• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Prediction of the precessing vortex core in the Francis-99 draft tube under off-design conditions by using Liutex/Rortex method *

    2020-12-02 06:05:10CongTrieuTranXinpingLongBinJiChaoqunLiu

    Cong Trieu Tran , Xin-ping Long Bin Ji Chaoqun Liu

    1.State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072, China

    2. School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China

    3.Facullty of Hydraulic Engineering National University of Civil Engineering, 55 GiaiPhong, Hanoi, Vietnam

    4. Department of Mathematics, University of Texas at Arlington, Arlington 76019, USA

    Abstract: The turbulent flow in the draft tube of a Francis turbine is very complicated while working under off-design conditions.Although the off-design conditions were widely studied, the vortex core line in the draft tube of a Francis turbine with splitter blades is not well understood, especially the vortex rope property.This letter presents a prediction of the behavior of the vortex rope in the draft tube of the Francis-99 turbine obtained by the computational fluid dynamics (CFD), where the Liutex/Rortex method, as the most recent vortex definition, is applied to analyze the periodical precession of the vortex rope in the draft tube cone.The advantage of this Liutex/Rortex method is shown by its enhanced ability to represent the vortex rope structurewith the vortex-core lines.Furthermore,since it seems to be very hard to define a sharp boundary surface for the whole vortex structure, it is advantageousfocusing only on the vortex core line,by which different vortex structures can be clearly differentiated.The evolution of the vortex core and the process of the vortex breakdown in the draft tube are revealed,which might help to comprehend the development of the turbulent flow in the draft tube.

    Key words: Cavitating vortex rope, Francis turbine, Liutex/Rortex method, off-design condition, vortex core line

    The Francis turbine operating far from the regime of the best efficiency is characterized by the abnormal flow in the draft tube and the appearance of a spiral vortex or columnar vortex, called the vortex rope.Arpe et al.[1]found that the dominant frequency of a vortex rope lies between 0.2 and 0.4 times of the runner frequency.A good understanding of the periodical precession of this vortex, as well as the vortex rope structure in the draft tube, is essential for preventing structural vibrations and increasing the number of operation hours under off-design conditions.Nevertheless, detailed characteristics of the vortex structures with accurate visualizations are a challenging task.

    Several attempts were made to capture the vortex structures in the draft tube of the Francis turbine.Gavrilov et al.[2]focused on detecting and analyzing the vertical structures and the evolution of the vortex core at deep partial-load points (with a flow rate of only 35%), using two URANS models and a hybrid LES/RANS method, where the vortex structures are visualized by theλ2[3]andQ-criterions[4].However,their results are strongly influenced by the choice of the threshold values, which will result in different vortex structures for different threshold selections.In particular, using theλ2andQ-criterions, one may obtain non-physical vortex structures, and the “vortex breakdown” for some large thresholds while obtaining no“vortex breakdown” for some smaller thresholds[5].These will make the physical explanation of the turbulent flow futile.Liu et al.[6]proposed the Omega method (Ωmethod), which is not sensitive to the threshold selection and can successfully capture both strong and weak vortices at the same time.However, theΩmethod has also some limitations like the introduction of an uncertain parameter of epsilon (ε)[6-7].

    In this letter, the vortex structures are identified by different methods, with several methods for extracting a line feature called the vortex core line.For instance, the vorticity is a traditional and common indicator for the presence of vortices.However, this technique has some limitations including: (1) sensitive to other non-local vector features, (2) producing no contiguous lines[8].Recently, a new vector called“Liutex/Rortex” is introduced by Liu et al.[9-10]to describe the local rigid rotation of fluids.This method,which provides not only Liutex/Rortexiso-surfaces but also the different strength along with the Liutex cores,can be used to analyze the process of the vortex generation and development[11-12].The Liutex/Rortex method has not yet been applied to investigate the complex fluid flows such as the cavitation flow in the Francis turbine in literature.Hence, to overcome the difficulty of a more accurate visualization of the vortex structures, a well-defined method such as the Liutex/Rortex method helps the vortex identification in the Francis turbine.

