渠永平,張?jiān)鲋?/p>
聚丙烯酰胺/蒙脫土滲灌材料制備及其導(dǎo)水性能野外試驗(yàn)
渠永平1,2,張?jiān)鲋?
(1. 中北大學(xué)材料科學(xué)與工程學(xué)院,太原 030051;2. 中北大學(xué)礦物功能材料研究所,太原 030051;3. 中國礦業(yè)大學(xué)(北京)生態(tài)功能材料研究所,北京 100083))
基于沙生植物微需水量的特點(diǎn),利用聚丙烯酰胺(Polyacrylamide,PAM)和蒙脫土(Montmorillonite,MMT)復(fù)合制備了一種滲灌復(fù)合材料,研究了材料的成膜性能和吸釋水性能,并對(duì)滲灌系統(tǒng)的自調(diào)節(jié)導(dǎo)水性能進(jìn)行了研究,然后在烏蘭布和沙漠進(jìn)行了滲灌系統(tǒng)的野外試驗(yàn),最后利用X射線衍射儀、紅外光譜分析儀和掃描電子顯微鏡對(duì)復(fù)合材料自調(diào)節(jié)導(dǎo)水機(jī)理進(jìn)行分析。結(jié)果表明:PAM與MMT的最佳質(zhì)量比為0.25,PAM和MMT制備的復(fù)合導(dǎo)水材料可在纖維表面形成均勻連續(xù)的膜,且導(dǎo)水材料的吸水和釋水性能較為均衡,干濕交替試驗(yàn)顯示其可根據(jù)土壤濕度自調(diào)節(jié)導(dǎo)水速率。沙漠野外試驗(yàn)表明,肉蓯蓉接種率從對(duì)照組的23%提高到86%。材料微觀分析表明:PAM通過插層作用進(jìn)入MMT片層間形成復(fù)合導(dǎo)水材料,導(dǎo)水材料主要依靠PAM和MMT的相互作用傳導(dǎo)水分,PAM的干燥收縮和吸水溶脹會(huì)引起MMT的連接和分開,從而引起水分傳導(dǎo)速率的變化。研究結(jié)果可為滲灌材料的應(yīng)用提供參考。
荒漠化;聚丙烯酰胺;蒙脫土;滲灌;導(dǎo)水
荒漠化是威脅人類生存的八大災(zāi)難之一[1],荒漠化治理一直是研究熱點(diǎn)。眾多荒漠化治理技術(shù)中,生物固沙是一種最根本、最徹底的技術(shù)[2]。在降雨稀少的荒漠地區(qū),為植物提供其生長必需的水分離不開節(jié)水灌溉[3]?,F(xiàn)有的節(jié)水灌溉技術(shù)中,節(jié)水效率較高的是滴灌和滲灌[4]。滴灌技術(shù)目前主要應(yīng)用于需水量較大的棉花、玉米、西紅柿等作物[5-9],在微需水量的固沙苗木上應(yīng)用較少。滲灌技術(shù)通過滲水的方式(即讓水分從滲灌管壁上的微孔由內(nèi)而外呈發(fā)汗式一點(diǎn)點(diǎn)滲出),待其還未形成水滴前被土壤吸收,之后通過毛細(xì)管作用力在土壤中傳遞,直到植物根部土壤,因此其水分利用效率更高[10]。
目前滲灌技術(shù)大多依靠壓力和機(jī)械孔道的協(xié)同作用調(diào)控供水速率,是一種被動(dòng)式的調(diào)控方式,其出水速率不能根據(jù)植物需水規(guī)律進(jìn)行自動(dòng)調(diào)節(jié),而且其出水速率一般都大于1 L/h,遠(yuǎn)大于沙生耐旱植物的用水需求。滲灌技術(shù)多采用陶土管和橡膠管。學(xué)者們已研究了多種新型材料制備的滲灌管和滲灌頭[11-13]。仵峰等[14]利用作物秸稈與土壤混合制備了具有滲水能力的復(fù)合滲灌管,其滲水速率約為0.76~1.40 L/(m·h)。梁海軍等[15]研究了橡塑滲灌管及其水分運(yùn)移模型。李向明等[16]以砂子、水泥、硅溶膠為原料,采用干壓結(jié)合霧化加濕法制備了混凝土灌水器,研究了灌水器的形狀及參數(shù)對(duì)流量的影響。蔡耀輝等[12,17-18]先后制備了黏土基微孔陶瓷、硅藻土微孔陶瓷灌水器,并將其水分運(yùn)移特性與地下滴灌進(jìn)行了對(duì)比研究,發(fā)現(xiàn)相同灌溉時(shí)間下微孔陶瓷滲灌的累計(jì)入滲量、濕潤鋒運(yùn)移距離、濕潤體截面面積均明顯小于地下滴灌。也有學(xué)者[19]研究了滲灌技術(shù)應(yīng)用下土壤中元素的分布規(guī)律。
近年來,本研究團(tuán)隊(duì)針對(duì)沙生植物的微需水量的特點(diǎn),設(shè)計(jì)了一種由聚丙烯酰胺(Polyacrylamide,PAM)和蒙脫土(Montmorillonite,MMT)復(fù)合而成的導(dǎo)水材料。這種復(fù)合材料充分利用了PAM很強(qiáng)的保水性能和MMT較好的導(dǎo)水性能[20],導(dǎo)水性能和保水性能較為均衡。復(fù)合導(dǎo)水材料中,MMT可作為水分快速傳遞的通道,而PAM可對(duì)水分的傳遞進(jìn)行調(diào)節(jié)[21]。本研究團(tuán)隊(duì)針對(duì)這種復(fù)合導(dǎo)水材料進(jìn)行了初步的研究,但主要集中在材料制備工藝和實(shí)驗(yàn)室內(nèi)的吸水、保水性能探討[22-25]。復(fù)合導(dǎo)水材料作為滲灌控水頭的核心,其與滲灌頭的匹配性、滲灌系統(tǒng)整體結(jié)構(gòu)的設(shè)計(jì)、滲灌系統(tǒng)在干濕交替環(huán)境下的穩(wěn)定性、滲灌系統(tǒng)在沙漠現(xiàn)場應(yīng)用中對(duì)苗木成活率的影響以及與傳統(tǒng)灌溉技術(shù)相比的節(jié)水效果的定量化研究等均尚未開展,相關(guān)基礎(chǔ)數(shù)據(jù)的缺乏,制約了該滲灌技術(shù)的進(jìn)一步推廣應(yīng)用。