• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Performance of FAST with an Ultra-Wide Bandwidth Receiver at 500–3300 MHz

    2023-09-03 15:24:46ChuanPengZhangPengJiangMingZhuJunPanChengChengHongFeiLiuYanZhuChunSunandFASTCollaboration

    Chuan-Peng Zhang ,Peng Jiang ,Ming Zhu ,Jun Pan ,Cheng Cheng ,Hong-Fei Liu ,Yan Zhu,Chun Sun,and FAST Collaboration

    1 National Astronomical Observatories,Chinese Academy of Sciences,Beijing 100101,China;cpzhang@nao.cas.cn

    2 Guizhou Radio Astronomical Observatory,Guizhou University,Guiyang 550000,China

    3 College of Earth Sciences,Guilin University of Technology,Guilin 541004,China

    Abstract The Five-hundred-meter Aperture Spherical radio Telescope (FAST) has been running for several years.A new ultra-wide bandwidth (UWB) receiver,simultaneously covering 500–3300 MHz,has been mounted in the FAST feed cabin and has passed a series of observational tests.The whole UWB band is separated into four independent bands.Each band has 1,048,576 channels in total,resulting in a spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K,and the half-power beamwidth is around 7.6′–1.6′.The measured standard deviation of pointing accuracy is better than~7.9″when zenith angle is within 26.4°.The sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral observations,e.g.,H I and OH.The FAST UWB receiver has already demonstrated good performance in capturing sensitive observations for various scientific goals.

    Key words: instrumentation: detectors–telescopes–line: profiles

    1.Introduction

    The Five-hundred-meter Aperture Spherical radio Telescope (FAST),with an effective diameter of 300 m,has obtained many groundbreaking achievements,for example,in observations of pulsars,fast radio bursts,star formation and galaxy evolution (e.g.,Cheng et al.2020;Han et al.2021;Li et al.2021;Ching et al.2022;Niu et al.2022;Xu et al.2022),since construction was completed on 2016 September 25(Nan et al.2011;Jiang et al.2019,2020).Until now,the FAST has mainly worked at frequencies of 1000–1500 MHz with a 19-beam receiver.Recently,a new cryogenic ultra-wide bandwidth (UWB) receiver at 500–3300 MHz was developed by Liu et al.(2022) and mounted in the FAST feed cabin for scientific observations.The 19-beam receiver uses all three helium cryogenic compressors and occupies most of the space in the feed cabin,so there it not enough space to place any more cryogenic compressors for an UWB receiver.However,the FAST UWB receiver has now passed a series of tests and could carry out several kinds of spectral observations.

    At 500–3300 MHz,the FAST UWB receiver is able to simultaneously cover 330 radio combination lines for Hnα,Henα and Cnα (n=235–126),respectively.This could help us to investigate the active star-formation regions in the Milky Way (e.g.,Chen et al.2020;Zhang et al.2021;Hou et al.2022).Furthermore,the UWB receiver could simultaneously cover the hydrogen (H I at 1420.406 MHz) and hydroxyl radical (OH at 1612.231,1665.402,1667.359 and 1720.530 MHz) lines,and their high redshift signals withz?1.8.This gives us an opportunity to study star formation and evolution not only in the Milky way,but also in the nearby galaxies and especially to provide us with multiwavelength spectral data.In addition,the UWB receiver has been able to catch the methyladyne (CH) line at 3263.794 MHz.This would provide us with high spatial resolution data (~1.6′) for better inspections of our galaxy.Furthermore,the UWB receiver has a sufficient sensitivity and high spectral resolution (1 kHz).This allows us to study the kinematic properties of star formation in the Milky Way and the hyperfine structures of some spectral lines (e.g.,OH at~1665.402 MHz).

    Thanks to the advantageous characteristics of the FAST,we are able to complete a series of observational tests in a short time.In this report,we mainly present the performance of the FAST UWB receiver and relevant antenna parameters at 500–3300 MHz.General parameters of the FAST UWB receiver are listed in Table 1.In Section 2,we introduce the measurement parameters of the UWB receiver system including the noise dipole,beam properties,pointing accuracy,antenna gain,aperture efficiency,and system temperature.In Section 3,we present the properties of the spectral backend,and the measurement results in spectral H I and OH observations.A summary is presented in Section 4.

    Table 1General Parameters of the FAST with the UWB Receiver

    2.Measurement Parameters of the UWB Receiver

    2.1.The Noise Source

    Like the FAST 19-beam array,the UWB receiver also contains a stabilized noise injection system (Jiang et al.2020).The noise is injected between the feed and the low-noise amplifiers.The noise source is a single diode whose signal is split into each polarization.The noise diode has two adjustable power output modes with 1.5–2.0 K for low-power noise temperatures and 13.5–22.0 K for high-power noise temperatures.Based on the test results of a series of hot-load measurements,the noise diode is stable and meets the requirements of data calibration.The low-and high-power noise temperatures are shown in Figure 1 and listed in Table 2.The full noise diode data for UWB 500–3300 MHz can be downloaded online.

