• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Elliptic Problems in Curved Domains Using Cubature Points Based Triangular Spectral Elements and Isoparametric Mappings

    2020-11-24 06:24:56RichardPasquetti
    Journal of Mathematical Study 2020年3期

    Richard Pasquetti

    Lab.J.A.Dieudonn′e,Universit′e C?te d’Azur,CNRS,Inria,F-06108 Nice,France.

    Abstract.Using the cubature points based triangular spectral element method and isoparametric mappings, we provide accuracy results for elliptic problems in non polygonal domains.Two regimes of convergence,associated to the bulk and to the boundary of the computational domain are clearly discerned and an efficient way to define the isoparametric mapping is proposed.

    Key words:Spectral element method,triangular elements,curved domains,isoparametric mappings,cubature points,diagonal mass matrix.

    1 Introduction

    The present paper extends the study presented in[14],concerned with high order Finite Element Methods(FEMs)in non polygonal domains, in order(i)to provide a deeper analysis of the accuracy results and also(ii)to propose a way to improve them.More precisely,in[14]it was pointed out that when isoparametric mappings are used to approximate a curved boundary,then the convergence of the approximate solution to the exact one,with respect to the polynomial degree,shows two regimes,the first one being associated to the bulk of the domain and the other being controlled by the boundary part.Here we want to clarify this point.Moreover,even if focusing on a particular type of isoparametric mapping,a curved boundary can be approximated in many different ways.This paper provides a way to define the mapping that yields better accuracy results than the way used in[14].

    As in[14],the study is restricted to isoparametric mappings,i.e.,we do not consider different treatments of curved domains like those involved with trans finite mappings,with the Isogeometric FEM or with the Nurbs Enhanced FEM,see[15]and references herein.Despite the fact that isoparametric mappings show some failures,especially in general an approximate description of the boundary,they indeed remain simple to implement and moreover preserve some important properties of Spectral Element Methods(SEMs),like the diagonal feature of the mass matrix.Moreover,from results first presented in[12],where different isoparametric mappings are compared,we restrict ourselves to isoparametric mappings based on the resolution of Partial Differential Equations(PDEs),namely the Laplace equation(harmonic extension)or the equation of linear elasticity.

    With respect to some other high order FEMs developed for triangular elements,e.g.,the Fekete-Gauss triangular spectral element method(TSEM)[11],the Fekete(resp.Gauss)points of the triangle being used as interpolation(resp.quadrature)points,as in[14]here we use the “CubatureTSEM”,i.e.,only based on the so-called cubature points,see[2,4,7,10].Because with the CubatureTSEM the interpolation and quadrature points coincide,the mass matrix is diagonal,so that this interesting property of the usual SEM is recovered.Indeed,in quadrangles the usual SEM makes use of the tensorial product of Gauss-Lobatto-Legendre(GLL)points both for interpolations and quadratures.This may be useful,e.g.,to address evolution problems with explicit time schemes or to easily define high order differentiation operators[9].Indeed,in both cases the required inversion of the mass matrix can be trivially achieved.

    High order FEMs are generally based on a polynomial approximation of total degreeNin each triangular element,the number of degrees of freedom being then equal to(N+1)(N+2)/2.However,it is known that in the frame of Lagrangian methods one cannot find a single set ofn=(N+1)(N+2)/2 points,with 3Npoints on the triangle boundary and(N-1)(N-2)/2 inside,such that an enough powerful quadrature rule exists[5,16].To overcome this difficulty,as first suggested in[2]one should enrich the spaceof the polynomials of total degreeNdefined on the reference triangle(master element),with bubble functions of degreeN′>N,i.e.,to make use of the space PNUbPN′-3wherebis the unique bubble function of P3().This allows to increase the number of inner points up to(N′-1)(N′-2)/2 while keeping equal to 3Nthe number of boundary points.Up to now,satisfactory results have been obtained withN′=N+1 for 1<N<5,N′=N+2 forN=5 andN′=N+3 for 5<N<9[7].Such values ofN′are those obtained when requiring that the integrals of polynomials of degreeN+N′-2 are exactly computed,from a theoretical result that traces back to the 70’s[1],but they could be decreased from the less demanding criterion recently proposed in[3].

    Note that when using the so-called “condensation technique”,one first computes the solution at the nodes located at the sides of the triangular elements and then locally its inner point values.As a result,the size of the algebraic system increases linearly withN,rather than inN2.Moreover,the system only shows aO(N)condition number and usingN′>Nyields a negligible increase of the computational cost.Although using the CubatureTSEM,with implementation of the condensation technique,the results of the present study are not specific to this approach.