因此,本研究制備了這種復(fù)合材料,重點(diǎn)對(duì)由這種復(fù)合材料制備的滲灌系統(tǒng)在干濕交替環(huán)境下的穩(wěn)定性和荒漠化地區(qū)的現(xiàn)場應(yīng)用進(jìn)行了研究,在此基礎(chǔ)上,對(duì)材料微觀結(jié)構(gòu)在導(dǎo)水過程中的動(dòng)態(tài)變化進(jìn)行了觀察,從材料學(xué)的角度對(duì)滲灌材料自動(dòng)調(diào)節(jié)導(dǎo)水的機(jī)理進(jìn)行了研究,以期為PAM/MMT滲灌復(fù)合材料的推廣以及荒漠地區(qū)開展?jié)B灌提供參考。
蒙脫土(MMT),最大粒徑小于74m,浙江豐虹新材料股份有限公司;聚丙烯酰胺(PAM),分析純,法國愛森公司;棉纖維,化學(xué)純,成都普思生物科技股份有限公司。
圖1所示為PAM/MMT滲灌材料制備過程示意圖,PAM/MMT復(fù)合材料。為尋求最佳配比,根據(jù)前人研究,將PAM和MMT的質(zhì)量比設(shè)定為0.05、0.10、0.15、0.20、0.25和0.30,將各組試樣分別命名為M1、M2、M3、M4、M5和M6。制備過程參考文獻(xiàn)[25]。
圖1 聚丙烯酰胺和蒙脫土滲灌復(fù)合材料制備過程
根據(jù)成膜性能和吸釋水性能,選擇最佳配比制備滴頭,將導(dǎo)水纖維填充到自制的滲灌頭中,利用滲灌頭與管路組成滲灌系統(tǒng),滲灌系統(tǒng)設(shè)計(jì)圖見圖2。
圖2 滲灌系統(tǒng)設(shè)計(jì)
1.3.1 成膜性能
用日本日立S-3400型電子顯微鏡觀察各組導(dǎo)水材料在纖維表面涂覆的微觀形貌,分析其在纖維表面的成膜性能。
1.3.2 吸釋性能
1)吸水試驗(yàn):將蒙脫土和聚丙烯酰胺的混合液烘干后制成2 cm×2 cm×0.5 cm的塊狀固體,在60 ℃下烘干后用紗布將其包裹放入水中,定時(shí)取出稱質(zhì)量M并記錄,直到充分吸水后質(zhì)量不再明顯變化。
2)釋水試驗(yàn):將充分吸水后的各試樣分為2組,一組在室溫下空氣中測(cè)定其在設(shè)定時(shí)間內(nèi)的質(zhì)量M并記錄;另一組將各試樣(紗布包裹)放入干燥的沙土中,定時(shí)測(cè)定其質(zhì)量M并記錄。將試樣測(cè)試前的質(zhì)量記為0,試樣吸水飽和后質(zhì)量記為1,則吸水率(Q,g/g)、空氣中釋水率(Q,g/g)和沙土中釋水率(Q,g/g)計(jì)算公式如下
開展室內(nèi)導(dǎo)水試驗(yàn)和沙漠現(xiàn)場試驗(yàn)研究滲灌系統(tǒng)導(dǎo)水性能。
室內(nèi)導(dǎo)水試驗(yàn):將滲灌滴頭埋入自制沙箱中,埋深10 cm,水源處不加外壓,試驗(yàn)開始后定時(shí)測(cè)量其出水量大小變化,試驗(yàn)設(shè)計(jì)5個(gè)平行樣。24 h導(dǎo)水性能測(cè)試中每1 h測(cè)定1次出水量,7 d導(dǎo)水性能測(cè)試中每1 d測(cè)定1次出水量。干濕循環(huán)導(dǎo)水性能測(cè)試中將滲灌滴頭用紗布包裹后埋入干沙中,干沙為用烘箱將沙子烘干到質(zhì)量不再變化為止,每1 d測(cè)定1次出水量,滲灌4 d后將其整體移入另一個(gè)自制沙箱的干沙中繼續(xù)試驗(yàn),共計(jì)干濕循環(huán)3次。
沙漠現(xiàn)場試驗(yàn):沙漠現(xiàn)場試驗(yàn)選在內(nèi)蒙古磴口縣的烏蘭布和沙漠,根據(jù)氣象資料統(tǒng)計(jì),試驗(yàn)區(qū)年降水量最大和最小值分別為150.3和33.3 mm,年均降水量和年均蒸發(fā)量分別為102.9和2 258.8 mm,最高氣溫、最低氣溫和平均氣溫分別為39、-29.6和7.8 ℃。試驗(yàn)對(duì)象選擇對(duì)水分條件較敏感的肉蓯蓉,肉蓯蓉是寄生在固沙植物梭梭根部的寄生植物,肉蓯蓉接種期和生長期適宜的土壤含水率為3%~18%[26-28],水分過大或過小都不易成活。試驗(yàn)時(shí)間共計(jì)6個(gè)月(2018年3月15日—9月15日),試驗(yàn)設(shè)置為2個(gè)試驗(yàn)組:A組為對(duì)照組,采用當(dāng)?shù)貍鹘y(tǒng)的蓄水坑灌方式(圖3)。在梭梭苗接種肉蓯蓉的一側(cè)挖三角形的蓄水坑,深度約為70 cm。灌溉過程中根據(jù)天氣情況不定期澆水(澆水不宜過多,以地下0.7 m深處沙子略有濕氣為佳),每次灌水時(shí)將蓄水坑中灌滿水分,每次灌水時(shí)記錄用水量1i,接種期6個(gè)月共澆水4次,試驗(yàn)期結(jié)束計(jì)算總用水量(1總,L)。B組為滲灌組,采用集中供水方式,利用水箱(50 L)儲(chǔ)存水分,通過滲灌管路系統(tǒng)將水分直接送達(dá)植物根部附近。
圖3 蓄水坑灌示意圖
試驗(yàn)開始時(shí)水箱中加滿水,每次當(dāng)水箱中液面下降到箱體1/3時(shí)補(bǔ)充水分至水箱加滿并記錄加水量2i。接種期6個(gè)月共加水3次,接種期結(jié)束后桶內(nèi)剩余水量為2余,試驗(yàn)期結(jié)束計(jì)算總用水量(2總,L)。試驗(yàn)設(shè)計(jì)為每組各接種100棵,共計(jì)200棵,接種期結(jié)束查看接種情況并統(tǒng)計(jì)成功接種株數(shù),并計(jì)算接種率(,%)。1總、2總和的計(jì)算公式如下