    Table 2Detailed Parameters of Noise Diode Temperature(Tcal),Antenna Gain,Aperture Efficiency(η),System Temperature(Tsys),and Half-power Beamwidth(HPBW)for the UWB Receiver

    Figure 1.The high-and low-power noise diode temperatures of the average of two polarizations XX and YY for the FAST UWB 500–3300 MHz measured on 2022 June 17.

    2.2.Beam Size

    To measure the beam properties of FAST UWB receiver,we directly make mapping observations toward a radio point source 3C286 on the sky on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″per second,and the scanning space is 12″.The mapping area is around 20′ × 20′,which is large enough for covering the whole beam structure at 500–3300 MHz.Figure 2 displays examples of observed and fitted beam structures at 800,1400,2000,and 2900 MHz.Table 2 lists all the measured half-power beamwidth (HPBWs) at 500–3300 MHz.Figure 3 shows the observed HPBWs and the theoretical HPBW=1.22 λ/Dwith an assumed telescope diameterD=300 m at 500–3300 MHz.We find that below~2400 MHz,the observed HPBW is smaller than the theoretical HPBW.This indicates that the telescope effective aperture is larger than 300 m below~2400 MHz.We notice that the measured UWB HPBWs are consistent with the FAST 19-beam receiver between 1000 and 1500 MHz.

    Figure 2.The beam structures at 800,1400,2000,and 2900 MHz measured by observing calibrator 3C286 on 2023 March 26.The used observation mode is OTF along the direction of the RA,and sampling time is 0.2 s,scanning velocity is 20″ per second and the scanning space is 12″.

    Figure 3.The HPBW distribution(blue dotted line)for UWB 500–3300 MHz measured by observing radio point source 3C286 within ZA of 26.4°on 2023 March 26.The red curve indicates the theoretical HPBW=1.22 λ/D with an assumed telescope diameter D=300 m.

    2.3.Pointing Accuracy

    In the FAST feed cabin,the UWB receiver has been placed at the phase center based on many pointing tests.According to antenna measurements,the UWB observations have the same pointing accuracy as the FAST 19-beam array.The measured standard deviation of pointing accuracy is better than~7.9″within zenith angle(ZA)of 26.4°(Jiang et al.2020).For example,the measured pointing error is~7.0″ when measuring the beam structures using the radio point source 3C286 on 2023 March 26.The pointing accuracy of~7.0″only takes around one twelfth of the HPBW (HPBW3300MHz≈ 1.6′) at the frequency of 3300 MHz for the FAST.Therefore,the pointing accuracy meets the requirements for current UWB receiver observations.

    2.4.Antenna Gain and Aperture Efficiency

    Figure 4 shows the antenna gain distribution within ZA of 26.4°for UWB 500–3300 MHz measured by observing a stable flux calibrator 3C286 on 2023 March 5.With absolute measurement of noise dipole,the UWB observed ON-OFF data could be calibrated to antenna temperature (Ta,3C286) in Kelvin.The flux density (in Jy) of 3C286 within UWB band could be fitted with a polynomial function (Perley &Butler 2017)

    Figure 4.The antenna gains within ZA of 26.4°for UWB 500–3300 MHz measured by observing flux calibrator 3C286 on 2023 March 5.Four separated UWB bands are indicated with different colors.

    whereS3C286and ν are the flux density in Jy and the frequency in GHz,respectively.Then the antenna gain could be estimated as

    The derived UWB gain at~1400 MHz is~12.0 K Jy-1,which is lower than that of the FAST 19-beam array (~16.0 K Jy-1),mainly because the UWB receiver is uncooled.Up to 3200 MHz,the UWB gain is~9.5 K Jy-1.This meets the requirement for CH observation at~3263.794 MHz.The full antenna gain parameters for UWB 500–3300 MHz can be download online and are partly listed in Table 2.

    As can be seen in Figure 4,the antenna gain becomes low at the high-frequency end,probably because the reflector precision or the reflection efficiency becomes low at such a high-frequency band.The wild fluctuation at the low-frequency end could have resulted from the serious radio frequency interference (RFI) pollution at 500–920 MHz.Generally,the variation of the monitored antenna gain is less than~10%from 2022 August to 2023 March.This indicates that the FAST UWB receiver is relatively stable,but it still needs long-term monitoring for better data calibration.

    Assuming that the aperture efficiency of the FAST is 300 m at 500–3300 MHz,the corresponding geometric illumination area produces a theoretical gain withG0=25.6 K Jy-1(Jiang et al.2020).The aperture efficiency η of the FAST UWB receiver can be estimated by η=Gain/G0.The maximum and minimum gains are,respectively,0.56 and 0.30 at 500–3300 MHz.All derived aperture efficiencies are listed in Table 2.