    Finally,it should be mentioned that although the present study focuses on the two dimensional(2D)case,similar behaviors should be expected in the 3D one.

    2 Numerical evidence of the two regimes of spectral convergence

    We consider the elliptic equation-Δu+u=fin the star domain introduced in[14].In thexyplane,this domain,say Ω,has its boundary Γ parameterized by the polar angleθ,such that:

    A P1mesh of this star domain is shown in Figure 1.One notices that domain Ω is especially interesting as curved domain to carry out an accuracy study,since it shows both concave and convex parts and moreover cannot be exactly approximated by polynomials.In Ω,we consider exact solutions of the formuex=cos(ax)cos(ay),whereais a parameter that allows to control the oscillatory behavior of the solution.The source termfas well of the boundary conditions,say of Dirichletu|Γ=gor of Robin type(?nu+u)|Γ=g,are defined accordingly.Note that the implementation of Robin as well as non homogeneous Neumann conditions is not straightforward when using the CubatureTSEM.Indeed,at the edges of the elements the cubature points do not coincide with Gauss points,so that a different set of points,e.g.,the GLL points,should be used to compute the boundary integrals,see[13,14]for details.

    Figure 1:P1-mesh of the star shaped computational domain.

    Figure 2:For a∈{5,10,20},max norm of the error versus the polynomial degree,when using the harmonic extension isoparametric mapping and for the polygonal domain,with Dirichlet(left)and Robin conditions(right).

    Figure 2 shows the max norm of the error versus the polynomial approximation degree for three different values of the coefficienta,i.e.a∈{5,10,20}.In Figure 2(left)the results obtained(i)with the harmonic extension and(ii)if assuming polygonal the computational domain are compared.The polygonal domain,say Ω1of boundary Γ1,is simply defined by the P1mesh,so that no isoparametric mapping is involved.Critical values of the polynomial degree are clearly pointed out.Foragiven,below these values the convergence curves coincide,meaning that the error is associated to the bulk of the domain,whereas beyond them the influence of the isoparametric mapping is clearly pointed out.One observes that the decrease of the error remains exponential but with a smaller convergence rate.Moreover,more oscillatory is the solution greater is the critical polynomial degree,sayN=3(a=5),N=5(a=10)andN≥8(a=20).Indeed,a smooth exact solution can be easily captured,so that the criticalNis low.Beyond it,the convergence rate is controlled by the boundary fitting.

    The influence of the boundary condition is shown in Figure 2(right),where a Robin condition is used.The analysis carried out for the Dirichlet case keeps true but the errors are greater,since additional sources of error are present,e.g.,the approximation of the normal to the boundary.

    Figure 3:For a∈{5,10,20},max norm of the error versus the polynomial degree,when using the harmonic extension and the linear elasticity isoparametric mappings with Dirichlet(left)and Robin conditions(right).

    The present results are not specific to the harmonic extension mapping.Thus,Figure 3 points out that the results obtained with the harmonic extension and with the linear elasticity mappings compare well,both in the Dirichlet and Robin cases.Recall however that,differently to the linear elasticity mapping,in some extreme cases the harmonic extension may fail to define an isoparametric mapping[8].

    3 A better choice to define the isoparametric mapping

    Let us now investigate a way to improve the accuracy results.For a given type of isoparametric mapping,e.g.,the harmonic extension,to fully define the mapping one has first to define the boundary nodes of the curved edges.An implicit definition of the isoparametric mapping is thus obtained.In[12,14],for a given curved triangular element the boundary nodes on the curved edge are chosen at the intersections of the lines that join the opposite vertex and the nodes obtained from the linear P1mesh,see Figure 4(left).This is relevant when transfinite mappings are involved,especially the bending procedure that we introduced in[6],but is less justified when PDEs based isoparametric mappings are chosen.Indeed,the approximation of the curved boundary at one edge of the element has not to depend on the localization of the vertex opposite to this edge.Following what is generally done for quadratic element,one may define the nodes of the curved boundary by stating that their orthogonal projections onto the sustaining straight edge coincide with the nodes that result from the linear P1-mappping,see Figure 4(right).

    Figure 4:Definition of the boundary nodes by the opposite vertex(at left)and by orthogonal projection(at right).

    Using the harmonic extension,let us revisit the elliptic problems previously introduced,again witha={5,10,20}in the exact solution.The improvement obtained when defining the boundary nodes by orthogonal projection is shown in Figure 5,for the Dirichlet(at left)and Robin(at right)problems.For the most oscillating exact solution,the curves coincide in the Dirichlet case and only slightly differ for the Robin one.This is however untrue for the less oscillating solutions,i.e.,when for largeNthe error is controlled by the boundary region.