    Inspired by the above idea, this letter focuses on identifying and clarifying the precessing vortex rope in the draft tube of the Francis-99 turbine[13]under the off-design conditions.By using the shear-stress transport turbulence model (SST)[14]and the Zwart-Gerber-Belamri (ZGB) cavitation model[15], the cavitating flow in the draft tube is simulated, and the vortex structures in the draft tube cone are visualized by the Liutex/Rortex method.The periodical evolution of the vortex rope in the draft tube is further revealed with the Liutex core line.

    The numerical configurations are set according to the Francis-99 model turbine, consisting of a runner with 15 long blades and 15 splitter blades, a spiral casing, 28 guide vanes, and a draft tube (as shown in Fig.1).The three operating points: the high load (HL),the best efficiency point (BEP), and the partial-load(PL) are created with ANSYS ICEM CFD using the ICEM files provided by the second workshop[13].The mesh size for the complete model at the BEP is about 20×106elements.The quality of the mesh satisfies the common industrial standard, as reported by Trivedi et al.[16], Goyal et al.[17].In this study, the complete turbine is simulated in two steps, including the steady and unsteady simulations.In the unsteady simulations,the initial field is obtained from the steady simulations.

    The mass flow inlet boundary is set at the casing inlet, and the static pressure is set at the draft tube outlet.The runner is assumed as a rotating part while the casing, the stay vanes, the guide vanes, and the draft tubes are assumed as stationary parts.The rotational speed of the runner is set as 332.59 rpm and the components are connected with others by the domain interface.The general grid interfaces (GGI)connect the stationary domains to the rotating domain.

    Fig.1 Simulation domain of Francis-99 turbine

    The SST turbulent model is a widely used turbulence model for the turbo machinery[18-19].In this study, the SST turbulence model and the ZGB cavitation model are adopted for the simulation of the unsteady cavitating flow ina Francis-99 turbine.To investigate the cavitating vortex rope, the unsteady simulation is performed for ten complete rotations of the runner, which takes a total computation time of 1.8 s.The time step is set ast=5× 10-4s (10th of the runner rotation per time step).The convergence criterion is set to a root-mean-square (rms) value maximum 10-5.

    To validate the simulation method used in this study, Table 1 shows a comparison of the hydraulic efficiency and the torque obtained by the simulation with the SST model and those obtained by experiments under three operating conditions.The maximum discrepancies between the simulated and experimental efficiencies are 4.24% under the PL operating condition, 3.05% at the BEP and 2.65% at the HL.The numerical torque is set as 465 Nm (PL),706 Nm (BEP), and 820 Nm (HL), higher than the experimental torque and the ratio of the experimental torque to the numerical torque is 11.7%, 14.6%, and 10.7%, respectively.During the simulation, the numerical efficiency is higher than the experimental efficiency at all operating points because the flow leakage losses and other losses during the measurements are not considered in the numerical simulation.In the numerical simulation, the mesh quality, the vortex, and the flow separation may be the cause of inaccuracy in the torque calculation.Taking into account the above comparison, the overall accuracy of the simulation is acceptable.

    For further clarification of the reliability of the Liutex/Rortex method for the vortex definition in the turbulent flow, in the present study, the vortex rope frequency is investigated.The unsteady pressure at two levels DT5 and DT7 (see Fig.2) are plotted in Fig.3.The analysis of the vortex rope morphology is made during a low-frequency period in order to examine itsdynamics.As a result, a low-frequency cycle of 0.6 s(1.66 Hz) is observed.And to reveal the time evolution of the vortex rope, six snapshots with a time step of 0.1s are plotted in Fig.4 by using the Liutex/Rortex iso-surface.The pressure amplitudes are consistent to a vortex rope frequency of 1.66 Hz(about 0.3 times of the runner frequency).

    Table 1 Comparison between numerical and experimental values of turbine energy characteristics

    Fig.2 (Color online) Side view of the Francis-99 draft tube cone

    Fig.3 (Color online) Unsteady pressure at two levels DT5 and DT7 on the cone, based on 3-D numerical simulation with SST model

    Here, the vortex rope is compressed during the first phase of the low-frequency cycle, after that, one sees its stretching, breakdown, shedding, and moving downstream.The period in the low-frequency case is related with the pressure fluctuations associated with the precession of the vortex rope.