式中11、12、13、14分別代表蓄水坑灌方式中第1、2、3、4次灌溉用水量,mm;21、22、23分別代表滲灌方式中第1、2、3次灌溉用水量,mm;2余代表接種期結(jié)束后桶內(nèi)剩余水量,mm。
圖4為荒漠化現(xiàn)場試驗(yàn)圖,滲灌系統(tǒng)供水水源處不加壓,略高于地面,保證水分可在管路中自由流動(dòng),管路系統(tǒng)包括干路和支路,通過支路毛管的設(shè)置將滲灌頭直接置于植物根部附近土壤,減少水分無效下滲損失。
圖4 沙漠現(xiàn)場試驗(yàn)照片
導(dǎo)水機(jī)理分析:用美國尼高力公司NEXUS 670FT-IR光譜儀對(duì)PAM和MMT制備的復(fù)合導(dǎo)水材料進(jìn)行紅外光譜分析,測(cè)試范圍4 000~500 cm-1,掃描次數(shù)128次,分辨率8 cm-1。用日本理學(xué)D/MAX—2200PC型X射線衍射儀測(cè)定PAM和MMT制備的復(fù)合導(dǎo)水材料的XRD圖譜,銅靶(=0.15 nm),管電流100 mA,掃描速度5°/min。
采用Quanta2000型環(huán)境掃描電鏡,對(duì)PAM和MMT制備的復(fù)合導(dǎo)水材料的微觀形貌進(jìn)行分析。試驗(yàn)中將環(huán)境掃描電鏡與冷臺(tái)操作配合使用,通過對(duì)可變真空度的調(diào)節(jié),實(shí)現(xiàn)對(duì)復(fù)合材料不同含水率狀態(tài)的調(diào)節(jié),以此模擬導(dǎo)水過程中的不同導(dǎo)水階段,從而觀察分析材料微觀結(jié)構(gòu)隨含水率的變化情況。
圖5為不同配比滲灌材料的在纖維表面的成膜性能圖,由圖可知,復(fù)合材料的成膜涂覆性能整體隨著PAM含量的增加而提高。當(dāng)PAM含量較低時(shí),M1、M2這2組材料涂覆性能較差,未能在纖維表面形成連續(xù)的覆膜,而隨著PAM含量的增加,M3、M4這2組材料可基本涂覆在纖維表面,但是覆膜連續(xù)性和完整性較差,成膜不均勻,繼續(xù)增加PAM含量,M5和M6可在纖維表面形成較為均勻的連續(xù)覆膜。說明復(fù)合材料中PAM對(duì)材料的黏附性能影響較大,其含量越高,其在纖維表面的成膜性能越好,因此選擇M5和M6進(jìn)行研究。
圖5 基于聚丙烯酰胺和蒙脫土不同配比的復(fù)合材料成膜圖
圖6為滲灌材料M5和M6的吸水和釋水曲線,由圖 6a可知,材料吸水率隨著吸水時(shí)間的延長而持續(xù)增加,但吸水速率(指吸水率曲線的斜率)逐漸下降,M6吸水率整體高于M5。在40 min內(nèi),吸水率增加較快,吸水速率幾乎保持不變,40~120 min,吸水率繼續(xù)增加,但是吸水速率開始逐漸降低,120 min后吸水率變化較小,吸水速率幾乎降為0。150 min時(shí)M5吸水率為30.2 g/g,M6吸水率為36.2 g/g。說明復(fù)合材料在干燥狀態(tài)下可以快速吸收水分,吸水速率隨著吸水率的增加而逐漸下降,直到吸水飽和后不再吸水。而復(fù)合材料中PAM作為高吸水樹脂,對(duì)水分有強(qiáng)吸附作用,因此PAM含量較高的M6吸水性能更好。
圖6b和圖6c分別為M5和M6在空氣和干沙中的釋水曲線圖,材料釋水率隨著時(shí)間的延長逐漸增加,但釋水速率逐漸下降。在空氣中,M5在50 min內(nèi)快速釋水,直到140 min釋水率開始保持穩(wěn)定,釋水率達(dá)24.2 g/g,而M6在40 min內(nèi)快速釋水,40 min后釋水速率就開始下降,到160 min釋水率基本保持穩(wěn)定,釋水率達(dá)15 g/g。M5釋水速率和釋水率都高于M6,說明M5快速釋水性能優(yōu)于M6。試樣在干沙中釋水規(guī)律與空氣中基本一致,但是干沙中釋水速率和釋水率都略高于空氣中,其中M5在60 min內(nèi)快速釋水,直到150 min失水率基本保持穩(wěn)定,釋水率達(dá)28.5 g/g。而M6在50 min內(nèi)快速釋水,到90 min基本保持穩(wěn)定,釋水率達(dá)16.9 g/g。干沙中釋水速率和釋水率高于空氣中,這是由于干沙對(duì)水分的強(qiáng)吸力作用導(dǎo)致。M5在空氣中和干沙中釋水性能都由于M6,這是由于復(fù)合材料中PAM作為高吸水樹脂,對(duì)水分有強(qiáng)束縛作用,因此PAM含量較低的M5,其釋水性能更好。
圖6 滲灌復(fù)合材料(M5和M6)吸水和釋水性能
圖7為利用滲灌材料M5和M6制備滲灌頭,滲灌頭出水端附近土壤含水率隨時(shí)間變化圖。由圖可知,滲灌開始后,土壤含水率快速升高,5~7 h后土壤含水率增速趨緩,土壤含水率逐漸趨于穩(wěn)定。M5在5 h后趨于穩(wěn)定,對(duì)應(yīng)土壤含水率為13%,而M6在7 h達(dá)到穩(wěn)定,對(duì)應(yīng)土壤含水率為11%。由此可知,M5和M6對(duì)應(yīng)土壤含水率都可滿足肉蓯蓉生長需要,但是M5比M6響應(yīng)速度更快,作為滲灌材料,其主要作用是運(yùn)輸傳遞水分,考慮到響應(yīng)速度和成本控制的需要(PAM成本較高),選擇M5進(jìn)行研究。