    Figure 5:For a∈{5,10,20}and when using the harmonic extension,max norm of the error with the boundary nodes defined by the opposite vertex(label V)and by projection(label P),for the Dirichlet problems(at left)and for the Robin problems(at right).

    For a given elementTwith one edge on the boundary,let us denote byandthe images of,in the reference element,obtained with the PNand P1mappings,respectively.Then,withone has:

    Introduce now the outwards unit vectororthogonal to the edge to be curved and the outwards unit vectorsparallel to the.Then,with

    Defining the boundary nodes by projection means choosingfor anyj.Then,in the local coordinates system associated to the edge,the deformation amplitudedis just a polynomial of degreeN.Thus,forN=2 one obtains a symmetric arc of parabola.

    4 Detailed analysis of the accuracy results

    Let us introduce the computational domain Ω2obtained by substituting to the edges at the boundary symmetric arcs of parabola.As explained previously,see Section 3,if we define the boundary nodes by projection,then the boundary Γ2of Ω2is perfectly described.Using Ω2as computational domain should indicate if the loss of accuracy,with respect to polygonal domains,comes from the boundary of the domain.

    Figure 6:Top panel:Cubature nodes for the the domain Ω(label PN),as obtained with the harmonic extension(the boundary nodes being defined by projection).Comparison to those associated the polygonal domain Ω1(label P1).Central panel:Cubature nodes for the domains Ω (label PN)and Ω2(label P2-PN),as obtained with the PNmapping associated to the harmonic extension.For the domain Ω2,the curved boundary is just a symmetric arc of parabola.Bottom panel:Cubature nodes obtained for the domain Ω2with the P2-subparametric mapping(label P2)and with the PNmapping(label P2-PN).Inside the element the nodes differ but they coincide at the element boundary.

    Moreover,for this very specific domain one can also make use of the P2-mapping usually used for quadratic finite elements.Thus,if we assume that the elementA1A2A3has its edgeA2A3on the boundary,then the P2-mapping is simply defined bywherehis the distance of the parabola summit to the straight edge and(λ1,λ2,λ3)the usual barycentric coordinates.If using the former strategy and,e.g.,the harmonic extension,the Jacobian determinant is a polynomial of degree 2N-2,whereas for the latter one it is of degree 2,independently ofN.This should indicate if the source of inaccuracy comes from a non satisfactory quadrature in the curved triangles.For a specific element,we show in Figure 6 the various distributions of nodes that can be obtained.

    Using the exact solution and parametrization introduced in Section 2,the convergence curves obtained with the harmonic extension and the P2-mapping are given in Figure 7,for the Dirichlet(at left)and Robin(at right)problems.The results obtained for the domain Ω and for the polygonal domain Ω1are also presented.Clearly,for the Dirichlet problem using the P2-subparametric mapping allows to recover an optimal accuracy,at least tillN=7.In the Dirichlet case the loss of accuracy with respect to the polygonal domain Ω1is thus linked to the surface integrals inside the curved elements.For the Robin problem,that additionally involves boundary integrals,the result is different since one clearly observes an influence of the boundary region both for the P2and PNmappings.Moreover,the curves obtained with the two mappings nearly coincide.Indeed,for the piece-wise parabolic domain Ω2the numerical quadratures involved with the P2and PNmappings are exactly the same.In the Robin case,the loss of accuracy is thus governed by the evaluations of the integrals at the edges.Moreover,we have checked that this also holds(i)in the Neumann case and(ii)for the Poisson equation.

    One may then think to enhance the accuracy of the computations of the boundary integrals.It can be done simply by increasing the number quadrature points,since,as explained in[13],to compute the boundary integrals we make use of Gauss points rather than the cubature points located on the edges.We have checked this approach,using 2N+1 rather thanN+1 GLL points,without finding any improvement.Indeed,the failure comes from the polynomial approximation of the kernel of the integral,but this approximation remains associated to the cubature points.

    To summarize,in the Dirichlet case it is required(i)to exactly describe the geometry(like e.g.done with the isogeometric FEM)and additionally(ii)to make use of a subparametric mapping to recover an optimal accuracy,i.e.,to recover the exponential convergence rate obtained with the polygonal domain Ω1,but this remains insufficient in the Robin case.This lack of convergence is due to the point-wise evaluation of the side Jacobian which is not polynomial,except in the particular case where it is constant(polygonal domain),so that even for the piece-wise parabolic domain Ω2the convergence rate remains suboptimal.Thus,withN>1 one can compute the surface of the domain Ω2up to the machine accuracy,but not its perimeter,see Tab.1.