    2.5.System Temperature

    System temperature is a synthetic contribution from the noise of receiver (Trec),the continuum brightness temperature of the sky(Tsky),emission of the Earth's atmosphere(Tatm),and radiation of the surrounding terrain (Tscat) (Campbell 2002;Jiang et al.2020) as

    Figure 5 displays the system temperature (Tsys) within ZA of 26.4° for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.The raw data were converted to antenna temperature with the noise data in Figure 1.The data points,which are deviated from the main curve,result from strong RFI.The UWB system temperatures are 90–130 K for the band of 500–3300The high system temperature mostly arises from the uncooled UWB receiver,whose parameters are presented in Liu et al.(2022).The measured system temperature (Tsys) for UWB 500–3300 MHz are also listed in Table 2.Such high system temperatures require lengthy integration times for compensation.In the future,once there is enough space in the feed cabin,the UWB receiver will have a cryogenic low-noise front-end installed;then,a lower system noise temperature and a higher detection sensitivity could be achieved.

    Figure 5.The system temperature within ZA of 26.4°for UWB 500–3300 MHz measured by observing cold sky on 2023 March 5.Four separated UWB bands are indicated with different colors.

    3.Spectral-line Backend and Observations

    3.1.Backend

    At the backend,the whole UWB passband is separated into four subbands,0–1100 MHz,800–1900 MHz,1600–2700 MHz,and 2400–3500 MHz.Each subband has 1,048,576 channels,so the frequency resolution is~1049.04 Hz (or~1 kHz).Any two adjacent bands have some overlapping frequency ranges to compensate for the shortcomings of the analog filter.The effective frequency ranges are 500–1000 MHz,900–1800 MHz,1700–2600 MHz,and 2500–3400 MHz,but the recommended frequency ranges for science observations are 500–950 MHz for UWB-1,950–1750 MHz for UWB-2,1750–2550 MHz for UWB-3,and 2550–3300 MHz for UWB-4 (see details in Table 1).Combining the four subbands,the UWB could simultaneously and effectively cover the frequency ranging from 500 to 3300 MHz(see Figure 1).The observed data are recorded in the spectral-line backend using a dual linear polarization (XX and YY) mode.The sampling time is adjustable,e.g.,in 0.1 s,0.2 s,0.5 s,or 1.0 s.

    3.2.Observation Modes

    All the observation modes available in the FAST 19-beam array can be used in the UWB receiver,such as Drift,OnOff,OTF,and so on(see details in Jiang et al.2020).However,we have to remember that the UWB only has one receiver available for observation.The setup parameters for scanning velocity is also the same as those for the FAST 19-beam array.The maximum scanning velocity is 15″ and 30″ per second in direction of DEC and RA,respectively.

    3.3.Radio Frequency Interference

    In radio astronomy,RFI becomes more and more serious for radio observational facilities (Kesteven 2005;An et al.2017;Zeng et al.2021;Zhang et al.2022).RFI always influences the search and study of interesting astronomical objects.Figure 6 displays the whole bandwidth with one minute integration using UWB 500–3300 MHz.In many tests,we found that,in different sky directions,the RFI distribution at different frequencies is generally similar to that shown in Figure 6,but the intensities vary.Additionally,the low frequency bands(500–950 MHz)have more serious RFI pollution than the other high-frequency bands (Zhang et al.2020).All the emission lines are basically RFI,except for the H I line at 1420 MHz.The extremely strong and evident RFIs mainly come from communication satellites and navigation satellites (Wang et al.2021).Therefore,we must carefully avoid areas of strong RFI.

    Figure 6.The spectral bandpass and RFI distribution with one minute integration for UWB 500–3300 MHz measured by observing cold sky on 2022 November 23.The emission lines basically are RFI,except for the H I line at 1420 MHz.

    3.4.H I and OH lines

    Figure 7 shows Arp 220 (IC 4553) OH emission and H I absorption lines observed by the UWB receiver with 600 s ontime integration.Arp 220 is a well-known starburst galaxy with a redshift of 0.018 40(Baan et al.1982).The observed redshift frequencies of the OH and H I lines are,respectively,1637 and 1395 MHz,which are covered by the UWB-4 and UWB-2 bands,respectively.In 600 s integration,the measured spectral rms is around 15.27 mJy with an original channel space of 1.0 kHz.For the H I absorption line of Arp 220 (see the H I line in Figure 7),the measured flux density by the FAST UWB receiver is only~3% higher than the Arecibo 300 m observations (Mirabel 1982).In addition,for the OH emission line of Arp 220 with the rest frequency of 1665.402 MHz (see the right OH peak in Figure 7),the measured flux density by the UWB is also only~3% higher than the Arecibo 300 m observations(Baan et al.1982).However,for the OH emission line of Arp 220 at its rest frequency of 1667.359 MHz(see the left OH peak in Figure 7),the measured flux density by the UWB is~10% higher than the Arecibo 300 m observations(Baan et al.1982).This is probably because the OH flux density of Arp 220 at 1665.402 MHz is variable (Darling &Giovanelli 2002).Generally,our flux density and velocity measurements (OH and Hi lines) of Arp 220 are coincide well with Arecibo 300 m observations (Baan et al.1982;Mirabel 1982;Mirabel &Sanders 1988).This further suggests that the FAST UWB receiver already demonstrates good performance for spectral scientific observation at 500–3300 MHz.