圖7 滲灌頭(M5和M6)導(dǎo)水性能
圖8為滲灌系統(tǒng)自調(diào)節(jié)導(dǎo)水性能,滲灌系統(tǒng)在24 h內(nèi)出水速率逐漸降低,最開始出水速率可達(dá)52 mL/h,隨后出水速率快速下降,到6 h出水速率為21 mL/h,然后出水速率開始趨于緩慢下降并趨于穩(wěn)定,到24 h出水速率為7 mL/h。滲灌系統(tǒng)7 d內(nèi)導(dǎo)水曲線顯示,1 d的導(dǎo)水速率為420 mL/d,隨后導(dǎo)水速率保持穩(wěn)定,為160 mL/d左右,這表明隨著導(dǎo)水過程的進(jìn)行,外界土壤濕度逐漸提高,導(dǎo)水速率逐漸下降并趨于穩(wěn)定。
圖8c為滲灌系統(tǒng)在3次干濕循環(huán)測(cè)試中導(dǎo)水性能曲線圖,3次干濕循環(huán)中,滲灌系統(tǒng)第1天導(dǎo)水速率都達(dá)到420 mL/d左右,第2~3天導(dǎo)水速率保持165 mL/d左右。這表明當(dāng)外界土壤濕度較低時(shí),滲灌系統(tǒng)導(dǎo)水速率較快(420 mL/d左右),隨著導(dǎo)水的進(jìn)行,外界土壤濕度逐漸升高,滲灌系統(tǒng)導(dǎo)水速率下降并保持穩(wěn)定(165 mL/d左右)。當(dāng)土壤濕度再次降低時(shí),滲灌系統(tǒng)導(dǎo)水速率也會(huì)再次升高(420 mL/d左右),結(jié)合圖8a和8b分析結(jié)果可知,滲灌系統(tǒng)可根據(jù)外界土壤濕度自調(diào)節(jié)導(dǎo)水速率。
表1為統(tǒng)計(jì)計(jì)算的接種率和用水量,傳統(tǒng)的蓄水坑灌技術(shù)總用水量為1 600 L,接種率為23%,使用滲灌技術(shù)后,接種率大幅度提高為86%,總用水量2總下降為110 L,說明滲灌技術(shù)可大幅度調(diào)高肉蓯蓉接種率,同時(shí)也大幅度減少總用水量。這是由于滲灌技術(shù)中的復(fù)合導(dǎo)水材料可自調(diào)節(jié)導(dǎo)水速率,將植物根部附近土壤濕度保持在適宜的范圍內(nèi)。圖9a為接種成功的肉蓯蓉,肉蓯蓉通過寄生在梭梭苗植物根部而獲取養(yǎng)分。圖9b為接種成功的肉蓯蓉開花圖。
圖10為導(dǎo)水材料的X射線衍射圖,蒙脫土是由Si-O四面體和Al-O八面體復(fù)合而成的具有片層結(jié)構(gòu)的晶體物質(zhì),通過X射線衍射儀可對(duì)其晶體結(jié)構(gòu)變化進(jìn)行分析。由圖可知,導(dǎo)水材料的主要晶相特征峰與MMT較為接近,說明PAM并未破壞黏土的片層結(jié)構(gòu),導(dǎo)水材料中的主要特征峰為MMT晶體結(jié)構(gòu)中的001面的特征峰。該特征峰向小角度偏移,特征峰對(duì)應(yīng)的衍射角的2倍值由7.3°減少為6.1°,根據(jù)布拉格方程2sin=(其中為特征峰對(duì)應(yīng)的晶面間距,為衍射角,為衍射級(jí)數(shù),為X射線的波長)計(jì)算可知,其晶面間距由1.21 nm變?yōu)?.45 nm,說明PAM和MMT的復(fù)合使MMT的片層間距變大,結(jié)合相關(guān)文獻(xiàn)可知,PAM是通過插層進(jìn)入MMT片層間,使其片層間距變大[29]。
圖8 滲灌系統(tǒng)自調(diào)節(jié)導(dǎo)水性能
表1 肉蓯蓉接種率和總用水量
圖9 采用滲灌系統(tǒng)后肉蓯蓉生長狀況
圖10 復(fù)合材料X射線衍射示意圖
圖11為導(dǎo)水材料的紅外光譜圖,復(fù)合材料的紅外特征峰和MMT較為接近,MMT中主要的特征峰在復(fù)合材料中都出現(xiàn),包括1 040 cm-1處為Si-O四面體伸縮振動(dòng)峰、3 436 cm-1處和1 628 cm-1處為層間水的伸縮和彎曲振動(dòng)峰、3 612 cm-1處為MMT的結(jié)構(gòu)羥基振動(dòng)峰。相比于MMT,復(fù)合材料新增了2 930 cm-1處的亞甲基C-H反對(duì)稱伸縮振動(dòng)的振動(dòng)峰,1 636 cm-1處的酰胺基中羰基的特征峰,1 457cm-1處的亞甲基變形的特征峰,這些峰是PAM中主要官能團(tuán)的峰。復(fù)合材料中出現(xiàn)PAM的特征峰,說明PAM和MMT復(fù)合成功,結(jié)合X射線衍射分析結(jié)果可知,PAM是通過插層作用進(jìn)入MMT片層間,與MMT復(fù)合生成復(fù)合導(dǎo)水材料[27-28]。
圖11 復(fù)合材料的紅外光譜示意圖
為分析材料自調(diào)節(jié)導(dǎo)水過程中不同階段微觀材料內(nèi)部的變化及響應(yīng)機(jī)制,將自調(diào)節(jié)導(dǎo)水過程簡化為3個(gè)典型的階段:1)外界土壤濕度較低時(shí);2)外界土壤濕度逐漸升高時(shí);3)外界土壤濕度較高時(shí)。如圖12所示,導(dǎo)水材料兩端處于不同的環(huán)境,靠近水源的內(nèi)側(cè)導(dǎo)水材料一直處于吸水飽和狀態(tài),靠近土壤的外側(cè)導(dǎo)水材料含水率隨著土壤濕度而發(fā)生變化,這里主要研究靠近土壤的外側(cè)導(dǎo)水材料對(duì)土壤濕度變化的響應(yīng)機(jī)制。根據(jù)土壤濕度變化的3個(gè)階段[30-32],將導(dǎo)水材料的變化也分為3個(gè)階段:1)外界土壤濕度較低時(shí),導(dǎo)水材料處于干燥狀態(tài);2)外界土壤濕度逐漸升高時(shí),導(dǎo)水材料處于吸水狀態(tài);3)外界土壤濕度較高時(shí),導(dǎo)水材料處于吸水飽和狀態(tài)。
