• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Correlation-driven topological phase transition from quantum anomalous Hall insulator to Mott insulator in monolayer VCl3 and VBr3*

    2020-11-19 11:18:20XUYongfengSHENGXianleiZHENGQingrong

    XU Yongfeng, SHENG Xianlei, ZHENG Qingrong?

    (1 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 2 Key Laboratory of Micro-NanoMeasurement-Manipulation and Physics of Ministry of Education, Department of Physics, Beihang University, Beijing 100191, China)(Received 26 March 2019; Revised 8 May 2019)

    Abstract Based on the first-principle calculations, we propose that the monolayer VCl3 and VBr3 are quantum anomalous Hall insulators with in-plane magnetization without considering the correlation effect of the 3d electron-electron interaction. The band gap is predicted to be about 3.4 meV for VCl3, but no global gap for VBr3. It is interesting to note that VCl3 (VBr3) possesses a Chern number of C=3 (C=1) with three (one) chiral edge states. After considering correlation effect, we obtain Mott insulator if U>0.45 (U>0.35) eV for VCl3 (VBr3).

    Keywords ferromagnetic semiconductor; large Chern number; Mott insulator

    Since the discovery of quantum Hall (QH) effect, the study of the topological phase of matter has attracted great attention in the condensed-matter community. A voltage caused by the deflected motion of charged particles under external electric field and magnetic field leads to the quantized Hall conductance[1]. Nevertheless, the quantum Hall effect may be achieved without external magnetic field. In 1988, Haldane[2]proposed the quantum anomalous Hall (QAH) effect in a two-dimensional (2D) honeycomb lattice with next-nearest-neighboring hopping modulated by staggered flux. Dissipative boundary states exist in the two edges of materials with QAH effect[3-5]. The anomalous Hall effect has an intrinsic origin due to spin-dependent band structure of conduction electrons, which can be expressed in terms of the Berry phase or Chern number in the momentum space[6]. This effect originates from the coupling of electron orbital motion to its spin, i.e., spin orbit coupling (SOC), resulting in the opposite motion of electrons with spin-up and spin-down. In a ferromagnetic metal, the magnetization causes an imbalance in the population between the electrons with spin-up and spin-down and consequently leads to the anomalous Hall effect. Considering the time reversal (TR) symmetry, the quantities of electrons moving in the opposite directions with different spins are equal and as a result there is no charge Hall conductance, but a nonzero spin Hall conductance exhibits quantum spin Hall (QSH) effect[7]. The QAH insulator[8]was a recently discovered topological electronic phase where strong SOC and ferromagnetic ordering conspire to generate a band gapEgin the bulk of a two-dimensional (2D) electron system, as well as conducting gapless chiral edge states in its boundaries. The edge states are robust against impurities or disorders because the electron backscattering in the two edge channels is prohibited due to the TR symmetry. Topologically nontrivial band structure is characterized by a nonzero Chern number by counting the number of edge states. The QAH effect not only occurs in out-of-plane magnetization systems[9-15], but also exists in in-plane magnetization materials[16-21].

    The layered transition-metal trichlorides materials of MCl3(M=Ti, V, Cr, Fe, Mo, Ru, Rh, Ir) have been achieved for many years due to relatively weak van der Waals interaction between the interlayers[22-25]. These layered materials, which possess honeycomb lattice, partially occupiedd-orbitals, and nonnegligible SOC, may have interesting properties, and thus they are worth studying.

    1 Computational methods

    The first-principle calculations were performed within the Viennaabinitiosimulation package (VASP) using the projector augmented wave (PAW) method in the framework of density functional theory (DFT)[26-28]. The electron exchange correlation functional was described by the generalized gradient approximation (GGA) in the form proposed by Perdew, Burke, and Ernzerhof (PBE)[29]. The lattice parameters are chosen from Springer Materials[30]. The structure relaxation considering both the atomic positions and lattice vectors was performed by the conjugate gradient (CG) scheme until the maximum force on each atom was less than 0.01 eV/?(1 ?=0.1 nm), and the total energy converge threshold was 10-6eV with Gaussian smearing method. To avoid unnecessary interactions between the monolayer and its periodic images, the vacuum layer was set as 20 ?. The energy cut off of the plane waves was chosen as 520 eV. The Brillouin zone (BZ) integration was sampled with a 9×9×1 G-centered Monk horst Pack grid. The relaxed lattice parameter (a=6.012 ?) was adopted in the calculations. SOC is included by a second variational procedure on a fully self-consistent basis. An effective tight binding Hamiltonian based on the maximally localized Wannier functions (MLWF) was used to investigate the surface states[21,31]. The iterative Greens function method[32]was used with the package WannierTools[33].