    Finally,for both the Dirichlet and Robin problems one observes that the curves labeledPN and P2-PN(obtained for the domains Ω and Ω2,respectively)are close to be parallel,meaning that when describing exactly the geometry the accuracy is improved but not the convergence rate.

    Table 1:Relative error in the computation of the surface of Ω2and of its perimeter when using the harmonic extension.Similar results are obtained with the P2-mapping.

    Figure 7:Computational domain Ω2,a=5 in the exact solution;Max norm of the error when using the harmonic extension(label P2-PN)and with the P2-subparametric mapping(label P2)for the Dirichlet problem(at left)and for the Robin problem(at right).The results obtained for the domain Ω(label PN)and for the polygonal domain Ω1(label polygon)are also presented.

    Acknowledgments

    The P1FEM mesh has been generated with the free software “Triangle”.We are grateful to Dr.Youshan Liu,Chinese Academy of Sciences,Beijing,for transmitting us the cubature points and weights used in[7].

    在线看a的网站| 日韩免费高清中文字幕av| 精品亚洲成a人片在线观看| 免费人妻精品一区二区三区视频| 国产av一区二区精品久久| a级毛片黄视频| 99热网站在线观看| 最近中文字幕2019免费版| 男女下面插进去视频免费观看| 一本久久精品| 99热国产这里只有精品6| 看非洲黑人一级黄片| 久久精品国产a三级三级三级| 美女福利国产在线| 亚洲av福利一区| 1024视频免费在线观看| 老汉色∧v一级毛片| 久久97久久精品| 亚洲av福利一区| 中文欧美无线码| 亚洲精品美女久久久久99蜜臀 | 亚洲精品中文字幕在线视频| 国产人伦9x9x在线观看| 亚洲色图 男人天堂 中文字幕| 亚洲精品美女久久av网站| 亚洲av成人不卡在线观看播放网 | 久久ye,这里只有精品| 欧美xxⅹ黑人| tube8黄色片| 日韩一区二区三区影片| 亚洲精品久久午夜乱码| 国产精品亚洲av一区麻豆 | 亚洲国产欧美日韩在线播放| 丝袜在线中文字幕| 欧美成人午夜精品| 在线观看www视频免费| 欧美精品亚洲一区二区| 老司机在亚洲福利影院| av女优亚洲男人天堂| 老司机影院成人| av女优亚洲男人天堂| 久热爱精品视频在线9| 夜夜骑夜夜射夜夜干| 国产亚洲最大av| 又大又黄又爽视频免费| 纵有疾风起免费观看全集完整版| 久久精品熟女亚洲av麻豆精品| 亚洲欧美精品综合一区二区三区| 精品一区二区三区av网在线观看 | 美女高潮到喷水免费观看| 久久久久久久大尺度免费视频| 国语对白做爰xxxⅹ性视频网站| 美女扒开内裤让男人捅视频| 视频在线观看一区二区三区| 大香蕉久久网| 日韩精品免费视频一区二区三区| 日韩制服丝袜自拍偷拍| 亚洲熟女毛片儿| 