圖12a為導(dǎo)水材料處于干燥狀態(tài)的微觀形貌圖,PAM干燥收縮,粘附在其上的MMT也隨PAM收縮而團(tuán)聚粘結(jié)在一起,MMT連接形成水分快速傳遞通道,因此本階段導(dǎo)水速率較快。圖12b為導(dǎo)水材料吸水后的微觀形貌圖,PAM逐漸吸水溶脹,由于PAM未充分吸水,容易造成吸水不均勻和溶脹不均勻,左側(cè)PAM溶脹較少,因此MMT連接在一起,右側(cè)PAM溶脹較充分,粘附在其上的MMT隨著PAM的溶脹而逐漸分開,此階段水分由PAM和MMT共同傳遞,因此導(dǎo)水速率快速下降。圖 12c為導(dǎo)水材料充分吸水后的微觀形貌圖,PAM充分溶脹形成樹枝狀網(wǎng)絡(luò)結(jié)構(gòu),粘附在其上的MMT被分開,由MMT形成的水分快速傳輸通道被徹底切斷,水分由PAM傳遞,因此,此階段導(dǎo)水速率較慢。圖12d可詳細(xì)觀察到隨著PAM的溶脹,MMT逐漸分開的動(dòng)態(tài)變化過程。
注:c圖和d圖中圓圈為掃描電鏡聚焦處,d圖是c圖中圓圈處放大后的動(dòng)態(tài)圖。d圖中箭頭表示MMT顆粒分開后運(yùn)動(dòng)的方向。
圖13為導(dǎo)水材料不同含水率狀態(tài)下的微觀結(jié)構(gòu)變化情況,也即自調(diào)節(jié)導(dǎo)水過程中不同階段的材料微觀結(jié)構(gòu)動(dòng)態(tài)變化情況,結(jié)合XRD分析結(jié)果和紅外光譜分析結(jié)果,可將材料通過內(nèi)部微觀結(jié)構(gòu),實(shí)現(xiàn)自動(dòng)態(tài)調(diào)節(jié)導(dǎo)水的過程繪制成如圖13所示的導(dǎo)水模型:當(dāng)外界土壤濕度較低時(shí),導(dǎo)水材料開始吸水時(shí),PAM處于干燥收縮狀態(tài),水分通過MMT連接形成的快速通道進(jìn)行傳遞,導(dǎo)水速率較快;隨著導(dǎo)水的進(jìn)行,外界土壤濕度逐漸升高,PAM逐漸吸水溶脹,部分MMT傳水通道被切斷,水分通過MMT通道和PAM通道共同進(jìn)行傳遞,導(dǎo)水速率快速下降;當(dāng)外界土壤濕度較高時(shí),PAM逐漸吸水飽和后充分溶脹,MMT傳水通道被全部切斷,水分通過PAM通道進(jìn)行傳遞,因此導(dǎo)水速率較低。
在實(shí)際導(dǎo)水中,上述3個(gè)過程總是反復(fù)交替出現(xiàn),當(dāng)外界土壤濕度較低時(shí),靠近土壤一側(cè)的導(dǎo)水材料含水率較低,處于較干燥狀態(tài),導(dǎo)水材料中聚丙烯酰胺的收縮引起蒙脫土顆粒的團(tuán)聚橋聯(lián)而進(jìn)入水分快速傳導(dǎo)階段。而當(dāng)外界土壤濕度較高時(shí),靠近土壤一側(cè)的導(dǎo)水材料含水率較高,導(dǎo)水材料中的聚丙烯酰胺會(huì)部分或全部吸水溶脹,而使導(dǎo)水進(jìn)入導(dǎo)水率快速下降階段或緩慢傳水階段,導(dǎo)水材料依靠蒙脫土和聚丙烯酰胺同時(shí)傳水,甚至完全依靠聚丙烯酰胺單獨(dú)導(dǎo)水,因此導(dǎo)水速率較低。這些導(dǎo)水變化過程會(huì)交替地重復(fù)出現(xiàn),從而實(shí)現(xiàn)無壓滲灌系統(tǒng)根據(jù)土壤濕度自調(diào)節(jié)導(dǎo)水速率的功能。
圖13 導(dǎo)水機(jī)理示意圖
1)利用聚丙烯酰胺(Polyacrylamide,PAM)和蒙脫土(Montmorillonite,MMT)制備復(fù)合導(dǎo)水材料,成膜性能和稀釋水性能最佳組合為PAM和MMT的質(zhì)量比0.25,復(fù)合材料可在纖維表面形成均勻涂覆的導(dǎo)水涂層,材料吸水和釋水性能較為均衡?;趶?fù)合材料設(shè)計(jì)的滲灌系統(tǒng)可根據(jù)土壤濕度自調(diào)節(jié)導(dǎo)水速率,滲灌系統(tǒng)可將肉蓯蓉接種率從23%提高到86%。
2)導(dǎo)水材料微觀分析表明,導(dǎo)水材料主要通過PAM和MMT的相互作用調(diào)節(jié)導(dǎo)水速率,當(dāng)土壤濕度較低時(shí),PAM干燥收縮,MMT團(tuán)聚橋聯(lián)形成水分快速通道,導(dǎo)水率較快;當(dāng)土壤濕度較高時(shí),PAM吸水溶脹,MMT導(dǎo)水通道被切斷,導(dǎo)水率較慢,因此導(dǎo)水材料可根據(jù)土壤濕度自調(diào)節(jié)導(dǎo)水速率。
本文未對(duì)滲灌系統(tǒng)的抗堵塞性能進(jìn)行研究,抗堵塞性能是決定其使用周期的重要參數(shù),因此滲灌系統(tǒng)的抗堵塞性能是將來的重要研究方向。
[1]國家林業(yè)局. 中國第五次全國荒漠化和沙化狀況公報(bào)[EB/OL]. (2015-12-2) [2016-04-03]. http: //www. forestry. gov. cn/main/69/content-831684. html.