    2 Results and discussion

    The two-dimensional VCl3(VBr3) consists of a V atomic layer sandwiched by two Cl atomic layers. The V atoms form a honeycomb lattice and each V atom is surrounded by six Cl atoms, which forms an octahedral crystal field, as shown in Fig. 1. It takes the same structure as monolayer OsCl3that has been shown to be an intrinsic quantum anomalous Hall insulator[34]. V is a transition metal element with partially filled3d-orbitals, which may result in magnetism. Based on the first-principle calculations, we consider several magnetic configurations, including ferromagnetic (FM), antiferromagnetic (AFM), and paramagnetic (PM) states. We firstly take VCl3as an example and find that VCl3takes the FM ground state with in-plane magnetization along zigzag direction as shown in Table 1.

    Fig.1 Top (a) and side (b) views of monolayer VCl3, first Brillouin zone(c) of monolayer VCl3 withdirect reciprocal lattice vectors and the high symmetry points indicated, and 3d orbital splitting under octahedral crystal field (d)

    Table 1 FM and AFM energies of VCl3

    The band structure calculations show that VCl3is a fully spin-polarized half metal. Without considering SOC, it is a 2D Weyl half semimetal with a band crossing point in eachG-Mpath, such that there are total 6 Weyl points in the first BZ. After turning on SOC, a band gap of about 3.4 meV was opened, and the material becomes a ferromagnetic semiconductor, which is different from PtCl3which is a 2D Weyl half semimetal even with SOC due to additional symmetry protection[35]. To understand these features, we find that under the octahedral crystal field formed by Cl atoms, V-3dorbitals are split intot2gandegorbital groups, and the latter is higher in energy. For each V3+with two valence electrons, there are four valence electrons in one primitive cell, such that V-t2gorbitals will be partially filled in one spin channel. The othert2gspin channel and allegorbitals are empty. Therefore, the system is half Weyl semimetal without considering SOC. If turning on SOC, thet2gorbitals will split intoj=1/2 doublet state andj=3/2 quartet state with the former energetically higher, such that the system becomes a semiconductor, as shown in Fig. 2. The topologically nontrivial band structure of VCl3may come from the combination effect of honeycomb lattice formed by V atoms and the SOC of transition metal V atoms.

    Fig.2 Electronic band structures of monolayer VCl3 and VBr3

    Furthermore, because of the ferromagnetic ordering of the magnetic moments in V atoms, the system results in a quantum anomalous Hall insulator. To show the topology, we calculated the gauge-invariant Berry curvature in momentum space. The Berry curvature Ωz(k) in 2D can be obtained by analyzing the Bloch wave functions from the self-consistent potentials

    Ωz(k)=∑nfnzΩn(k),

    (1)

    (2)

    wherefnis the Fermi-Dirac distribution function,vx(y)is the velocity operator,ψn(k) is the Bloch wave function,εn(k) is the eigenvalue, the summation is over allnoccupied bands below the Fermi level,mindicates the unoccupied bands above the Fermi level. Based on the first-principle calculations, one observes that, in the absence of SOC, there are totally 6 Weyl nodes (Fig.3(a)) related withC3and inversion symmetry along theG-M(M’) high symmetry lines of the hexagonal Brillouin zone. SOC will open a tiny gap, correspondingly. Six Berry curvature peaks appear. The nonzero Berry curvature mainly distributes around the opened band crossings at the Fermi level. Furthermore, a plot of the 6 Berry curvature peaks over the whole BZ (Fig.3(c)) indicates that all 6 peaks have the same sign. The Chern number can be obtained by integrating the Berry curvature Ωz(k) over the BZ

    (3)

    Two Berry curvature peaks contribute to the nonzero Chern number 1 and consequently the total Chern number is 3 by integrating the Berry curvature in the whole BZ. According to the bulk-edge correspondence[36], the nonzero Chern number is closely related to the number of nontrivial chiral edge states that emerge inside the bulk gap of a semi-infinite system. With an effective concept of principle layers, an iterative procedure to calculate the Greens function for a semi-infinite system is employed. The momentum and energy dependence of the local density of states at the edge can be obtained from the imaginary part of the surface Greens function and the results are shown in Fig.4(a) and 4(b). It is obvious that there are three gapless chiral edge states that emerge inside the bulk gap connecting the valence and conduction bands corresponding to the Chern numberC=3.