    Figure 7.Arp 220 (IC 4553) OH emission and H I absorption lines simultaneously covered by the UWB-3 and UWB-2 bands,respectively.Arp 220 is a well-known starburst galaxy with redshift of 0.01840 (Baan et al.1982).For the FAST UWB observed lines,the integration time is 10 minutes,and they have been smoothed into a frequency resolution of 12.0 kHz,leading to an rms of 4.41 mJy.The dotted and dashed curves present the OH and H I lines observed by Arecibo 300 m from Baan et al.(1982)and Mirabel(1982),respectively.The integration time is 25 minutes for the Arecibo OH line,but for the Arecibo H I line there is no integration-time parameter recorded in Mirabel (1982).

    4.Summary

    The FAST has been running well since it began its commission when construction was completed on 2016 September 25.The 19-beam receiver covering 1.05–1.45 GHz is used for most of its scientific observations.However,highfrequency observations,e.g.,OH lines at rest frequencies of 1665 and 1667 MHz,are needed to study star formation in the Milky Way and nearby galaxies.The precision of the designed FAST reflector has met observational requirements at the high frequency of around 3000 MHz.

    A new uncooled UWB receiver,simultaneously covering 500–3300 MHz,was mounted in the FAST feed cabin in 2022 June,and has passed a series of observational tests.The whole UWB band has been separated into four independent bands,but the recommended frequency ranges for users are UWB-1 for 500–950 MHz,UWB-2 for 950–1750 MHz,UWB-3 for 1750–2550 MHz,and UWB-4 for 2550–3300 MHz.Each band has 1,048,576 channels in the total frequency range,resulting in an adequately high spectral resolution of 1 kHz.At 500–3300 MHz,the antenna gain is around 14.3–7.7 K Jy-1,the aperture efficiency is around 0.56–0.30,the system temperature is around 88–130 K and the HPBW is around 7.6′–1.5′.The measured antenna parameters above are listed in Table 2 for data reduction.The measured standard deviation of pointing accuracy is better than~7.9″,when ZA is within 26.4°.In addition,the sensitivity and stability of the UWB receiver are confirmed to satisfy expectations through spectral H I and OH observations.The measured Arp 220 (OH and H I lines) flux density and velocity coincide well with Arecibo 300 m observations.This further suggests that the FAST UWB receiver already demonstrates good performance in taking sensitive observations for various scientific goals at 500–3300 MHz.

    In the future,once there is enough space in the FAST feed cabin,the UWB receiver will have a cryogenic low-noise frontend,and then the performance of the UWB receiver will be significantly improved.For example,the system temperature would decrease~50 K and the antenna gain would increase~2.5 K Jy-1.That will help us to make more sensitive observations towards more various scientific goals than at present.

    Acknowledgments

    This work is supported by the National Key R&D Program of China No.2018YFE0202900.C.P.Z.acknowledges support by the West Light Foundation of the Chinese Academy of Sciences(CAS).C.C.and H.F.L.thank support by the National Natural Science Foundation of China Nos.11803044,11933003,12173045,and 12273072.This work is sponsored partly by the CAS South America Center for Astronomy(CASSACA)and the China Manned Space Project No.CMS-CSST-2021-A05.FAST is a Chinese national mega-science facility,operated by the National Astronomical Observatories of CAS (NAOC).We also wish to thank the anonymous referee for comments and suggestions that improved the clarity of the paper.