    On the other way, by makinga fast Fourier transform (FFT) of the results, the dominant frequency of the pressure fluctuations can be obtained.The frequency spectrum obtained from the present simulations under the PL condition at the DT5 pressure monitoring point is shown in Fig.5.The vortex rope frequency is found to be about 0.3 times of the runner frequency.The result is consistent with the value numerically obtained by Arpe et al.[1]and is in very good agreement with the value of 0.294 as observed in the experimental studies[20].The frequency of the vortex rope is obtained by the pressure fluctuations and the Liutex method, see Table 2, and compares well with the experimental result.

    Fig.4 (Color online) The distribution of uy of solid wall vary with time changing

    Fig.5 (Color online) Pressure fluctuation frequency under the PL condition from cavitating flow analysis at DT5 monitor pressure point

    Table 2 Comparisons of the frequency of the vortex rope obtained by the pressure fluctuations and Liutex method

    The vortex rope structure is composed of two different parts: the vortex core centre line and itssurrounding regime.The dynamics of the vortex core line will further illuminate the mechanisms behind these observations.According to Liu et al.[9-10],the vortex core line is defined as a Liutex line which passes the points satisfying the condition of?R×r=0,R>0 whererrepresents the direction of the Liutex vector.This definition is used to find the Liutex (vortex) core lines in the flow field,which is uniquely defined without any threshold requirement[11-12].

    Under the PL condition, Fig.6 visualizes a series of snapshots of the vortex core lines obtained by temporal evolutions in one cycle.The vortex core lines are colored by the Liutex magnitude, chosen as an indicator of the vortex strength.The picture shows significant motions of the vortex core as it rotates with the precession frequency and it is described by a stream line.The vortex core line is shown as a conical spring with a variable helix angle Therefore, the vortex structure and the precessing vortex core are represented as a unique morphology by the Liutex core lines.

    Under the HL condition, Fig.7 visualizes a series of snapshots of the vortex core lines obtained by temporal evolutions in one cycle.When the vortex rope occurs under the HL condition, the core is centered in the draft tube cone.Figure 7 shows that the Liutex vortex core line move sover time from the runner outlet centre to the downstream with different vortex strengths (red/blue color), described by a stream line.The movement of the vortex core segments with different strengths reflects the change of the pressure distribution in the draft tube cone,which causes the pressure fluctuation with a smaller frequency.These pictures are clearly shown in the FFT analysis of the unsteady wall pressure signals measured at the DT5, as shown in Fig.8, which would not be observed if the traditional vortex definition methods are used.

    In addition, since it seems very hard to define a sharp boundary surface for the whole vortex structure,we focus only on the vortex core line with the advantage that different vortex structures can be clearly distinguished.With the Liutex methods, the vortex core lines are more stable, as they are at the center of the vortex where it could be very clearly identified.

    Based on the above visualization illustrated by the Liutex core line for the turbulent flow in the draft tube of the Francis-99 turbine and the following conclusions can be made:

    First, the Liutex/Rortex method is verified to be able to successfully represent the structure and the process of the vortex rope in the turbulent flow in the Francis turbine.The process of the vortex breakdown under the off design conditions operation is shown with the use of the Liutex/Rortex method

    Fig.6 (Color online) Vortex core structure evolution in one cycle under the PL condition

    Fig.7 (Color online) Vortex core structures evolution in one cycle under the HL condition

    Fig.8 (Color online) Pressure fluctuation frequency underthe HL condition from cavitating flow analysis at DT5 monitor pressure point

    Second, from the variation in time of the precessing Liutex core, the vortex core line in a draft tube under the off-design conditions can be described by stream lines properly.

    Finally, by properly extracting the Liutex core line from the unsteady 3-D velocity field, it is revealed that a periodic sequence of the vortex precessing movement is observed at the draft tube cone under the off design conditions.

    Acknowledgments

    The numerical calculations in this study were done on the supercomputing system in the Supercomputing Center of Wuhan University, Wuhan,China.The authors would like to thank the organizers of the Francis-99 second Workshop for the use of their CAD, meshing, and experimental data.