    (4)

    Fig. 3 Surface spectra of monolayer VCl3 at energy level 0.01 eV (a) and monolayer VBr3 at energy level 0.07 eV (b),and Berry curvature of monolayer VCl3 and VBr3 in the BZ (c, d)

    As shown in Fig.5 (Fig.6), the change of band structure as a function of correlation strengthUfor monolayer VCl3(VBr3)indicates that there exits a phase transition atU≈0.45 eV (0.35 eV), and stronger correlation will turn it into a Mott insulator. We also calculated the properties of a monolayer VBr3. Although the monolayer VBr3exhibits some similar properties as in VCl3, i.e., a Weyl semimetal without SOC (Fig.2(b)) and an energy gap is opened when including SOC (Fig.2(d)), the monolayer VBr3has the total Chern numberC=1 from 6 Berry curvature peaks, of which 4 peaks have positive sign and 2 peaks have negative sign (Fig.3(d)). The nonzero Chern number 1 corresponds to one gapless chiral edge state (Fig.4(b) and 4(d)) connecting the valence and conduction bands.

    3 Discussion

    In summary, based on the first-principle calculations, we propose that the 2D monolayer VCl3and VBr3are QAH insulators without considering correlation effect, and they transform into Mott insulators after turning on the correlation effectU. At the mean-field theory level, VCl3and VBr3exhibit QAH insulating states with Chern numbers of 3 and 1, respectively, thus giving rise to chiral gapless edge states. If the correlationUis larger than about 0.45 (0.35) eV for VCl3(VBr3), it will cause a topological phase transition and the monolayer turns into a Mott insulator. These topological properties can be detected by electrical transport experiment, which has been carried out in detecting the QAHE in V-doped (Bi, Sb)2Te3thin film[37], Cr/V-codoped (Bi, Sb)2Te3system[38], and other doped TIs[39].

    Fig.4 Energy and k-dependence of the local DOS on the edge of the semi-infinite sheet of VCl3 (a, b) and VBr3(c,d)

    Fig.5 Electronic band structure of monolayer VCl3 with ferromagnetic momentum 4 μB per unit cell along thezigzag direction at different correlation energy values

    Fig. 6 Electronic band structure of monolayer VBr3 with ferromagnetic momentum 4 μB per unit cell along thezigzag direction at different correlation energy values

    The authors thank YOU Jingyang for helpful discussion.