    亚洲国产精品久久男人天堂| 午夜福利视频1000在线观看| 国产日本99.免费观看| 日韩欧美国产在线观看| 亚洲国产日韩欧美精品在线观看 | 少妇被粗大的猛进出69影院| 小说图片视频综合网站| 男人的好看免费观看在线视频 | 久久久久精品国产欧美久久久| 久热爱精品视频在线9| 久久天躁狠狠躁夜夜2o2o| 国产在线观看jvid| 欧美成人免费av一区二区三区| 久久香蕉国产精品| 99国产精品一区二区三区| 国产高清视频在线观看网站| 亚洲18禁久久av| 亚洲人成网站高清观看| 91字幕亚洲| 亚洲欧美激情综合另类| 欧美精品亚洲一区二区| 久久精品影院6| 欧美黑人欧美精品刺激| av欧美777| 亚洲18禁久久av| 国产精品亚洲av一区麻豆| 亚洲精品美女久久久久99蜜臀| 久久伊人香网站| 亚洲国产日韩欧美精品在线观看 | 日本一本二区三区精品| 曰老女人黄片| 老熟妇仑乱视频hdxx| 久久久精品欧美日韩精品| 超碰成人久久| 中出人妻视频一区二区| 嫩草影视91久久| 亚洲国产精品合色在线| 精品久久久久久成人av| 18禁黄网站禁片午夜丰满| 99国产精品一区二区蜜桃av| 欧美 亚洲 国产 日韩一| 黄色a级毛片大全视频| 中文字幕精品亚洲无线码一区| 亚洲av熟女| 少妇熟女aⅴ在线视频| 日韩欧美一区二区三区在线观看| 亚洲第一电影网av| 国产精品 国内视频| 国产成人精品久久二区二区91| 舔av片在线| 日韩中文字幕欧美一区二区| 精品久久久久久成人av| 91麻豆精品激情在线观看国产| 国内少妇人妻偷人精品xxx网站 | 美女免费视频网站| 伊人久久大香线蕉亚洲五| 麻豆久久精品国产亚洲av| 精品国产超薄肉色丝袜足j| 亚洲精品一区av在线观看| 亚洲,欧美精品.| 最好的美女福利视频网| 久久久精品欧美日韩精品| 中亚洲国语对白在线视频| 亚洲人与动物交配视频| 国产精品永久免费网站| 天堂av国产一区二区熟女人妻 | 国产av又大| 久久久久久久久免费视频了| 超碰成人久久| 老司机靠b影院| 精华霜和精华液先用哪个| 天堂动漫精品| 国产成人精品久久二区二区91| 日韩欧美国产一区二区入口| 一个人免费在线观看的高清视频| 丝袜人妻中文字幕| www.www免费av| 免费在线观看亚洲国产| www.熟女人妻精品国产| 一级作爱视频免费观看| 香蕉国产在线看| 亚洲人成伊人成综合网2020| 国产高清videossex| 久久久国产成人精品二区| 久久热在线av| 亚洲自偷自拍图片 自拍| 99精品在免费线老司机午夜| 搞女人的毛片| 12—13女人毛片做爰片一| av天堂在线播放| 欧美又色又爽又黄视频| 中文资源天堂在线| 99精品在免费线老司机午夜| 日日摸夜夜添夜夜添小说| 高清毛片免费观看视频网站| 日韩免费av在线播放| 久久久久久免费高清国产稀缺| 亚洲精品av麻豆狂野| 老司机午夜福利在线观看视频| 色噜噜av男人的天堂激情| 免费一级毛片在线播放高清视频| 村上凉子中文字幕在线| 18禁美女被吸乳视频| 精品乱码久久久久久99久播| 亚洲精品久久成人aⅴ小说| 免费看a级黄色片| 老司机靠b影院| 亚洲真实伦在线观看| 亚洲熟妇中文字幕五十中出| 日韩大码丰满熟妇| 法律面前人人平等表现在哪些方面| 丁香六月欧美| 国产乱人伦免费视频| 国产区一区二久久| 婷婷六月久久综合丁香| 天天一区二区日本电影三级| 一边摸一边抽搐一进一小说| 久久欧美精品欧美久久欧美| 亚洲天堂国产精品一区在线| 国产高清激情床上av| 日本熟妇午夜| 91九色精品人成在线观看| 色综合婷婷激情| 又黄又爽又免费观看的视频| 色老头精品视频在线观看| 日本免费一区二区三区高清不卡| 神马国产精品三级电影在线观看 | 99riav亚洲国产免费| 97超级碰碰碰精品色视频在线观看| 国产成人av激情在线播放| 激情在线观看视频在线高清| 在线观看免费视频日本深夜| 日本免费一区二区三区高清不卡| 亚洲欧美精品综合一区二区三区| 亚洲性夜色夜夜综合| 丰满人妻一区二区三区视频av | 婷婷精品国产亚洲av在线| 亚洲精品久久国产高清桃花| 久久久久国产精品人妻aⅴ院| 国产精品九九99| 国产成+人综合+亚洲专区| 99国产精品99久久久久| 韩国av一区二区三区四区| 国产精品一区二区三区四区免费观看 | 给我免费播放毛片高清在线观看| 国产高清videossex| 9191精品国产免费久久| 一区二区三区高清视频在线| 国产私拍福利视频在线观看| av天堂在线播放| 一区二区三区高清视频在线| 