    免费观看无遮挡的男女| 日本色播在线视频| 丝袜喷水一区| 建设人人有责人人尽责人人享有的 | 精品熟女少妇av免费看| 欧美最新免费一区二区三区| 亚洲av二区三区四区| 80岁老熟妇乱子伦牲交| 欧美97在线视频| 午夜精品一区二区三区免费看| 日韩欧美一区视频在线观看 | 在线天堂最新版资源| 人妻夜夜爽99麻豆av| ponron亚洲| 国内少妇人妻偷人精品xxx网站| 亚洲精品视频女| 97人妻精品一区二区三区麻豆| av国产免费在线观看| 99久久精品热视频| av又黄又爽大尺度在线免费看| 亚洲国产欧美人成| 久久99热这里只频精品6学生| 国产精品久久久久久av不卡| 亚洲四区av| 三级毛片av免费| 亚洲成人一二三区av| 高清毛片免费看| 可以在线观看毛片的网站| 国产亚洲精品av在线| 国产黄片美女视频| 你懂的网址亚洲精品在线观看| 国产免费一级a男人的天堂| 汤姆久久久久久久影院中文字幕 | 69人妻影院| 久久久久九九精品影院| 国产精品一区www在线观看| 亚洲一区高清亚洲精品| 老师上课跳d突然被开到最大视频| 国产激情偷乱视频一区二区| 久久久久久久久久成人| 99久久九九国产精品国产免费| av天堂中文字幕网| 中文天堂在线官网| av国产免费在线观看| 亚州av有码| 狂野欧美激情性xxxx在线观看| 男女视频在线观看网站免费| 国产老妇伦熟女老妇高清| a级毛色黄片| 蜜桃久久精品国产亚洲av| 天堂影院成人在线观看| 国产高清三级在线| 亚洲欧美成人精品一区二区| .国产精品久久| 亚洲精品自拍成人| 国产精品av视频在线免费观看| 精品午夜福利在线看| 国产黄色小视频在线观看| 久久鲁丝午夜福利片| 欧美高清成人免费视频www| 免费看光身美女| 精品国产露脸久久av麻豆 | 又粗又硬又长又爽又黄的视频| 一级二级三级毛片免费看| 国模一区二区三区四区视频| 亚洲人与动物交配视频| 国产亚洲av嫩草精品影院| 亚洲va在线va天堂va国产| 亚洲人与动物交配视频| 成人二区视频| 精品一区二区三卡| 亚洲欧美日韩东京热| 精品国产露脸久久av麻豆 | 国产不卡一卡二| 天堂√8在线中文| 天美传媒精品一区二区| 99久久精品国产国产毛片| 99热这里只有是精品在线观看| 日韩欧美国产在线观看| 欧美一级a爱片免费观看看| 国产午夜精品论理片| 真实男女啪啪啪动态图| 久久久欧美国产精品| 人人妻人人澡人人爽人人夜夜 | 寂寞人妻少妇视频99o| 国产乱人视频| 欧美日韩精品成人综合77777| 色吧在线观看| 激情 狠狠 欧美| videossex国产| 午夜爱爱视频在线播放| 久久久久性生活片| 色尼玛亚洲综合影院| 午夜视频国产福利| 国产精品一区二区在线观看99 | 一夜夜www| 国产中年淑女户外野战色| 97超碰精品成人国产| av在线观看视频网站免费| 偷拍熟女少妇极品色| 嘟嘟电影网在线观看| a级一级毛片免费在线观看| 日韩一本色道免费dvd| 美女xxoo啪啪120秒动态图| 久久草成人影院| 日韩,欧美,国产一区二区三区| 婷婷色综合大香蕉| 久久国内精品自在自线图片| 国产又色又爽无遮挡免| 在线观看一区二区三区| 男人和女人高潮做爰伦理| 国产亚洲av片在线观看秒播厂 | 久久久久久久久久黄片| 欧美性感艳星| 久久人人爽人人片av| 日韩国内少妇激情av| av免费观看日本| 丝袜美腿在线中文| 国产探花在线观看一区二区| 日本午夜av视频| 卡戴珊不雅视频在线播放| av黄色大香蕉| 亚洲av中文av极速乱| 视频中文字幕在线观看| 