| 1024香蕉在线观看| 国产成人精品久久久久久| 99久久中文字幕三级久久日本| 免费在线观看视频国产中文字幕亚洲 | 国产精品久久久久久久久免| 欧美老熟妇乱子伦牲交| freevideosex欧美| 制服人妻中文乱码| 日韩中文字幕欧美一区二区 | 久久久久精品性色| 久久这里有精品视频免费| 久久免费观看电影| 欧美精品av麻豆av| 久久精品久久久久久久性| 亚洲精品美女久久久久99蜜臀 | 宅男免费午夜| 香蕉国产在线看| 亚洲精品久久午夜乱码| 蜜桃国产av成人99| 久久久久国产网址| 久久精品久久久久久噜噜老黄| 高清不卡的av网站| 国产深夜福利视频在线观看| 99精国产麻豆久久婷婷| 日韩中文字幕视频在线看片| 久久久久精品性色| 亚洲精华国产精华液的使用体验| 成人手机av| 日日爽夜夜爽网站| 国产在线一区二区三区精| 日本免费在线观看一区| 高清av免费在线| 在线免费观看不下载黄p国产| 亚洲第一青青草原| 美女主播在线视频| 午夜福利视频精品| 高清在线视频一区二区三区| 国产有黄有色有爽视频| 777米奇影视久久| 国产黄色视频一区二区在线观看| 日韩欧美一区视频在线观看| 最新的欧美精品一区二区| 黄色怎么调成土黄色| 九九爱精品视频在线观看| 国产精品av久久久久免费| 国产一区亚洲一区在线观看| 国产 精品1| 伦精品一区二区三区| 国产极品粉嫩免费观看在线| 人妻人人澡人人爽人人| 国产精品香港三级国产av潘金莲 | 国产免费又黄又爽又色| 91午夜精品亚洲一区二区三区| 国产一区二区 视频在线| 黄色 视频免费看| 久久国产精品大桥未久av| 亚洲av福利一区| 亚洲精品第二区| 国产一区二区三区综合在线观看| 精品久久久久久电影网| 在现免费观看毛片| 国产成人午夜福利电影在线观看| 免费高清在线观看视频在线观看| 一区二区三区四区激情视频| 国产日韩欧美亚洲二区| 国产成人精品久久二区二区91 | 久久久久国产一级毛片高清牌| 欧美精品亚洲一区二区| 欧美人与善性xxx| 日本wwww免费看| 日本欧美国产在线视频| 久热这里只有精品99| 91午夜精品亚洲一区二区三区| 日本猛色少妇xxxxx猛交久久| 亚洲欧美日韩另类电影网站| 欧美激情 高清一区二区三区| 亚洲熟女精品中文字幕| 国产av码专区亚洲av| 人人妻人人澡人人看| 亚洲欧美清纯卡通| 巨乳人妻的诱惑在线观看| 亚洲精品久久久久久婷婷小说| 免费观看性生交大片5| 亚洲美女搞黄在线观看| 丝袜在线中文字幕| 亚洲成人一二三区av| 欧美av亚洲av综合av国产av | 亚洲第一区二区三区不卡| 久久ye,这里只有精品| 99久久人妻综合| 边亲边吃奶的免费视频| 啦啦啦在线免费观看视频4| 婷婷成人精品国产| 美女脱内裤让男人舔精品视频| 中文字幕最新亚洲高清| 欧美 日韩 精品 国产| 天天操日日干夜夜撸| 天美传媒精品一区二区| 亚洲国产毛片av蜜桃av| 青草久久国产| 免费在线观看视频国产中文字幕亚洲 | 亚洲精品国产av成人精品| www.自偷自拍.com| 免费高清在线观看日韩| 精品久久蜜臀av无| 亚洲av免费高清在线观看| 蜜桃在线观看..| 国产国语露脸激情在线看| 国产免费一区二区三区四区乱码| 国产野战对白在线观看| 国产熟女欧美一区二区| 欧美日韩亚洲国产一区二区在线观看 | 日韩视频在线欧美| a级毛片在线看网站| 国产精品女同一区二区软件| 18禁观看日本| 成人毛片60女人毛片免费| 亚洲激情五月婷婷啪啪| 欧美中文综合在线视频| 欧美成人精品欧美一级黄| 精品国产露脸久久av麻豆| 多毛熟女@视频| 国产黄色视频一区二区在线观看| 欧美+日韩+精品| 中国三级夫妇交换| 秋霞在线观看毛片| 国产成人精品在线电影| 亚洲综合色网址| 亚洲精品中文字幕在线视频| 欧美日韩一区二区视频在线观看视频在线| 精品一区在线观看国产| 