国内精品一区二区在线观看| 蜜桃久久精品国产亚洲av| 婷婷精品国产亚洲av在线| 熟女电影av网| 亚洲成av人片在线播放无| 欧美激情久久久久久爽电影| 成人高潮视频无遮挡免费网站| 麻豆成人av在线观看| 成人高潮视频无遮挡免费网站| 两性午夜刺激爽爽歪歪视频在线观看 | 动漫黄色视频在线观看| 亚洲成av人片免费观看| 精品电影一区二区在线| 又紧又爽又黄一区二区| av福利片在线观看| 亚洲人成网站在线播放欧美日韩| 不卡一级毛片| 大型黄色视频在线免费观看| 99国产极品粉嫩在线观看| 99久久99久久久精品蜜桃| 国产精品香港三级国产av潘金莲| 制服丝袜大香蕉在线| 少妇裸体淫交视频免费看高清 | 小说图片视频综合网站| 日日爽夜夜爽网站| 欧美中文综合在线视频| 99久久综合精品五月天人人| 欧美极品一区二区三区四区| x7x7x7水蜜桃| 1024手机看黄色片| 日韩大码丰满熟妇| www.999成人在线观看| 男人舔奶头视频| 国产高清视频在线播放一区| 在线观看66精品国产| 国产乱人伦免费视频| 啦啦啦观看免费观看视频高清| 国产97色在线日韩免费| 国产欧美日韩精品亚洲av| 精华霜和精华液先用哪个| 亚洲成人久久性| 国产精品一区二区精品视频观看| 午夜日韩欧美国产| 天堂av国产一区二区熟女人妻 | 国产精品日韩av在线免费观看| 国产99白浆流出| 日日摸夜夜添夜夜添小说| 淫妇啪啪啪对白视频| 欧洲精品卡2卡3卡4卡5卡区| 精品熟女少妇八av免费久了| 亚洲成人中文字幕在线播放| 每晚都被弄得嗷嗷叫到高潮| 久久国产精品影院| 国产乱人伦免费视频| 成人永久免费在线观看视频| 精品久久久久久久久久免费视频| 欧美日韩亚洲国产一区二区在线观看| 日韩有码中文字幕| 国产精品av久久久久免费| 国产三级在线视频| 久久久久久九九精品二区国产 | 亚洲av成人精品一区久久| 99精品久久久久人妻精品| 亚洲一码二码三码区别大吗| 19禁男女啪啪无遮挡网站| 老汉色av国产亚洲站长工具| 丝袜美腿诱惑在线| 18禁裸乳无遮挡免费网站照片| 久99久视频精品免费| 婷婷丁香在线五月| 欧美性长视频在线观看| 亚洲美女黄片视频| 一边摸一边抽搐一进一小说| 国产在线精品亚洲第一网站| 村上凉子中文字幕在线| 人成视频在线观看免费观看| 日本免费a在线| 欧美成人一区二区免费高清观看 | 99久久综合精品五月天人人| 搡老熟女国产l中国老女人| 国产精品国产高清国产av| 丝袜美腿诱惑在线| 国产欧美日韩精品亚洲av| 婷婷精品国产亚洲av在线| 欧美大码av| 12—13女人毛片做爰片一| 午夜日韩欧美国产| 日韩有码中文字幕| 国产熟女午夜一区二区三区| 亚洲成av人片免费观看| 久久久久久久久久黄片| 久久中文字幕一级| 日日干狠狠操夜夜爽| 色综合亚洲欧美另类图片| 波多野结衣高清作品| 午夜福利免费观看在线| 日韩高清综合在线| 欧美日韩一级在线毛片| 国产97色在线日韩免费| 午夜福利成人在线免费观看| 欧美日韩亚洲国产一区二区在线观看| 99国产精品99久久久久| 在线观看www视频免费| 国产精品,欧美在线| 黄色视频,在线免费观看| 久久久久精品国产欧美久久久| 波多野结衣高清无吗| 母亲3免费完整高清在线观看| 精品久久久久久久久久久久久| 国产亚洲精品综合一区在线观看 | 国内揄拍国产精品人妻在线| 久久精品影院6| 少妇人妻一区二区三区视频| 国产高清激情床上av| 一a级毛片在线观看| 国产精品香港三级国产av潘金莲| 搡老岳熟女国产| 动漫黄色视频在线观看| 波多野结衣巨乳人妻| 国产成人精品久久二区二区免费| 国产免费男女视频| 国产精品免费视频内射| 精华霜和精华液先用哪个| a级毛片a级免费在线| 人成视频在线观看免费观看| 淫秽高清视频在线观看| 精品国产美女av久久久久小说| 天堂动漫精品| 在线观看免费日韩欧美大片| 久久久久性生活片| 亚洲欧美精品综合久久99| 黑人操中国人逼视频| 欧美午夜高清在线| 在线看三级毛片| 国产午夜福利久久久久久| 女生性感内裤真人,穿戴方法视频| 精品欧美国产一区二区三| 手机成人av网站| 欧美午夜高清在线| 亚洲欧美精品综合久久99| 777久久人妻少妇嫩草av网站| 成在线人永久免费视频| 亚洲男人的天堂狠狠| 亚洲精品一区av在线观看| 久久天躁狠狠躁夜夜2o2o| 校园春色视频在线观看| 午夜免费成人在线视频| 久久精品成人免费网站| 国内精品一区二区在线观看| 视频区欧美日本亚洲| 久久久久久久久免费视频了| 