老师上课跳d突然被开到最大视频| 日本免费在线观看一区| 精品国产三级普通话版| 国产精品一区二区三区四区久久| 免费av不卡在线播放| 国产午夜福利久久久久久| 亚洲成人精品中文字幕电影| 一级a做视频免费观看| 亚洲国产最新在线播放| 日本黄色片子视频| 国产在视频线在精品| 亚洲av中文字字幕乱码综合| 欧美最新免费一区二区三区| 国产精品无大码| a级毛片免费高清观看在线播放| 好男人视频免费观看在线| 国产精品一二三区在线看| 成人美女网站在线观看视频| 欧美人与善性xxx| 久久久久久九九精品二区国产| av国产免费在线观看| a级毛片免费高清观看在线播放| 成年人午夜在线观看视频 | 看黄色毛片网站| 我的老师免费观看完整版| 国产成人精品婷婷| 日本黄色片子视频| 三级经典国产精品| 亚洲熟女精品中文字幕| 免费不卡的大黄色大毛片视频在线观看 | 国产男人的电影天堂91| 日本爱情动作片www.在线观看| 亚洲精品国产av成人精品| 久久久久久久大尺度免费视频| 联通29元200g的流量卡| 欧美日韩综合久久久久久| 日本与韩国留学比较| 久久人人爽人人爽人人片va| 性插视频无遮挡在线免费观看| 国产视频内射| 精品久久久久久久人妻蜜臀av| 免费观看av网站的网址| 菩萨蛮人人尽说江南好唐韦庄| 免费看美女性在线毛片视频| 麻豆成人午夜福利视频| 大又大粗又爽又黄少妇毛片口| 亚洲精品aⅴ在线观看| 欧美日韩视频高清一区二区三区二| av专区在线播放| av天堂中文字幕网| 久久国产乱子免费精品| 国产亚洲最大av| 亚洲欧美中文字幕日韩二区| 中文字幕免费在线视频6| 老女人水多毛片| 成人无遮挡网站| 美女高潮的动态| av专区在线播放| 肉色欧美久久久久久久蜜桃 | 日韩av在线免费看完整版不卡| 99热网站在线观看| 欧美zozozo另类| 久久精品久久久久久久性| 美女被艹到高潮喷水动态| 天堂中文最新版在线下载 | 亚洲真实伦在线观看| 亚洲av成人av| 亚洲国产精品成人久久小说| 国产乱人偷精品视频| 日韩欧美 国产精品| 免费大片18禁| 日韩欧美一区视频在线观看 | 成年女人在线观看亚洲视频 | 18禁在线无遮挡免费观看视频| 美女被艹到高潮喷水动态| 少妇被粗大猛烈的视频| 97精品久久久久久久久久精品| 成年版毛片免费区| 乱人视频在线观看| 中文字幕久久专区| 国产伦精品一区二区三区视频9| 亚洲欧美一区二区三区国产| 插逼视频在线观看| 女人十人毛片免费观看3o分钟| 国产淫语在线视频| 菩萨蛮人人尽说江南好唐韦庄| 午夜激情欧美在线| 三级国产精品欧美在线观看| 成人无遮挡网站| 欧美高清成人免费视频www| 色综合亚洲欧美另类图片| 免费黄色在线免费观看| 亚洲av日韩在线播放| 日本免费a在线| 精品久久久噜噜| 美女主播在线视频| 韩国高清视频一区二区三区| ponron亚洲| 嫩草影院入口| 波多野结衣巨乳人妻| 搡女人真爽免费视频火全软件| 国产美女午夜福利| 国产精品久久久久久久电影| 欧美zozozo另类| 80岁老熟妇乱子伦牲交| 国产精品久久久久久精品电影| 久久久久性生活片| 22中文网久久字幕| 亚洲四区av| 日韩国内少妇激情av| 少妇的逼好多水| 别揉我奶头 嗯啊视频| 亚洲精品自拍成人| 在线免费十八禁| 人人妻人人澡人人爽人人夜夜 | 免费人成在线观看视频色| 亚洲精品成人久久久久久| 久99久视频精品免费| av天堂中文字幕网| 国产免费视频播放在线视频 | 男女视频在线观看网站免费| 搞女人的毛片| 欧美另类一区| 欧美成人午夜免费资源| 亚洲成人精品中文字幕电影| 