    国产精品一区二区在线不卡| 成年人免费黄色播放视频| 欧美精品啪啪一区二区三区| 国产亚洲欧美精品永久| 国产亚洲欧美98| 女警被强在线播放| 中文字幕人妻丝袜制服| 久久天堂一区二区三区四区| 国产99白浆流出| 成年版毛片免费区| 激情在线观看视频在线高清 | 80岁老熟妇乱子伦牲交| 国产不卡av网站在线观看| 国产91精品成人一区二区三区| 在线免费观看的www视频| 99久久人妻综合| 欧美国产精品va在线观看不卡| 看免费av毛片| 韩国av一区二区三区四区| 国产精品国产高清国产av | 叶爱在线成人免费视频播放| 国产精品自产拍在线观看55亚洲 | 性少妇av在线| 免费观看a级毛片全部| 日本撒尿小便嘘嘘汇集6| 狂野欧美激情性xxxx| 久久久久国产一级毛片高清牌| 久久久精品国产亚洲av高清涩受| 亚洲第一欧美日韩一区二区三区| 多毛熟女@视频| 免费久久久久久久精品成人欧美视频| 国产在线精品亚洲第一网站| 精品高清国产在线一区| 欧美乱码精品一区二区三区| 黑人操中国人逼视频| 两性午夜刺激爽爽歪歪视频在线观看 | 亚洲欧洲精品一区二区精品久久久| 国产高清videossex| 9色porny在线观看| 久久人妻av系列| 免费观看精品视频网站| 色播在线永久视频| 777久久人妻少妇嫩草av网站| 老司机在亚洲福利影院| 国产亚洲av高清不卡| 久久精品亚洲精品国产色婷小说| 亚洲色图av天堂| 一进一出抽搐gif免费好疼 | 女同久久另类99精品国产91| 一边摸一边抽搐一进一出视频| 麻豆乱淫一区二区| 女人被躁到高潮嗷嗷叫费观| 悠悠久久av| 国产一区在线观看成人免费| 亚洲精品久久成人aⅴ小说| 一区二区三区国产精品乱码| 欧美国产精品一级二级三级| 久久天躁狠狠躁夜夜2o2o| 欧美色视频一区免费| 午夜老司机福利片| 大码成人一级视频| 女人精品久久久久毛片| 久久久精品国产亚洲av高清涩受| 老司机福利观看| 夜夜夜夜夜久久久久| 9色porny在线观看| 老司机深夜福利视频在线观看| 手机成人av网站| 不卡一级毛片| 村上凉子中文字幕在线| 国产不卡av网站在线观看| 久久人妻熟女aⅴ| 男人操女人黄网站| 国产亚洲欧美98| 国产成人av激情在线播放| 在线国产一区二区在线| 色婷婷久久久亚洲欧美| 亚洲情色 制服丝袜| 搡老乐熟女国产| 我的亚洲天堂| 两性午夜刺激爽爽歪歪视频在线观看 | 每晚都被弄得嗷嗷叫到高潮| 少妇 在线观看| 国产亚洲精品久久久久久毛片 | 日韩一卡2卡3卡4卡2021年| 夫妻午夜视频| 国产激情欧美一区二区| 亚洲精品国产色婷婷电影| 脱女人内裤的视频| 色老头精品视频在线观看| 天堂俺去俺来也www色官网| 无遮挡黄片免费观看| 精品乱码久久久久久99久播| 在线免费观看的www视频| 国产亚洲精品久久久久5区| 超色免费av| 亚洲成a人片在线一区二区| www.精华液| 香蕉久久夜色| 国产精品亚洲一级av第二区| 丝瓜视频免费看黄片| 波多野结衣av一区二区av| 精品一品国产午夜福利视频| 国产欧美日韩精品亚洲av| 一边摸一边做爽爽视频免费| 国产精品乱码一区二三区的特点 | 欧美日韩亚洲综合一区二区三区_| 狠狠狠狠99中文字幕| 国产精品成人在线| 久久久国产成人精品二区 | 正在播放国产对白刺激| 好看av亚洲va欧美ⅴa在| 黄色成人免费大全| 免费看a级黄色片| 亚洲精品国产精品久久久不卡| 午夜福利在线免费观看网站| 一夜夜www| 在线观看免费日韩欧美大片| 午夜精品在线福利| 欧洲精品卡2卡3卡4卡5卡区| 亚洲 欧美一区二区三区| 欧美乱色亚洲激情| 身体一侧抽搐| 自线自在国产av| 午夜免费观看网址| 天堂中文最新版在线下载| 久久久国产成人免费| 欧美日韩一级在线毛片| 色尼玛亚洲综合影院| 男男h啪啪无遮挡| 手机成人av网站| 水蜜桃什么品种好| 九色亚洲精品在线播放| 亚洲成国产人片在线观看| 午夜精品久久久久久毛片777| 