九九爱精品视频在线观看| 久久久久久久久久久久大奶| 亚洲精品av麻豆狂野| 国产淫语在线视频| 久久精品国产自在天天线| a级毛片黄视频| 大香蕉久久网| 又粗又硬又长又爽又黄的视频| 香蕉精品网在线| 日本免费在线观看一区| 免费观看性生交大片5| 高清视频免费观看一区二区| 日韩成人av中文字幕在线观看| 免费在线观看完整版高清| 亚洲精品国产色婷婷电影| 赤兔流量卡办理| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产av新网站| 十八禁高潮呻吟视频| 精品一区二区免费观看| 精品人妻一区二区三区麻豆| 中文字幕色久视频| 美女中出高潮动态图| av片东京热男人的天堂| 一级爰片在线观看| 有码 亚洲区| 久久这里有精品视频免费| 国产激情久久老熟女| 日韩精品免费视频一区二区三区| 国产精品 欧美亚洲| 国产精品香港三级国产av潘金莲 | 亚洲伊人久久精品综合| 午夜福利视频在线观看免费| 欧美精品国产亚洲| 考比视频在线观看| 美女xxoo啪啪120秒动态图| 蜜桃在线观看..| 国产日韩一区二区三区精品不卡| 亚洲久久久国产精品| 黄色怎么调成土黄色| 国产在线视频一区二区| 精品少妇内射三级| 欧美日韩一区二区视频在线观看视频在线| 老司机亚洲免费影院| 男女下面插进去视频免费观看| 男人爽女人下面视频在线观看| 国产成人精品久久二区二区91 | 亚洲av综合色区一区| 国产精品无大码| 激情视频va一区二区三区| 如日韩欧美国产精品一区二区三区| 欧美亚洲日本最大视频资源| 亚洲美女视频黄频| 欧美av亚洲av综合av国产av | 美女国产高潮福利片在线看| 国产福利在线免费观看视频| 亚洲五月色婷婷综合| 免费人妻精品一区二区三区视频| 欧美 日韩 精品 国产| 日韩精品有码人妻一区| av在线app专区| 免费不卡的大黄色大毛片视频在线观看| 久久久久久久亚洲中文字幕| 欧美中文综合在线视频| 久久av网站| 久久久久久久精品精品| 色94色欧美一区二区| 一级毛片我不卡| 亚洲欧美精品自产自拍| 一二三四在线观看免费中文在| 国产极品天堂在线| 久久久久久人人人人人| 极品人妻少妇av视频| 一个人免费看片子| 亚洲精品国产一区二区精华液| 考比视频在线观看| 日本av手机在线免费观看| 国产成人精品福利久久| 亚洲精品国产av成人精品| 最近最新中文字幕大全免费视频 | 中文字幕精品免费在线观看视频| 欧美精品人与动牲交sv欧美| 三级国产精品片| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 大片电影免费在线观看免费| 精品视频人人做人人爽| 久久热在线av| 久久久国产精品麻豆| 亚洲成人手机| 国产福利在线免费观看视频| 青春草国产在线视频| 亚洲精品久久久久久婷婷小说| 老司机影院成人| 欧美日韩一区二区视频在线观看视频在线| 国产精品99久久99久久久不卡 | 最近最新中文字幕免费大全7| 天天影视国产精品| 91久久精品国产一区二区三区| 在线精品无人区一区二区三| 欧美日韩国产mv在线观看视频| 亚洲第一区二区三区不卡| 水蜜桃什么品种好| 哪个播放器可以免费观看大片| 乱人伦中国视频| 亚洲av福利一区| 免费看不卡的av| 日本爱情动作片www.在线观看| 国产免费现黄频在线看| 美女国产高潮福利片在线看| 两性夫妻黄色片| 999久久久国产精品视频| 成人国产av品久久久| 国产一区二区激情短视频 | 亚洲精品久久久久久婷婷小说| 香蕉精品网在线| 亚洲av.av天堂| 午夜福利乱码中文字幕| 最近中文字幕高清免费大全6| 久久国产精品大桥未久av| 亚洲一区中文字幕在线| 国产精品一国产av| 国产亚洲av片在线观看秒播厂| √禁漫天堂资源中文www| 亚洲,欧美,日韩| 午夜91福利影院| av网站免费在线观看视频| 另类精品久久| 最近最新中文字幕免费大全7| 午夜免费观看性视频| 成人影院久久| 国产成人精品在线电影| 久久精品国产综合久久久| 大话2 男鬼变身卡| 妹子高潮喷水视频| 日日撸夜夜添| 蜜桃在线观看..