[2]吳汪洋,張登山,田麗慧,等. 青海湖克土沙地沙棘林的防風(fēng)固沙機(jī)制與效益[J]. 干旱區(qū)地理,2014,37(4):777-785. Wu Wangyang, Zhang Dengshan, Tian Lihui, et al. Mechanism and benefit of wind-prevention and sand-fixation of Hippophae rhamnoides forestation in Ketu Sandy Land around Qinghai Lake[J]. Arid Land Geography, 2014, 37(4): 777-785. (in Chinese with English abstract)
[3]康紹忠,霍再林,李萬紅. 旱區(qū)農(nóng)業(yè)高效用水及生態(tài)環(huán)境效應(yīng)研究現(xiàn)狀與展望[J]. 中國科學(xué)基金,2016(3):208-212. Kang Shaozhong, Huo Zailin, Li Wanhong. High-efficient water use and eco-environmental impacts in agriculture in arid regions: Advance and future strategies[J]. Bulletin of National Natural Science Foundation of China, 2016(3): 208-212. (in Chinese with English abstract)
[4]Nakayama F R, Bucks D A. Water quality in drip/trickle irrigation: A review[J]. Irrigation Science, 1991, 12(4): 187-192.
[5]戚迎龍,史海濱,李瑞平,等. 滴灌水肥一體化條件下覆膜對(duì)玉米生長及土壤水肥熱的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(5):99-110. Qi Yinglong, Shi Haibin, Li Ruiping, et al. Effects of film mulching on maize growth and soil water, fertilizer and heat under fertigation of drip irrigation[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(5): 99-110. (in Chinese with English abstract)
[6]王軍,李久生,關(guān)紅杰. 北疆膜下滴灌棉花產(chǎn)量及水分生產(chǎn)率對(duì)灌水量響應(yīng)的模擬[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(3):62-68. Wang Jun, Li Jiusheng, Guan Hongjie. Modeling response of cotton yield and water productivity to irrigation amount under mulched drip irrigation in North Xinjiang[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(3): 62-68. (in Chinese with English abstract)
[7]王振華,扁青永,李文昊,等. 南疆沙區(qū)成齡紅棗水肥一體化滴灌的水肥適宜用量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2018,34(11):96-104. Wang Zhenhua, Bian Qingyong, Li Wenhao, et al. Suitable water and fertilizer amount for mature jujube with drip-irrigation under fertigation in southern Xinjiang sandy area[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2018, 34(11): 96-104. (in Chinese with English abstract)
[8]楊小振,張顯,馬建祥,等. 滴灌施肥對(duì)大棚西瓜生長、產(chǎn)量及品質(zhì)的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(7):109-118. Yang Xiaozhen, Zhang Xian, Ma Jianxiang, et al. Effects of drip fertigation on growth, yield and quality of watermelon in plastic greenhouse[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(7): 109-118. (in Chinese with English abstract)
[9]邢英英,張富倉,吳立峰,等. 基于番茄產(chǎn)量品質(zhì)水肥利用效率確定適宜滴灌灌水施肥量[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(增刊1):110-121. Xing Yingying, Zhang Fucang, Wu Lifeng, et al. Determination of optimal amount of irrigation and fertilizer under drip fertigated system based on tomato yield, quality, water and fertilizer use efficiency[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(Supp. 1): 110-121. (in Chinese with English abstract)
[10]諸葛玉平,張玉龍,張旭東,等. 滲灌土壤水分調(diào)控技術(shù)參數(shù)的研究進(jìn)展[J]. 農(nóng)業(yè)工程學(xué)報(bào),2003,19(6):41-45. Zhuge Yuping, Zhang Yulong, Zhang Xudong, et al. Review on technical parameters of subsurface drip irrigation for soil water control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2003, 19(6): 41-45. (in Chinese with English abstract)
[11]王淑紅,張玉龍,虞娜,等. 滲灌技術(shù)的發(fā)展概況及其在保護(hù)地中應(yīng)用[J]. 農(nóng)業(yè)工程學(xué)報(bào),2005,21(13):92-95. Wang Shuhong, Zhang Yulong, Yu Na, et al. Development status of infiltration irrigation technology and its application in protected field[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2005, 21(13): 92-95. (in Chinese with English abstract)
[12]蔡耀輝,吳普特,朱德蘭,等. 硅藻土微孔陶瓷灌水器制備工藝優(yōu)化[J]. 農(nóng)業(yè)工程學(xué)報(bào),2015,31(22):70-76. Cai Yaohui, Wu Pute, Zhu Delan, et al. Preparation technology optimization of diatomite porous ceramic irrigation emitter[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(22): 70-76. (in Chinese with English abstract)
[13]張?jiān)鲋荆鯐越?,薛? 滲灌材料制備及導(dǎo)水性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):74-81. Zhang Zengzhi, Wang Xiaojian, Xue Mei. Preparation and hydraulic conductivity performance analysis of infiltration irrigation materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 74-81. (in Chinese with English abstract)
[14]仵峰,王富斌,宰松梅,等. 玉米秸稈復(fù)合滲灌管研制及滲水性能研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2019,35(14):98-104. Wu Feng, Wang Fubin, Zai Songmei, et al. Development and infiltration performance of corn straw composite infiltration irrigation pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 98-104. (in Chinese with English abstract)