亚洲精品日本国产第一区| 亚洲欧洲精品一区二区精品久久久 | 久久精品久久精品一区二区三区| 国产男人的电影天堂91| 观看av在线不卡| 伊人亚洲综合成人网| 欧美激情极品国产一区二区三区| 国产色婷婷99| 丰满饥渴人妻一区二区三| netflix在线观看网站| 久久久精品94久久精品| 精品国产一区二区久久| 一级,二级,三级黄色视频| 男女之事视频高清在线观看 | 欧美日韩亚洲高清精品| 一区二区三区乱码不卡18| 久久这里只有精品19| 国产亚洲av片在线观看秒播厂| 最近的中文字幕免费完整| 9热在线视频观看99| 一本久久精品| 大片电影免费在线观看免费| 日韩精品有码人妻一区| 在线天堂最新版资源| 久久鲁丝午夜福利片| 国产精品香港三级国产av潘金莲 | 久久久欧美国产精品| 久久久久久人妻| 欧美成人午夜精品| 人妻人人澡人人爽人人| 国产亚洲最大av| 亚洲国产中文字幕在线视频| 亚洲精品乱久久久久久| 汤姆久久久久久久影院中文字幕| 久久av网站| 精品人妻在线不人妻| 欧美黑人精品巨大| 免费看不卡的av| 日韩熟女老妇一区二区性免费视频| 高清黄色对白视频在线免费看| 国产精品偷伦视频观看了| 精品国产乱码久久久久久小说| 99热网站在线观看| 久久影院123| 精品久久久精品久久久| 97精品久久久久久久久久精品| 大码成人一级视频| h视频一区二区三区| 丝袜喷水一区| 国产精品久久久久久久久免| 黄片播放在线免费| 少妇人妻 视频| 69精品国产乱码久久久| 日韩av在线免费看完整版不卡| 免费观看人在逋| 国产在线免费精品| 亚洲,欧美,日韩| 国产野战对白在线观看| 青春草国产在线视频| 黄色视频在线播放观看不卡| 欧美国产精品一级二级三级| 国产极品粉嫩免费观看在线| 国产精品 国内视频| 大陆偷拍与自拍| 午夜免费男女啪啪视频观看| 亚洲国产欧美日韩在线播放| 久久人人爽人人片av| 美女国产高潮福利片在线看| 丝袜美足系列| 亚洲av电影在线观看一区二区三区| 一边亲一边摸免费视频| 中文精品一卡2卡3卡4更新| 亚洲精品乱久久久久久| 亚洲av成人精品一二三区| 日韩伦理黄色片| 欧美日韩成人在线一区二区| 亚洲激情五月婷婷啪啪| 久久精品国产亚洲av高清一级| 亚洲精华国产精华液的使用体验| 无遮挡黄片免费观看| 乱人伦中国视频| 国产深夜福利视频在线观看| 性色av一级| 美女国产高潮福利片在线看| 两个人看的免费小视频| 免费久久久久久久精品成人欧美视频| 中国国产av一级| 欧美 亚洲 国产 日韩一| 欧美亚洲日本最大视频资源| 国产野战对白在线观看| a级片在线免费高清观看视频| 女性生殖器流出的白浆| 午夜福利网站1000一区二区三区| 亚洲精品日韩在线中文字幕| 久久精品久久久久久噜噜老黄| 亚洲成国产人片在线观看| 少妇的丰满在线观看| 国产人伦9x9x在线观看| 卡戴珊不雅视频在线播放| 国产在视频线精品| 97人妻天天添夜夜摸| 在线亚洲精品国产二区图片欧美| 国产精品麻豆人妻色哟哟久久| 日韩 欧美 亚洲 中文字幕| 久久天堂一区二区三区四区| 亚洲中文av在线| 男的添女的下面高潮视频| 欧美人与性动交α欧美精品济南到| av又黄又爽大尺度在线免费看| av一本久久久久| 国产99久久九九免费精品| 一二三四中文在线观看免费高清| 婷婷色综合www| 女人被躁到高潮嗷嗷叫费观| 国产精品香港三级国产av潘金莲 | 建设人人有责人人尽责人人享有的| 久久精品久久久久久久性| 91成人精品电影| 黄片小视频在线播放| 叶爱在线成人免费视频播放| 这个男人来自地球电影免费观看 | 超碰97精品在线观看| 久久精品国产a三级三级三级| 午夜免费观看性视频| 丝袜美腿诱惑在线| 国产黄频视频在线观看| 日韩伦理黄色片| 亚洲综合色网址| 卡戴珊不雅视频在线播放| 婷婷色综合www| 熟妇人妻不卡中文字幕| 欧美变态另类bdsm刘玥| 亚洲国产日韩一区二区| 欧美日韩精品网址| 在线亚洲精品国产二区图片欧美| 97在线人人人人妻| 两个人免费观看高清视频| 大陆偷拍与自拍| 婷婷色麻豆天堂久久| 久久久久国产一级毛片高清牌| 