99热全是精品| 永久免费av网站大全| 国产成人a∨麻豆精品| 亚洲人成网站在线观看播放| 久久人人爽人人爽人人片va| 男女那种视频在线观看| 久久99热这里只有精品18| 韩国av在线不卡| 国产一级毛片七仙女欲春2| 91久久精品国产一区二区成人| 亚洲精华国产精华液的使用体验| 国产亚洲91精品色在线| 亚洲天堂国产精品一区在线| 成人国产麻豆网| 建设人人有责人人尽责人人享有的 | 亚洲精品日本国产第一区| 特级一级黄色大片| 亚洲国产av新网站| 成人无遮挡网站| 99热这里只有是精品50| 国产免费一级a男人的天堂| 国产亚洲91精品色在线| 国产精品久久久久久精品电影小说 | 神马国产精品三级电影在线观看| 91久久精品国产一区二区三区| 三级毛片av免费| 波多野结衣巨乳人妻| 蜜臀久久99精品久久宅男| 精品一区在线观看国产| 亚洲欧美一区二区三区国产| 日韩成人伦理影院| av免费观看日本| 亚洲综合精品二区| 午夜视频国产福利| 精品久久久久久久久亚洲| 一级黄片播放器| 国产免费一级a男人的天堂| 久久午夜福利片| 日本熟妇午夜| 一级毛片久久久久久久久女| 亚洲丝袜综合中文字幕| 色吧在线观看| 在线观看人妻少妇| 一级毛片 在线播放| 啦啦啦啦在线视频资源| 蜜臀久久99精品久久宅男| 亚洲国产色片| 国产高潮美女av| 日本一二三区视频观看| 在线天堂最新版资源| 欧美zozozo另类| 在线播放无遮挡| 国产国拍精品亚洲av在线观看| 国产乱人偷精品视频| 国产不卡一卡二| 亚洲成人一二三区av| 国产黄色免费在线视频| 18禁裸乳无遮挡免费网站照片| 亚洲欧美成人精品一区二区| 亚洲激情五月婷婷啪啪| 日本wwww免费看| 久久久亚洲精品成人影院| 亚洲av.av天堂| 97热精品久久久久久| 日日啪夜夜爽| 国产真实伦视频高清在线观看| 狂野欧美激情性xxxx在线观看| 婷婷色av中文字幕| 亚洲成人av在线免费| 亚洲av成人av| 三级毛片av免费| 99热这里只有是精品50| 国产男女超爽视频在线观看| 日韩欧美一区视频在线观看 | 久久99蜜桃精品久久| 91久久精品国产一区二区成人| 亚洲在线观看片| 亚洲精品视频女| 国产免费视频播放在线视频 | 成人漫画全彩无遮挡| 中文字幕亚洲精品专区| 免费观看av网站的网址| 青春草亚洲视频在线观看| 久久精品国产鲁丝片午夜精品| 中文天堂在线官网| 亚洲国产精品成人综合色| 成人一区二区视频在线观看| 亚洲熟女精品中文字幕| 2021少妇久久久久久久久久久| 人妻一区二区av| 亚洲av免费在线观看| 男人狂女人下面高潮的视频| 街头女战士在线观看网站| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| a级毛片免费高清观看在线播放| 日本wwww免费看| 校园人妻丝袜中文字幕| 欧美极品一区二区三区四区| 成年女人看的毛片在线观看| 搡老妇女老女人老熟妇| 免费看av在线观看网站| 搞女人的毛片| 免费av毛片视频| 国产麻豆成人av免费视频| 特级一级黄色大片| 欧美精品国产亚洲| 亚洲国产成人一精品久久久| 午夜免费观看性视频| 欧美变态另类bdsm刘玥| 自拍偷自拍亚洲精品老妇| 国产高清有码在线观看视频| 伊人久久国产一区二区| 91午夜精品亚洲一区二区三区| 国产成人a∨麻豆精品| 成人一区二区视频在线观看| 日韩不卡一区二区三区视频在线| 中文乱码字字幕精品一区二区三区 | 天天一区二区日本电影三级| 亚洲av男天堂| 97精品久久久久久久久久精品| 