[15]梁海軍,劉作新,舒喬生,等. 橡塑滲灌管滲水性能實(shí)驗(yàn)研究[J]. 農(nóng)業(yè)工程學(xué)報(bào),2006,22(7):56-59. Liang Haijun, Liu Zuoxin, Shu Qiaosheng, et al. Experimental study on discharge characteristics of a subirrigation porous pipe[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2006, 22(7): 56-59. (in Chinese with English abstract)
[16]李向明,楊建國. 微孔混凝土灌水器形狀及其尺寸對(duì)流量的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2017,33(10):130-136. Li Xiangming, Yang Jianguo. Influence of shape and size on flow rate of microporous concrete irrigation emitters[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(10): 130-136. (in Chinese with English abstract)
[17]蔡耀輝,吳普特,朱德蘭,等. 粘土基微孔陶瓷滲灌灌水器制備與性能優(yōu)化[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2015,46(4):183-188. Cai Yaohui, Wu Pute, Zhu Delan, et al. Preparation and performance optimization of clay-based porous ceramics used in subsurface irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(4): 183-188. (in Chinese with English abstract)
[18]蔡耀輝,吳普特,張林,等. 微孔陶瓷滲灌與地下滴灌土壤水分運(yùn)移特性對(duì)比[J]. 農(nóng)業(yè)機(jī)械學(xué)報(bào),2017,48(4):242-249. Cai Yaohui, Wu Pute, Zhang Lin, et al. Comparison of characteristics of soil moisture transfer for porous ceramic infiltration irrigation and subsurface drip irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(4): 242-249. (in Chinese with English abstract)
[19]王耀生,張玉龍,虞娜,等. 滲灌灌水控制下限對(duì)保護(hù)地土壤剖面磷素分布的影響[J]. 農(nóng)業(yè)工程學(xué)報(bào),2009,25(6):66-70. Wang Yaosheng, Zhang Yulong, Yu Na, et al. Effect of control lower limit of subsurface irrigation on phosphorus distribution in soil profiles of protected land[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2009, 25(6): 66-70. (in Chinese with English abstract)
[20]張超杰,張?jiān)鲋?,陳興龍. 適宜分散劑改善導(dǎo)水涂層材料中蒙脫土分散及吸脫附水性[J]. 農(nóng)業(yè)工程學(xué)報(bào),2016,32(5):82-87. Zhang Chaojie, Zhang Zengzhi, Chen Xinglong. Improvement of montmorillonite dispersion and water absorption/ dehydration of water-release coated materials with appropriate dispersants addition[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(5): 82-87. (in Chinese with English abstract)
[21]王輝,成煦,杜宗良. 水包水型聚丙烯酰胺/蒙脫土乳液的制備及吸附性能研究[J]. 紡織科學(xué)與工程學(xué)報(bào),2018,35(3):33-40. Wang Hui, Cheng Xu, Du Zongliang. Preparation and adsorption performance research of W/W Polyacrlamide/ Montmorillonite nano-composite[J]. Journal of Textile Science &Engineering, 2018, 35(3): 33-40. (in Chinese with English abstract)
[22]張?jiān)鲋荆饶?,舒新前,? 蒙脫土/聚丙烯酰胺復(fù)合涂層導(dǎo)水纖維的制備及性能[J]. 功能材料,2009,40(6):998-1000, 1004. Zhang Zengzhi, Gu Na, Shu Xinqian, et al. Preparation and properties of montmoriilonite/polyacrylamide composite water-transmitting coated fiber[J]. Journal of Functional Materials, 2009, 40(6): 998-1000, 1004. (in Chinese with English abstract)
[23]張?jiān)鲋荆醪? 聚丙烯酰胺/蒙脫土復(fù)合導(dǎo)水涂層材料的制備及自調(diào)節(jié)導(dǎo)水特性[J]. 高分子材料科學(xué)與工程,2011,27(12):138-141. Zhang Zengzhi, Wang Botao. Preparation and self-regulating water conductivity properties of polyacrylamide/ montmorillonite composite water-transmitting coating[J]. Polymer Materials Science & Engineering, 2011, 27(12): 138-141. (in Chinese with English abstract)
[24]張?jiān)鲋荆鯐越?,薛? 滲灌材料制備及導(dǎo)水性能分析[J]. 農(nóng)業(yè)工程學(xué)報(bào),2014,30(24):74-81. Zhang Zengzhi, Wang Xiaojian, Xue Mei. Preparation and hydraulic conductivity performance analysis of infiltration irrigation materials[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(24): 74-81. (in Chinese with English abstract)
[25]張?jiān)鲋?,渠永平,張利梅,? 不同粘土與聚丙烯酰胺復(fù)合導(dǎo)水涂層的自調(diào)節(jié)導(dǎo)水性能及機(jī)理[J]. 高分子材料科學(xué)與工程,2015,31(6):144-148. Zhang Zengzhi, Qu Yongping, Zhang Limei, et al. Self-adjusting water conductivity property and mechanism of water-Release coatings prepared with polyacrylamide and differernt clays[J]. Polymer Materials Science & Engineering, 2015,31(6):144-148. (in Chinese with English abstract)
[26]馬毓泉. 內(nèi)蒙古肉蓯蓉屬訂正[J]. 內(nèi)蒙古大學(xué)學(xué)報(bào):自然科學(xué)版,1977(1):69-75.
[27]Wu Guozhong, Yang Lu, Qi Hanbing, et al. Optical constants of polyacrylamide solution in the infrared between 20 and 70 ℃[J]. Optik, 2018, 155: 171-178.
[28]Fanny Claverie, Christophe Pécheyran, Sandra Mounicou, et al. Characterization of the aerosol produced by infrared femtosecond laser ablation of polyacrylamide gels for the sensitive inductively coupled plasma mass spectrometry detection of selenoproteins[J]. Spectrochimica Acta Part B: Atomic Spectroscopy, 2009, 64(7): 649-658.