一二三四中文在线观看免费高清| 一级a爱视频在线免费观看| 晚上一个人看的免费电影| 日韩视频在线欧美| 久久精品国产亚洲av涩爱| 黄频高清免费视频| 制服诱惑二区| 国产男人的电影天堂91| 国产av国产精品国产| 热99国产精品久久久久久7| 中文字幕制服av| 精品一品国产午夜福利视频| 女人久久www免费人成看片| 亚洲精品aⅴ在线观看| 亚洲免费av在线视频| xxxhd国产人妻xxx| 丝袜脚勾引网站| 一个人免费看片子| 成人亚洲精品一区在线观看| 国产精品成人在线| 一级毛片电影观看| 日韩免费高清中文字幕av| 在线亚洲精品国产二区图片欧美| 亚洲第一青青草原| 国产精品 国内视频| 成人三级做爰电影| 99久久99久久久精品蜜桃| 婷婷色av中文字幕| 国产精品久久久av美女十八| 久久久久久久久久久免费av| 91国产中文字幕| 熟女少妇亚洲综合色aaa.| 免费观看性生交大片5| 一级黄片播放器| 女人高潮潮喷娇喘18禁视频| 1024香蕉在线观看| av网站免费在线观看视频| 国产一区二区在线观看av| 精品第一国产精品| 免费在线观看视频国产中文字幕亚洲 | 自线自在国产av| 男女无遮挡免费网站观看| 亚洲人成77777在线视频| 国产黄频视频在线观看| av又黄又爽大尺度在线免费看| 最近中文字幕高清免费大全6| 亚洲自偷自拍图片 自拍| 亚洲国产成人一精品久久久| 1024香蕉在线观看| 免费观看av网站的网址| 精品国产乱码久久久久久小说| 天堂8中文在线网| 狂野欧美激情性bbbbbb| 亚洲图色成人| 精品人妻熟女毛片av久久网站| 一级片免费观看大全| 最新在线观看一区二区三区 | 最新的欧美精品一区二区| 亚洲一级一片aⅴ在线观看| 亚洲成人手机| 婷婷色av中文字幕| 午夜免费观看性视频| 国产男女超爽视频在线观看| 美女主播在线视频| 欧美日韩视频高清一区二区三区二| 国语对白做爰xxxⅹ性视频网站| 热re99久久精品国产66热6| 亚洲av在线观看美女高潮| 亚洲专区中文字幕在线 | 汤姆久久久久久久影院中文字幕| 日韩精品有码人妻一区| 我的亚洲天堂| 久久精品久久久久久久性| 午夜免费男女啪啪视频观看| 国产免费福利视频在线观看| 精品一区二区免费观看| 国产日韩一区二区三区精品不卡| 高清欧美精品videossex| 欧美成人精品欧美一级黄| 免费在线观看完整版高清| 午夜福利网站1000一区二区三区| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲国产最新在线播放| 999久久久国产精品视频| 女人久久www免费人成看片| 国产一区二区三区av在线| 国产精品一区二区在线不卡| 狂野欧美激情性bbbbbb| kizo精华| 亚洲av国产av综合av卡| 丰满迷人的少妇在线观看| 国产亚洲一区二区精品| 1024香蕉在线观看| 汤姆久久久久久久影院中文字幕| 成人影院久久| 久久精品久久久久久久性| 亚洲,欧美,日韩| 亚洲欧美成人综合另类久久久| 亚洲国产欧美网| 人人妻,人人澡人人爽秒播 | 如何舔出高潮| 色网站视频免费| 亚洲伊人久久精品综合| 久久精品亚洲熟妇少妇任你| 一级爰片在线观看| 男女下面插进去视频免费观看| 一级毛片电影观看| 亚洲熟女毛片儿| 久久天堂一区二区三区四区| 色婷婷久久久亚洲欧美| 纯流量卡能插随身wifi吗| 国产成人精品在线电影| 成年女人毛片免费观看观看9 | 黄色视频不卡| 69精品国产乱码久久久| 午夜日韩欧美国产| 久久久国产欧美日韩av| 亚洲av日韩在线播放| 久久久国产一区二区| 亚洲欧美日韩另类电影网站| 深夜精品福利| 日韩不卡一区二区三区视频在线| 日日爽夜夜爽网站| 国产亚洲av片在线观看秒播厂| 在线看a的网站| 丰满乱子伦码专区| 一区二区三区激情视频| 尾随美女入室| 午夜日本视频在线| 久久人人爽av亚洲精品天堂| 欧美成人精品欧美一级黄| 亚洲成人av在线免费| 熟女少妇亚洲综合色aaa.