黄色日韩在线| 色哟哟·www| 99热这里只有精品一区| 午夜福利高清视频| 能在线免费看毛片的网站| 亚洲国产日韩欧美精品在线观看| 最近最新中文字幕免费大全7| 极品教师在线视频| 中文天堂在线官网| 亚洲国产精品成人综合色| 麻豆成人午夜福利视频| 欧美日韩亚洲高清精品| 亚洲成人av在线免费| av又黄又爽大尺度在线免费看| 最新中文字幕久久久久| 久久97久久精品| 精品亚洲乱码少妇综合久久| 日本免费在线观看一区| 欧美性猛交╳xxx乱大交人| 老女人水多毛片| av免费观看日本| 亚洲国产精品成人久久小说| 国产精品.久久久| 亚洲av福利一区| 欧美 日韩 精品 国产| 国产成人精品久久久久久| 97在线视频观看| 女的被弄到高潮叫床怎么办| 国产爱豆传媒在线观看| 乱人视频在线观看| 亚洲人成网站在线播| 午夜福利网站1000一区二区三区| 国产黄片视频在线免费观看| 成年女人在线观看亚洲视频 | 久久国产乱子免费精品| 国产老妇伦熟女老妇高清| h日本视频在线播放| 国产亚洲午夜精品一区二区久久 | 国产精品一二三区在线看| 成年女人看的毛片在线观看| 国产精品久久久久久av不卡| 特级一级黄色大片| 亚洲国产精品专区欧美| 国产精品美女特级片免费视频播放器| 老司机影院毛片| 国产综合精华液| 成人午夜精彩视频在线观看| 国产欧美另类精品又又久久亚洲欧美| 麻豆精品久久久久久蜜桃| 你懂的网址亚洲精品在线观看| 久久6这里有精品| 国产又色又爽无遮挡免| 亚洲av成人av| 国产大屁股一区二区在线视频| 亚洲精品成人久久久久久| 国产美女午夜福利| 肉色欧美久久久久久久蜜桃 | 免费观看的影片在线观看| 国产一区二区三区综合在线观看 | 国产成人精品一,二区| 亚洲av成人精品一二三区| 男人狂女人下面高潮的视频| 神马国产精品三级电影在线观看| 男人和女人高潮做爰伦理| 99视频精品全部免费 在线| 欧美zozozo另类| 女人久久www免费人成看片| 国精品久久久久久国模美| 国产又色又爽无遮挡免| 色哟哟·www| 欧美成人午夜免费资源| 男女边摸边吃奶| 男插女下体视频免费在线播放| 亚洲av二区三区四区| 少妇猛男粗大的猛烈进出视频 | 精品不卡国产一区二区三区| 国产黄色小视频在线观看| 日韩欧美国产在线观看| 2022亚洲国产成人精品| 极品少妇高潮喷水抽搐| 三级男女做爰猛烈吃奶摸视频| 69av精品久久久久久| 欧美潮喷喷水| 亚洲美女视频黄频| 国产单亲对白刺激| 亚洲精品日韩在线中文字幕| 亚洲四区av| 欧美激情久久久久久爽电影| 男女国产视频网站| 国产在线一区二区三区精| 亚洲熟女精品中文字幕| 中文乱码字字幕精品一区二区三区 | 91久久精品电影网| 男插女下体视频免费在线播放| 久久久久久久久久人人人人人人| 一二三四中文在线观看免费高清| 91狼人影院| or卡值多少钱| 大又大粗又爽又黄少妇毛片口| 国产精品久久久久久精品电影小说 | 99久久中文字幕三级久久日本| 免费看日本二区| 日韩人妻高清精品专区| 精品欧美国产一区二区三| 白带黄色成豆腐渣| 偷拍熟女少妇极品色| 成年女人在线观看亚洲视频 | 亚州av有码| 尤物成人国产欧美一区二区三区| 婷婷六月久久综合丁香| 中文字幕制服av| 国产真实伦视频高清在线观看| 国产69精品久久久久777片| av在线观看视频网站免费| 毛片女人毛片| 成年女人看的毛片在线观看| 99久久精品国产国产毛片| 日本-黄色视频高清免费观看| 91精品伊人久久大香线蕉| 黄色日韩在线| 性插视频无遮挡在线免费观看| 伊人久久精品亚洲午夜| 成人漫画全彩无遮挡| 色5月婷婷丁香| 一级毛片久久久久久久久女| 欧美激情国产日韩精品一区| 欧美日韩视频高清一区二区三区二| 色5月婷婷丁香| 观看美女的网站| av在线亚洲专区| 日本爱情动作片www.