| 91精品伊人久久大香线蕉| 亚洲av日韩在线播放| 一区二区三区激情视频| 亚洲综合色惰| 赤兔流量卡办理| 黄色毛片三级朝国网站| 午夜福利网站1000一区二区三区| 国产精品久久久久久精品古装| 久久久久久伊人网av| 日韩一区二区视频免费看| xxxhd国产人妻xxx| 黄频高清免费视频| 啦啦啦啦在线视频资源| 中国三级夫妇交换| 国产精品蜜桃在线观看| av又黄又爽大尺度在线免费看| a级片在线免费高清观看视频| 亚洲 欧美一区二区三区| 久久人妻熟女aⅴ| 日韩中文字幕欧美一区二区 | 亚洲色图 男人天堂 中文字幕| 涩涩av久久男人的天堂| 久久ye,这里只有精品| 成人亚洲精品一区在线观看| 欧美精品亚洲一区二区| 成人国产麻豆网| 日韩精品免费视频一区二区三区| 一区二区三区四区激情视频| 国产福利在线免费观看视频| 飞空精品影院首页| 亚洲综合色网址| 国产探花极品一区二区| 国产精品熟女久久久久浪| 国产精品无大码| 久久久a久久爽久久v久久| 久久午夜综合久久蜜桃| 99国产综合亚洲精品| 韩国av在线不卡| 极品人妻少妇av视频| 热99久久久久精品小说推荐| 精品少妇内射三级| 亚洲精品视频女| 久久精品国产a三级三级三级| 色哟哟·www| 性高湖久久久久久久久免费观看| 精品久久久精品久久久| 超色免费av| 精品亚洲成国产av| 黄片播放在线免费| 狠狠婷婷综合久久久久久88av| 人妻系列 视频| 亚洲伊人久久精品综合| 18禁国产床啪视频网站| 最近手机中文字幕大全| 日本av免费视频播放| 免费黄频网站在线观看国产| 成人漫画全彩无遮挡| 一级毛片黄色毛片免费观看视频| 久久久久久免费高清国产稀缺| 亚洲精品乱久久久久久| 不卡视频在线观看欧美| 美女国产高潮福利片在线看| 免费播放大片免费观看视频在线观看| 成年女人在线观看亚洲视频| 少妇猛男粗大的猛烈进出视频| 精品人妻偷拍中文字幕| 亚洲国产精品国产精品| 制服人妻中文乱码| 肉色欧美久久久久久久蜜桃| 妹子高潮喷水视频| 又粗又硬又长又爽又黄的视频| www.av在线官网国产| 水蜜桃什么品种好| 国产成人91sexporn| 黄片小视频在线播放| 国产精品久久久久成人av| 日本色播在线视频| 日韩精品免费视频一区二区三区| 美女福利国产在线| 18在线观看网站| 丁香六月天网| 日韩成人av中文字幕在线观看| 亚洲一码二码三码区别大吗| 天天躁夜夜躁狠狠躁躁| 男女国产视频网站| 香蕉丝袜av| 成人二区视频| 免费久久久久久久精品成人欧美视频| 老汉色av国产亚洲站长工具| 丝袜脚勾引网站| 久久久精品国产亚洲av高清涩受| 欧美老熟妇乱子伦牲交| 99久国产av精品国产电影| 99热国产这里只有精品6| 亚洲人成网站在线观看播放| 国产在视频线精品| 日本午夜av视频| 成人午夜精彩视频在线观看| 王馨瑶露胸无遮挡在线观看| 男女啪啪激烈高潮av片| 涩涩av久久男人的天堂| 久久久久久久精品精品| 国产精品 国内视频| 男女午夜视频在线观看| 日韩成人av中文字幕在线观看| 精品福利永久在线观看| 日韩制服丝袜自拍偷拍| 男女高潮啪啪啪动态图| 一级毛片黄色毛片免费观看视频| 国产精品久久久久久久久免| 免费av中文字幕在线| 精品国产乱码久久久久久男人| 飞空精品影院首页| av一本久久久久| 免费观看av网站的网址| 香蕉精品网在线| 伦理电影免费视频| 天堂中文最新版在线下载| 成年av动漫网址| 久久影院123| 成人毛片60女人毛片免费| 亚洲精品一区蜜桃| 黄色怎么调成土黄色| 男女啪啪激烈高潮av片| tube8黄色片| 91精品伊人久久大香线蕉|