2021天堂中文幕一二区在线观| 久久久精品欧美日韩精品| 观看免费一级毛片| 日韩欧美国产一区二区入口| 亚洲av熟女| 人人妻人人看人人澡| 国内少妇人妻偷人精品xxx网站 | 亚洲五月婷婷丁香| 日韩欧美国产在线观看| 男人舔奶头视频| 最近最新免费中文字幕在线| 黄色丝袜av网址大全| 曰老女人黄片| 久久久久久国产a免费观看| 18禁黄网站禁片午夜丰满| 亚洲电影在线观看av| 午夜a级毛片| 欧美丝袜亚洲另类 | 麻豆av在线久日| a在线观看视频网站| 麻豆一二三区av精品| 色综合亚洲欧美另类图片| 成人av在线播放网站| 一区二区三区激情视频| 久久精品91无色码中文字幕| 特级一级黄色大片| 国产一区二区激情短视频| 非洲黑人性xxxx精品又粗又长| 精品福利观看| 一个人免费在线观看电影 | 午夜免费成人在线视频| 亚洲精品粉嫩美女一区| 成人国语在线视频| 亚洲专区字幕在线| 男女做爰动态图高潮gif福利片| 一本综合久久免费| 亚洲美女黄片视频| 国产真实乱freesex| 精品国产超薄肉色丝袜足j| 欧美日韩亚洲综合一区二区三区_| 色综合欧美亚洲国产小说| 黄色成人免费大全| 19禁男女啪啪无遮挡网站| 亚洲一区高清亚洲精品| 亚洲va日本ⅴa欧美va伊人久久| 日本 av在线| 精品欧美国产一区二区三| 亚洲国产欧美网| 国产主播在线观看一区二区| 午夜精品久久久久久毛片777| 中文资源天堂在线| 亚洲成人国产一区在线观看| 国产成人av教育| 老熟妇乱子伦视频在线观看| 一进一出好大好爽视频| 日本三级黄在线观看| 国产爱豆传媒在线观看 | 在线观看免费视频日本深夜| 亚洲中文av在线| 可以在线观看毛片的网站| 亚洲欧美日韩无卡精品| 成人国语在线视频| 午夜福利18| 一进一出好大好爽视频| 久久久久精品国产欧美久久久| 啦啦啦免费观看视频1| 高清毛片免费观看视频网站| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 亚洲人成网站高清观看| 久久天堂一区二区三区四区| 一卡2卡三卡四卡精品乱码亚洲| 丁香欧美五月| 老司机午夜福利在线观看视频| 国产高清视频在线播放一区| 一级a爱片免费观看的视频| 99精品久久久久人妻精品| 亚洲色图av天堂| 亚洲精品美女久久av网站| 啦啦啦观看免费观看视频高清| www.999成人在线观看| 国产精品美女特级片免费视频播放器 | 午夜老司机福利片| 亚洲午夜精品一区,二区,三区| av视频在线观看入口| 少妇熟女aⅴ在线视频| 深夜精品福利| 免费观看精品视频网站| 波多野结衣高清作品| 很黄的视频免费| 国产男靠女视频免费网站| 一本久久中文字幕| 又黄又粗又硬又大视频| 露出奶头的视频| 亚洲成av人片在线播放无| 欧美一区二区精品小视频在线| 99精品久久久久人妻精品| 久久久久久人人人人人| 免费看美女性在线毛片视频| 国产精品野战在线观看| 午夜免费观看网址| 首页视频小说图片口味搜索| 巨乳人妻的诱惑在线观看| 成人三级做爰电影| 老汉色∧v一级毛片| 高清毛片免费观看视频网站| 精品高清国产在线一区| 中文字幕熟女人妻在线| 淫妇啪啪啪对白视频| 五月伊人婷婷丁香| 亚洲男人的天堂狠狠| 国产蜜桃级精品一区二区三区| 中文在线观看免费www的网站 | 十八禁人妻一区二区| 国产精品久久久久久久电影 | 亚洲va日本ⅴa欧美va伊人久久| 日日干狠狠操夜夜爽| 亚洲国产精品久久男人天堂| 久久天堂一区二区三区四区| 色综合欧美亚洲国产小说| 亚洲片人在线观看| 中文字幕最新亚洲高清| 久久婷婷成人综合色麻豆| 禁无遮挡网站| 精品福利观看| 最近视频中文字幕2019在线8| 久久香蕉激情| 国内少妇人妻偷人精品xxx网站 | 午夜亚洲福利在线播放| 老司机在亚洲福利影院| 91国产中文字幕| 老汉色∧v一级毛片| 亚洲成人久久爱视频| 婷婷精品国产亚洲av在线| 老司机午夜十八禁免费视频| 国产在线观看jvid| 精品久久久久久久久久久久久| 免费在线观看完整版高清| 日日夜夜操网爽| 黄色视频,在线免费观看| 欧美精品啪啪一区二区三区| 18禁裸乳无遮挡免费网站照片| 色哟哟哟哟哟哟| 久久这里只有精品19| 成人三级黄色视频| 亚洲欧洲精品一区二区精品久久久| 午夜免费观看网址| 成人一区二区视频在线观看| 天天添夜夜摸| 老熟妇乱子伦视频在线观看| 国产精华一区二区三区| 少妇粗大呻吟视频| 又大又爽又粗| 波多野结衣巨乳人妻| 亚洲精品久久成人aⅴ小说| 丰满人妻熟妇乱又伦精品不卡| 