[29]邱靜紅,Komarneni Sridhar,成煦,等. W/W型PAM–MMT乳液的制備及性能研究[J]. 工程科學(xué)與技術(shù),2019,51(2):193-198. Qiu Jinghong, Komarneni Sridhar, Cheng Xu, et al. Study on preparation and characterization of the PAM–MMT W/W emulsion[J]. Advanced Engineering Sciences, 2019, 51(2): 193–198. (in Chinese with English abstract)
[30]渠永平. 蒙脫土/聚丙烯酰胺復(fù)合導(dǎo)水材料水分運(yùn)移動(dòng)力學(xué)研究[D]. 北京:中國礦業(yè)大學(xué),2016. Qu Yongping. Study on the Water Transport Dynamics of Montmorillonite/Polyacrylamide Composite Water Conducting Material[D]. Beijing: China University of Mining and Technology, 2016. (in Chinese with English abstract)
[31]Zhang Zengzhi, Xu Hongmei. Micro-dynamic behavior and self-adjusting water transmit mechanism of water-transferring composite[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2011, 26(6): 1193-1199.
[32]Du Hongmei, Zhang Zengzhi, Wu Miaomiao, et al. Water-conducting characteristics and micro-dynamic self-adjusting behavior of polyacrylamide/montinorillonite coating[J]. Journal of Wuhan University of Technology: Materials Science Edition, 2015, 30(6): 1191-1197.
Preparation of polyacrylamide/montmorillonite infiltrating irrigation material and field test of its water conducting performance
Qu Yongping1,2, Zhang Zengzhi3
(1.,,030051,; 2.,030051,; 3.,(),100083,)
Based on the characteristics of micro water requirement of psammophytes, a kind of infiltrating irrigation composite material was prepared by using Polyacrylamide (PAM) and Montmorillonite (MMT). An infiltrating irrigation system was then designed based on the composite material. The film-forming properties of the composite water conducting materials with different proportions of PAM and MMT were observed and analyzed by using a scanning electron microscope, and water absorption performance and water release performance of the material were tested in air and sand. The composite water conducting materials were made into an infiltrating irrigation emitter, and the water conductivity of the infiltrating irrigation head was studied. On this basis, an infiltration irrigation system was designed, and then water transmission performance of the infiltration irrigation system was studied. A field test of infiltrating irrigation system in Ulan Buhe desert was carried out. The self-regulation mechanism of composite material was analyzed by X-ray diffraction, infrared spectrum analyzer and scanning electron microscope. The results showed that the best mass ratio of PAM to MMT was 0.25. The material had good coating uniformity on the fiber surface. The water absorption test showed that, in the first 40 min, the water absorption increased rapidly. From 40 to 120 min, the water absorption continued to increase, but the water absorption rate began to decrease gradually. After 120 min, the water absorption amount changed little, and the water absorption rate almost dropped to 0. The water absorption amount was 30.2 g/g at 150 min. In air, the composite released water rapidly in the first 50 minutes, and then kept stable until 140 minutes, reaching 24.2 g/g. The water release rate in dry sand was slightly higher than it in air. The water release reached 28.5 g/g. The water conducting test of infiltrating irrigation emitter showed that the soil moisture content was 13% after the water diversion was stable, indicating that the soil moisture content could meet the growth needs of. The water conducting tests of infiltrating irrigation showed that the effluent rate of irrigating system gradually decreased within 24 h, and the initial effluent rate reached 52 mL/h, and then decreased rapidly to 21 mL/h at 6 h. The effluent rate began to slow down and tend to be stable, and the effluent rate was 7 mL/h at 24 h. The water conducting curve of infiltrating irrigation system within 7 days showed that the water conducting rate was 420 mL/d on the first day, and then kept stable at about 160 mL/ d. In the three dry and wet cycles, the water conductivity of the infiltrating irrigation system was 420 mL/d in the first day, and 165 mL/h in the second to third day. The results showed that when the external soil moisture was low, the hydraulic conductivity of the infiltrating irrigation system was faster (about 420 mL/d), and with the water conduction, the external soil moisture gradually increased, and the water conducting rate of the infiltrating irrigation system decreased and remained stable. When the soil moisture decreased again, the water conductivity of the infiltrating irrigation system would increase again. So the dry and wet alternating test showed that it could self-regulate the water conducting rate according to the soil moisture, and the inoculation rate ofimproved from 23% to 86%. The infrared spectrum analysis results showed that the lamellar structure of MMT had not been destroyed, and PAM was connected to MMT by intercalation effect. X-ray diffractometer analysis results showed that the laminar spacing of MMT increased from 1.21 to 1.45 nm after intercalation reactions. The microscopic analysis showed that the water conducting materials mainly relied on the interaction between PAM and MMT to transfer water. When the soil moisture was low, the moisture content of the water conducting materials near the soil side decreased and was in a relatively dry state, and the MMT particles aggregated to form a rapid water conducting channel. When the external soil moisture was high, the moisture content of the water conducting material near the soil side was also high, and it was in the state of water absorption and swelling. The water conducting channel of montmorillonite was cut off, and the water conducting rate dropped rapidly so as to realize the self-regulation of the water conducting rate of the composite material. The results could provide information for the application of seepage irrigation materials.
desertification; polyacrylamide; montmorillonite; infiltrating irrigation; water conducting
10.11975/j.issn.1002-6819.2020.18.018
TB34
A
1002-6819(2020)-18-0144-09
渠永平,張?jiān)鲋? 聚丙烯酰胺/蒙脫土滲灌材料制備及其導(dǎo)水性能野外試驗(yàn)[J]. 農(nóng)業(yè)工程學(xué)報(bào),2020,36(18):144-152.doi:10.11975/j.issn.1002-6819.2020.18.018 http://www.tcsae.org
Qu Yongping, Zhang Zengzhi. Preparation of polyacrylamide/montmorillonite infiltrating irrigation material and field test of its water conducting performance[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(18): 144-152. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.18.018 http://www.tcsae.org
2020-03-16
2020-07-10
國家自然科學(xué)基金資助項(xiàng)目(50772131);教育部重點(diǎn)項(xiàng)目(106086);山西省高等學(xué)??萍紕?chuàng)新項(xiàng)目(2019L0567);山西省科技重大專項(xiàng)(20181101003);山西省應(yīng)用基礎(chǔ)研究計(jì)劃(201801D221147)和中北大學(xué)??茖W(xué)研究基金項(xiàng)目(2017-24)聯(lián)合資助
渠永平,博士,副教授,主要從事荒漠化治理及節(jié)水灌溉研究。Email:quyongping1989@163.com
中國農(nóng)業(yè)工程學(xué)會(huì)會(huì)員:渠永平(E041000021M)