在线观看| 99re6热这里在线精品视频| 噜噜噜噜噜久久久久久91| 国产在线男女| 听说在线观看完整版免费高清| 国产午夜精品论理片| 一个人免费在线观看电影| 亚洲最大成人中文| 天美传媒精品一区二区| 国产伦一二天堂av在线观看| 日韩成人av中文字幕在线观看| 亚洲精华国产精华液的使用体验| 久久久久久久久久黄片| 成人亚洲精品av一区二区| 日韩av不卡免费在线播放| 日本欧美国产在线视频| 亚洲色图av天堂| 91久久精品国产一区二区成人| av福利片在线观看| 亚洲最大成人手机在线| 亚洲av日韩在线播放| 精品人妻熟女av久视频| 男人舔奶头视频| 免费黄色在线免费观看| 永久免费av网站大全| 日本一二三区视频观看| 欧美日韩一区二区视频在线观看视频在线 | 日韩人妻高清精品专区| 最近的中文字幕免费完整| 亚洲精品久久久久久婷婷小说| 国产69精品久久久久777片| 日本色播在线视频| 蜜桃久久精品国产亚洲av| 国产成人免费观看mmmm| 国产亚洲av片在线观看秒播厂 | 大片免费播放器 马上看| 免费av观看视频| 搡老乐熟女国产| 十八禁网站网址无遮挡 | 十八禁国产超污无遮挡网站| 美女国产视频在线观看| 国产免费又黄又爽又色| 久久久精品94久久精品| 国产午夜精品一二区理论片| or卡值多少钱| 欧美+日韩+精品| 日日摸夜夜添夜夜爱| 亚洲av二区三区四区| 嫩草影院入口| 色网站视频免费| 亚洲欧美清纯卡通| 午夜福利在线观看免费完整高清在| 午夜福利视频1000在线观看| 熟女电影av网| 亚洲精品日本国产第一区| 纵有疾风起免费观看全集完整版 | 久久这里有精品视频免费| 美女xxoo啪啪120秒动态图| 白带黄色成豆腐渣| 国语对白做爰xxxⅹ性视频网站| 国产精品一区二区性色av| 免费观看的影片在线观看| 国内少妇人妻偷人精品xxx网站| 麻豆av噜噜一区二区三区| 亚洲乱码一区二区免费版| 午夜精品国产一区二区电影 | 日本与韩国留学比较| 如何舔出高潮| 久久精品国产自在天天线| 久热久热在线精品观看| 男女下面进入的视频免费午夜| av线在线观看网站| 黑人高潮一二区| 久久久精品免费免费高清| 午夜亚洲福利在线播放| 老司机影院毛片| 国产精品久久久久久精品电影小说 | 亚洲精品日本国产第一区| 国产亚洲5aaaaa淫片| 成年av动漫网址| 亚洲18禁久久av| 中文资源天堂在线| 久久6这里有精品| 亚洲第一区二区三区不卡| 国产中年淑女户外野战色| 日本与韩国留学比较| 成人亚洲精品av一区二区| 久久精品夜夜夜夜夜久久蜜豆| 国产免费又黄又爽又色| 国产综合精华液| 国产av码专区亚洲av| 在线 av 中文字幕| 国产黄频视频在线观看| 内地一区二区视频在线| 国产亚洲91精品色在线| 中文资源天堂在线| 久久韩国三级中文字幕| 色网站视频免费| 午夜福利视频1000在线观看| 久久久久久九九精品二区国产| 亚洲精品成人av观看孕妇| 只有这里有精品99| 亚洲国产成人一精品久久久| av国产免费在线观看| 九九爱精品视频在线观看| 热99在线观看视频| 久久久a久久爽久久v久久| 麻豆国产97在线/欧美| 亚洲,欧美,日韩| 一区二区三区乱码不卡18| 亚洲精品自拍成人| 精品久久久久久成人av| 一边亲一边摸免费视频| 不卡视频在线观看欧美| 毛片女人毛片|