亚洲男人天堂网一区| 中文在线观看免费www的网站 | 小说图片视频综合网站| 国产欧美日韩一区二区三| 欧美久久黑人一区二区| 五月玫瑰六月丁香| 久久久久精品国产欧美久久久| 日本精品一区二区三区蜜桃| 久久人妻av系列| 黄色女人牲交| 日本三级黄在线观看| 一级a爱片免费观看的视频| 国产精品亚洲美女久久久| 黄片小视频在线播放| 级片在线观看| 国产在线观看jvid| 中文在线观看免费www的网站 | 禁无遮挡网站| 一区二区三区激情视频| 久久这里只有精品19| 亚洲 国产 在线| 久久天躁狠狠躁夜夜2o2o| 久久婷婷成人综合色麻豆| 欧美人与性动交α欧美精品济南到| 99国产极品粉嫩在线观看| 很黄的视频免费| 成人av一区二区三区在线看| 国产视频内射| 精品久久久久久,| 欧美国产日韩亚洲一区| 19禁男女啪啪无遮挡网站| 一本大道久久a久久精品| 我要搜黄色片| 一二三四在线观看免费中文在| 99久久无色码亚洲精品果冻| 国产精品免费视频内射| 午夜精品久久久久久毛片777| 欧美又色又爽又黄视频| 美女 人体艺术 gogo| 国产在线观看jvid| 欧美3d第一页| 97人妻精品一区二区三区麻豆| 国产精品 欧美亚洲| 国产av不卡久久| 国产免费男女视频| 国产精品av久久久久免费| 搡老熟女国产l中国老女人| 女生性感内裤真人,穿戴方法视频| 男男h啪啪无遮挡| 欧美日韩乱码在线| 午夜久久久久精精品| 他把我摸到了高潮在线观看| 在线看三级毛片| 国产高清激情床上av| www.精华液| 久久久水蜜桃国产精品网| 国产激情欧美一区二区| 岛国在线免费视频观看| 日韩精品中文字幕看吧| 最近在线观看免费完整版| 久久久久久九九精品二区国产 | 国内精品一区二区在线观看| 欧美zozozo另类| 久久婷婷成人综合色麻豆| 国内精品久久久久久久电影| 他把我摸到了高潮在线观看| 亚洲av成人精品一区久久| 久久中文字幕一级| 精品不卡国产一区二区三区| 国产成人aa在线观看| 在线观看一区二区三区| 国产人伦9x9x在线观看| 成在线人永久免费视频| 国产伦一二天堂av在线观看| 高清毛片免费观看视频网站| 日本五十路高清| 午夜久久久久精精品| 久久久水蜜桃国产精品网| 岛国在线观看网站| 亚洲一卡2卡3卡4卡5卡精品中文| 欧美在线黄色| 午夜精品一区二区三区免费看| 亚洲av成人av| 欧美精品啪啪一区二区三区| 最近视频中文字幕2019在线8| 一级黄色大片毛片| 国产精品久久久久久人妻精品电影| 日韩中文字幕欧美一区二区| 很黄的视频免费| 国产欧美日韩一区二区三| 波多野结衣巨乳人妻| 香蕉丝袜av| 久久久久久免费高清国产稀缺| 99久久国产精品久久久| av在线播放免费不卡| 欧美大码av| 最近视频中文字幕2019在线8| 国产精品乱码一区二三区的特点| 男女之事视频高清在线观看| 三级国产精品欧美在线观看 | 给我免费播放毛片高清在线观看| 国产av在哪里看| 亚洲国产精品久久男人天堂| 中文字幕熟女人妻在线| www日本在线高清视频| 香蕉国产在线看| 欧美+亚洲+日韩+国产| 久久久久精品国产欧美久久久| 久久香蕉国产精品| 欧美日韩精品网址| 欧美成狂野欧美在线观看| 一级a爱片免费观看的视频| 亚洲一区高清亚洲精品| 天堂动漫精品| 人人妻人人看人人澡| 日韩高清综合在线| 999久久久精品免费观看国产| 国产v大片淫在线免费观看| 午夜福利欧美成人| 麻豆一二三区av精品| 一个人免费在线观看电影 | 国产午夜福利久久久久久| 久99久视频精品免费| 黄色女人牲交| 人妻丰满熟妇av一区二区三区| 欧美在线一区亚洲| 久热爱精品视频在线9| 夜夜夜夜夜久久久久| 国产99白浆流出| 亚洲avbb在线观看| 亚洲男人天堂网一区| 欧美精品啪啪一区二区三区| 91成年电影在线观看| 欧美成人午夜精品| 99在线视频只有这里精品首页| av欧美777| 91大片在线观看| 亚洲欧美一区二区三区黑人| 日本成人三级电影网站| 国产成人欧美在线观看| 色综合亚洲欧美另类图片| 国产伦在线观看视频一区| 一级片免费观看大全| 精品人妻1区二区| 成人亚洲精品av一区二区| 91成年电影在线观看| 久久精品91蜜桃| 欧美极品一区二区三区四区| 女生性感内裤真人,穿戴方法视频| 亚洲色图av天堂| 国产日本99.免费观看| 亚洲精品美女久久久久99蜜臀| 国语自产精品视频在线第100页| x7x7x7水蜜桃| 日本精品一区二区三区蜜桃| 白带黄色成豆腐渣| 欧美国产日韩亚洲一区|