| 丝袜脚勾引网站| 亚洲人成网站在线观看播放| 国产精品成人在线| netflix在线观看网站| 乱人伦中国视频| 美女脱内裤让男人舔精品视频| 精品一区二区免费观看| 曰老女人黄片| 欧美人与善性xxx| 中文字幕人妻熟女乱码| 亚洲欧美一区二区三区久久| 久久精品熟女亚洲av麻豆精品| 母亲3免费完整高清在线观看| 一本色道久久久久久精品综合| 日本欧美国产在线视频| 一区二区日韩欧美中文字幕| 如日韩欧美国产精品一区二区三区| 国产亚洲午夜精品一区二区久久| 亚洲av综合色区一区| 午夜福利在线免费观看网站| 又粗又硬又长又爽又黄的视频| 秋霞在线观看毛片| 亚洲av日韩精品久久久久久密 | 成人毛片60女人毛片免费| 9色porny在线观看| 亚洲av成人不卡在线观看播放网 | 亚洲国产成人一精品久久久| 人体艺术视频欧美日本| 亚洲伊人久久精品综合| 日本爱情动作片www.在线观看| 成年女人毛片免费观看观看9 | 伦理电影免费视频| 亚洲精品国产一区二区精华液| 国产黄色视频一区二区在线观看| 亚洲人成网站在线观看播放| 国产一区二区三区av在线| av电影中文网址| 国产不卡av网站在线观看| 亚洲精品日韩在线中文字幕| av在线播放精品| 欧美在线黄色| 亚洲人成电影观看| 久久韩国三级中文字幕| 亚洲成人免费av在线播放| 亚洲精品aⅴ在线观看| 免费观看性生交大片5| 一级爰片在线观看| 国产精品偷伦视频观看了| 嫩草影院入口| 亚洲视频免费观看视频| 别揉我奶头~嗯~啊~动态视频 | 国产伦理片在线播放av一区| 日韩制服骚丝袜av| www日本在线高清视频| 国产一卡二卡三卡精品 | 中文字幕av电影在线播放| 天天躁狠狠躁夜夜躁狠狠躁| 久久性视频一级片| av电影中文网址| 一区二区日韩欧美中文字幕| 最黄视频免费看| 又黄又粗又硬又大视频| 久久毛片免费看一区二区三区| 操出白浆在线播放| 美女国产高潮福利片在线看| 久久亚洲国产成人精品v| 日日撸夜夜添| 日韩中文字幕欧美一区二区 | 免费观看av网站的网址| 丰满迷人的少妇在线观看| 男女午夜视频在线观看| 汤姆久久久久久久影院中文字幕| 美女福利国产在线| 久久精品aⅴ一区二区三区四区| 观看av在线不卡| 在线 av 中文字幕| 十八禁网站网址无遮挡| 亚洲一级一片aⅴ在线观看| 亚洲精品第二区| 叶爱在线成人免费视频播放| 日本猛色少妇xxxxx猛交久久| 久久久久久久大尺度免费视频| 国产成人精品久久二区二区91 | 老司机靠b影院| 最近最新中文字幕大全免费视频 | 亚洲情色 制服丝袜| 国产在线一区二区三区精| 免费女性裸体啪啪无遮挡网站| 成人18禁高潮啪啪吃奶动态图| 精品亚洲成a人片在线观看| 青草久久国产| 国产老妇伦熟女老妇高清| 国产成人精品福利久久| 黑人猛操日本美女一级片| 新久久久久国产一级毛片| 日本av免费视频播放| 一本久久精品| 宅男免费午夜| 十分钟在线观看高清视频www| 精品国产超薄肉色丝袜足j| 国产av码专区亚洲av| 两个人看的免费小视频| 高清黄色对白视频在线免费看| 一级a爱视频在线免费观看| 97在线人人人人妻| 汤姆久久久久久久影院中文字幕| 亚洲欧美一区二区三区久久| 国产精品国产av在线观看| 国产麻豆69| 韩国av在线不卡| 中文字幕人妻丝袜制服| 精品少妇久久久久久888优播| 国产精品久久久av美女十八| 国产熟女午夜一区二区三区| a 毛片基地| 精品国产一区二区三区久久久樱花| av天堂久久9| 精品人妻一区二区三区麻豆| 一区二区三区精品91| 国产精品嫩草影院av在线观看| 夫妻性生交免费视频一级片| 国产av国产精品国产| 精品一品国产午夜福利视频| 国产成人91sexporn| 老司机靠b影院| 天天躁夜夜躁狠狠久久av| 精品国产国语对白av| 19禁男女啪啪无遮挡网站| 国产人伦9x9x在线观看| 国产xxxxx性猛交| 日本wwww免费看| 国产成人欧美| a级毛片在线看网站| 国产免费一区二区三区四区乱码| 国产伦理片在线播放av一区| 国产男人的电影天堂91| 黑人巨大精品欧美一区二区蜜桃| 久久精品亚洲av国产电影网| 9热在线视频观看99| 欧美日韩综合久久久久久| 久久人人爽av亚洲精品天堂| 成年动漫av网址| 久久久久视频综合| 