久热这里只有精品99| 美女高潮喷水抽搐中文字幕| 黄片大片在线免费观看| 一区二区三区精品91| 亚洲一区高清亚洲精品| 久久人人爽av亚洲精品天堂| 飞空精品影院首页| 新久久久久国产一级毛片| 久久热在线av| www日本在线高清视频| 一区二区日韩欧美中文字幕| 狂野欧美激情性xxxx| 国产色视频综合| 大型av网站在线播放| 黑丝袜美女国产一区| 亚洲成av片中文字幕在线观看| 自线自在国产av| 国产色视频综合| 精品一区二区三区视频在线观看免费 | 美女 人体艺术 gogo| 欧美最黄视频在线播放免费 | 亚洲精品国产区一区二| 在线观看免费高清a一片| 美女福利国产在线| 淫妇啪啪啪对白视频| 91老司机精品| 色播在线永久视频| 欧美精品亚洲一区二区| 国产成人免费无遮挡视频| 久久精品亚洲精品国产色婷小说| 在线观看免费视频日本深夜| 亚洲国产欧美日韩在线播放| 欧美日韩亚洲高清精品| 久久久久久久国产电影| 亚洲国产欧美日韩在线播放| 免费黄频网站在线观看国产| 国产一卡二卡三卡精品| 十八禁网站免费在线| 丝袜美腿诱惑在线| 亚洲精华国产精华精| 在线观看免费日韩欧美大片| 色婷婷av一区二区三区视频| 国产成人啪精品午夜网站| 高清在线国产一区| 两个人看的免费小视频| 亚洲欧洲精品一区二区精品久久久| 国产成人av激情在线播放| 真人做人爱边吃奶动态| 亚洲va日本ⅴa欧美va伊人久久| 成年女人毛片免费观看观看9 | av一本久久久久| 亚洲欧洲精品一区二区精品久久久| 精品欧美一区二区三区在线| 一区在线观看完整版| 18禁黄网站禁片午夜丰满| 法律面前人人平等表现在哪些方面| 欧美亚洲 丝袜 人妻 在线| 女人高潮潮喷娇喘18禁视频| 国产精品一区二区精品视频观看| 99久久人妻综合| 91精品国产国语对白视频| 自拍欧美九色日韩亚洲蝌蚪91| 精品午夜福利视频在线观看一区| x7x7x7水蜜桃| 免费观看a级毛片全部| 国产av一区二区精品久久| 女人高潮潮喷娇喘18禁视频| 亚洲国产毛片av蜜桃av| 91精品三级在线观看| 日韩欧美一区视频在线观看| 亚洲va日本ⅴa欧美va伊人久久| 一级毛片精品| 看黄色毛片网站| 色尼玛亚洲综合影院| 午夜免费观看网址| 国产精品免费视频内射| av免费在线观看网站| 最新的欧美精品一区二区| 交换朋友夫妻互换小说| 18禁美女被吸乳视频| 一夜夜www| 女人久久www免费人成看片| 最近最新中文字幕大全免费视频| 久久精品亚洲av国产电影网| 视频在线观看一区二区三区| 三级毛片av免费| av一本久久久久| 欧美久久黑人一区二区| 国产成人免费观看mmmm| 啦啦啦视频在线资源免费观看| 亚洲熟女毛片儿| 9热在线视频观看99| 又黄又爽又免费观看的视频| 精品国产国语对白av| 久久国产精品影院| 男女午夜视频在线观看| 老汉色av国产亚洲站长工具| 亚洲国产精品一区二区三区在线| 热99re8久久精品国产| 搡老乐熟女国产| 欧美精品亚洲一区二区| 久久国产精品男人的天堂亚洲| 国产91精品成人一区二区三区| 久久久久精品人妻al黑| 一边摸一边抽搐一进一小说 | 一边摸一边抽搐一进一出视频| 色在线成人网| 亚洲av日韩精品久久久久久密| 国产黄色免费在线视频| 久久草成人影院| 成人永久免费在线观看视频| 十八禁网站免费在线| 精品久久蜜臀av无| av线在线观看网站| 69精品国产乱码久久久| 亚洲五月色婷婷综合| 国产成人精品在线电影| 高潮久久久久久久久久久不卡| 精品亚洲成国产av| 欧美人与性动交α欧美精品济南到| 免费在线观看视频国产中文字幕亚洲| 国产精品一区二区在线观看99| 男女高潮啪啪啪动态图| 免费黄频网站在线观看国产| 国产精品秋霞免费鲁丝片| 九色亚洲精品在线播放| 成在线人永久免费视频| 国产1区2区3区精品| 一a级毛片在线观看| 亚洲人成电影免费在线| 亚洲成人免费电影在线观看| 99国产精品一区二区蜜桃av | 欧美在线一区亚洲| 