三上悠亚av全集在线观看| 麻豆av在线久日| 热99国产精品久久久久久7| 最近中文字幕2019免费版| 久久久久久久久免费视频了| 午夜福利乱码中文字幕| 成人国语在线视频| 久久人人97超碰香蕉20202| 黄片无遮挡物在线观看| 亚洲欧美精品综合一区二区三区| 欧美日韩一区二区视频在线观看视频在线| 日日爽夜夜爽网站| 国产毛片在线视频| 大片电影免费在线观看免费| 亚洲图色成人| 美女主播在线视频| 亚洲精品在线美女| 美女大奶头黄色视频| 亚洲综合精品二区| 成人免费观看视频高清| 国产成人av激情在线播放| 欧美变态另类bdsm刘玥| 日本猛色少妇xxxxx猛交久久| 高清在线视频一区二区三区| 国产国语露脸激情在线看| 欧美成人精品欧美一级黄| 亚洲av国产av综合av卡| av女优亚洲男人天堂| 色网站视频免费| 大片免费播放器 马上看| 亚洲久久久国产精品| 国产精品免费大片| 欧美在线黄色| 日日撸夜夜添| av线在线观看网站| 美女主播在线视频| 啦啦啦啦在线视频资源| 亚洲激情五月婷婷啪啪| 国产精品嫩草影院av在线观看| 黑丝袜美女国产一区| 午夜免费鲁丝| 国产一卡二卡三卡精品 | 好男人视频免费观看在线| 不卡视频在线观看欧美| 人人澡人人妻人| 久久av网站| 人人妻人人添人人爽欧美一区卜| 80岁老熟妇乱子伦牲交| 日韩av免费高清视频| 巨乳人妻的诱惑在线观看| 一级毛片 在线播放| 黑人巨大精品欧美一区二区蜜桃| av福利片在线| 飞空精品影院首页| 成人手机av| 国产亚洲一区二区精品| 亚洲av国产av综合av卡| 狂野欧美激情性bbbbbb| 美女大奶头黄色视频| 国产精品久久久久久精品电影小说| 中文字幕人妻丝袜制服| 亚洲欧美清纯卡通| 精品国产一区二区三区久久久樱花| 丝袜美足系列| 人人妻人人澡人人爽人人夜夜| 中文字幕av电影在线播放| 成年人免费黄色播放视频| 最近中文字幕高清免费大全6| 99re6热这里在线精品视频| 国产日韩一区二区三区精品不卡| 宅男免费午夜| 久久人人爽av亚洲精品天堂| a级片在线免费高清观看视频| 成人漫画全彩无遮挡| 一本一本久久a久久精品综合妖精| 伦理电影免费视频| 欧美老熟妇乱子伦牲交| 久久人人爽av亚洲精品天堂| 欧美黄色片欧美黄色片| 搡老乐熟女国产| 18禁国产床啪视频网站| 欧美少妇被猛烈插入视频| 免费看不卡的av| 欧美久久黑人一区二区| 国产探花极品一区二区| 久久精品久久精品一区二区三区| 九草在线视频观看| 在线观看免费高清a一片| videosex国产| 精品久久久精品久久久| 亚洲第一区二区三区不卡| 国产老妇伦熟女老妇高清| 一级片免费观看大全| 一级黄片播放器| 亚洲精品,欧美精品| 婷婷成人精品国产| 日韩精品有码人妻一区| 国产在线一区二区三区精| 操美女的视频在线观看| 精品亚洲成国产av| 少妇的丰满在线观看| 日本欧美视频一区| 国产亚洲午夜精品一区二区久久| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 久久久久久久久久久免费av| 一区二区三区乱码不卡18| 欧美日韩一区二区视频在线观看视频在线| 日韩免费高清中文字幕av| 男女之事视频高清在线观看 | 亚洲国产欧美在线一区| 午夜免费观看性视频| 久久影院123| 91精品三级在线观看| 一区二区三区四区激情视频| 久久久国产精品麻豆| 欧美乱码精品一区二区三区| 在线看a的网站| 亚洲精品第二区| 哪个播放器可以免费观看大片| 国产爽快片一区二区三区| 亚洲免费av在线视频| 国产日韩欧美在线精品| 国产精品欧美亚洲77777| 老司机在亚洲福利影院| 国产精品 国内视频| 国产亚洲一区二区精品| 在线观看免费午夜福利视频| 精品亚洲成a人片在线观看| 一边亲一边摸免费视频| 欧美老熟妇乱子伦牲交| 亚洲 欧美一区二区三区| 久久女婷五月综合色啪小说| 日韩欧美精品免费久久| 天天操日日干夜夜撸| 一二三四在线观看免费中文在| 国产精品无大码| 久久久久久人妻| 狂野欧美激情性xxxx| 赤兔流量卡办理| 久久99热这里只频精品6学生|