欧美人与性动交α欧美软件| 欧美日韩中文字幕国产精品一区二区三区 | 涩涩av久久男人的天堂| 欧美人与性动交α欧美精品济南到| 一边摸一边抽搐一进一出视频| 午夜福利免费观看在线| 精品国产乱子伦一区二区三区| 精品一区二区三卡| 国产亚洲欧美98| 精品国产亚洲在线| 免费看十八禁软件| 成年版毛片免费区| 亚洲性夜色夜夜综合| 两个人看的免费小视频| 午夜免费观看网址| 亚洲精品国产色婷婷电影| 村上凉子中文字幕在线| 国产亚洲欧美98| 午夜视频精品福利| 国内毛片毛片毛片毛片毛片| 欧美日韩国产mv在线观看视频| 美女高潮喷水抽搐中文字幕| 搡老乐熟女国产| 午夜福利欧美成人| 可以免费在线观看a视频的电影网站| 国产成人免费观看mmmm| 国产成+人综合+亚洲专区| 亚洲,欧美精品.| 老司机午夜福利在线观看视频| 女人被躁到高潮嗷嗷叫费观| 国产欧美日韩一区二区精品| 黄网站色视频无遮挡免费观看| а√天堂www在线а√下载 | 日韩人妻精品一区2区三区| 久久精品国产综合久久久| 精品乱码久久久久久99久播| 欧美成人免费av一区二区三区 | 波多野结衣一区麻豆| 精品福利观看| 男女下面插进去视频免费观看| 看黄色毛片网站| 国产欧美日韩精品亚洲av| 亚洲avbb在线观看| 亚洲美女黄片视频| 18在线观看网站| 又黄又爽又免费观看的视频| 久久99一区二区三区| 欧美日韩国产mv在线观看视频| 国产精品九九99| 国产97色在线日韩免费| 亚洲美女黄片视频| x7x7x7水蜜桃| av中文乱码字幕在线| 黄片大片在线免费观看| 怎么达到女性高潮| 成人av一区二区三区在线看| 高清视频免费观看一区二区| 一区在线观看完整版| 久久久国产一区二区| 在线播放国产精品三级| www日本在线高清视频| av天堂在线播放| 国产精品.久久久| 一级片'在线观看视频| 亚洲精品国产区一区二| 亚洲av成人av| 很黄的视频免费| 变态另类成人亚洲欧美熟女 | 国产精华一区二区三区| 欧美另类亚洲清纯唯美| 欧美久久黑人一区二区| 十八禁高潮呻吟视频| 国产男靠女视频免费网站| 久久久国产成人免费| 久久青草综合色| 美女国产高潮福利片在线看| 深夜精品福利| 亚洲欧美一区二区三区黑人| 国产人伦9x9x在线观看| 日韩免费av在线播放| 91精品三级在线观看| a级毛片在线看网站| 一进一出抽搐动态| 夫妻午夜视频| 激情视频va一区二区三区| 黄色女人牲交| 亚洲精品中文字幕在线视频| 女人爽到高潮嗷嗷叫在线视频| 每晚都被弄得嗷嗷叫到高潮| 91成年电影在线观看| 成人国语在线视频| 正在播放国产对白刺激| 一边摸一边抽搐一进一出视频| 久久精品aⅴ一区二区三区四区| 少妇裸体淫交视频免费看高清 | 91国产中文字幕| 欧美色视频一区免费| 又紧又爽又黄一区二区| 国产亚洲精品久久久久5区| 亚洲国产欧美网| 亚洲中文av在线| 制服人妻中文乱码| 黄片小视频在线播放| 法律面前人人平等表现在哪些方面| avwww免费| 在线av久久热| 精品国产一区二区三区四区第35| 高清av免费在线| 丝瓜视频免费看黄片| 欧美精品一区二区免费开放| 999精品在线视频| 免费观看a级毛片全部| 12—13女人毛片做爰片一| 亚洲一卡2卡3卡4卡5卡精品中文| 久久久久久人人人人人| av福利片在线| 丝瓜视频免费看黄片| 国产精品秋霞免费鲁丝片| 18禁观看日本| 国产97色在线日韩免费| 精品国产一区二区三区四区第35| 男女高潮啪啪啪动态图| 一本一本久久a久久精品综合妖精| 成人18禁在线播放| 欧美黄色片欧美黄色片| 一级毛片精品| 叶爱在线成人免费视频播放| 老司机深夜福利视频在线观看| 亚洲av电影在线进入| 9191精品国产免费久久| 香蕉丝袜av| 国产亚洲精品一区二区www | 99精品欧美一区二区三区四区| 久久久久久久久久久久大奶| 91老司机精品| 日本黄色视频三级网站网址 | 国产欧美亚洲国产| 中国美女看黄片| 免费一级毛片在线播放高清视频 | 精品国产乱子伦一区二区三区| 欧美在线黄色| 久久性视频一级片| www日本在线高清视频| 亚洲中文av在线| 欧美大码av| 一a级毛片在线观看| 精品一区二区三区四区五区乱码| 国产精品久久久久久精品古装| 狠狠狠狠99中文字幕| 亚洲中文日韩欧美视频| 热99久久久久精品小说推荐| 女人精品久久久久毛片| 不卡一级毛片| 99riav亚洲国产免费| 久久精品亚洲精品国产色婷小说| 成人免费观看视频高清| 久久热在线av| 80岁老熟妇乱子伦牲交| 视频在线观看一区二区三区| 国产1区2区3区精品| 午夜视频精品福利| 18在线观看网站| 午夜老司机福利片| 成年版毛片免费区| 久久久久久久午夜电影 | 99riav亚洲国产免费| 欧美日韩瑟瑟在线播放| av有码第一页| 黑人猛操日本美女一级片| 欧美激情 高清一区二区三区| 我的亚洲天堂| 欧美日韩中文字幕国产精品一区二区三区 | 亚洲av美国av| 亚洲精品久久午夜乱码| 美女高潮到喷水免费观看| 亚洲精品久久午夜乱码| 成人亚洲精品一区在线观看| 色婷婷久久久亚洲欧美| 狠狠狠狠99中文字幕| 超碰成人久久| 国产一区二区三区在线臀色熟女 | 老司机午夜福利在线观看视频| 夜夜躁狠狠躁天天躁| av天堂久久9| 他把我摸到了高潮在线观看| 亚洲av熟女| 一区二区三区国产精品乱码| 亚洲精品久久成人aⅴ小说| 久久午夜亚洲精品久久| 欧美日韩瑟瑟在线播放| 在线看a的网站| 两性午夜刺激爽爽歪歪视频在线观看 | 在线观看免费日韩欧美大片| 欧美不卡视频在线免费观看 | 欧美+亚洲+日韩+国产| 黄色视频,在线免费观看| 人妻丰满熟妇av一区二区三区 | 一级,二级,三级黄色视频| 精品高清国产在线一区| 精品一品国产午夜福利视频| 午夜老司机福利片| 亚洲中文字幕日韩| 亚洲国产精品一区二区三区在线| 美女福利国产在线| 日本精品一区二区三区蜜桃| 亚洲avbb在线观看| 在线视频色国产色| 操出白浆在线播放| 黄色成人免费大全| 亚洲av熟女| 欧美国产精品va在线观看不卡| 久久精品人人爽人人爽视色| 久久青草综合色| 99re6热这里在线精品视频| 搡老乐熟女国产| a级片在线免费高清观看视频| 国产成人啪精品午夜网站| 亚洲伊人色综图| 午夜福利乱码中文字幕| 很黄的视频免费| 精品国产一区二区久久| 91字幕亚洲| bbb黄色大片| 人人妻,人人澡人人爽秒播| 99久久精品国产亚洲精品| 婷婷精品国产亚洲av在线 | 欧美激情久久久久久爽电影 | 久久久久久人人人人人| 99香蕉大伊视频| 久久久久久久国产电影| bbb黄色大片| videos熟女内射| 精品欧美一区二区三区在线| 国产在线观看jvid| 亚洲成国产人片在线观看| 久久久国产欧美日韩av| x7x7x7水蜜桃| 精品久久久久久,| 18禁裸乳无遮挡动漫免费视频| 亚洲少妇的诱惑av| 日本撒尿小便嘘嘘汇集6| 精品亚洲成国产av| 婷婷丁香在线五月| 日韩欧美一区视频在线观看| 伦理电影免费视频| 亚洲,欧美精品.| av国产精品久久久久影院| 亚洲男人天堂网一区| 国产高清videossex| 精品乱码久久久久久99久播| 久久青草综合色| 亚洲精品美女久久av网站| 国内久久婷婷六月综合欲色啪| 午夜福利乱码中文字幕| av天堂久久9| 一二三四社区在线视频社区8| 久久ye,这里只有精品| 中文字幕人妻丝袜一区二区| 中文字幕最新亚洲高清| 一本一本久久a久久精品综合妖精| 久久人人爽av亚洲精品天堂| 日本黄色日本黄色录像| 99精品在免费线老司机午夜| 久久精品人人爽人人爽视色| 香蕉久久夜色| 天天操日日干夜夜撸| 欧美日韩精品网址| 99riav亚洲国产免费| 999精品在线视频| 欧美日韩一级在线毛片| 99久久人妻综合| 18禁裸乳无遮挡动漫免费视频| 欧美在线黄色| 视频在线观看一区二区三区| √禁漫天堂资源中文www| videos熟女内射| 首页视频小说图片口味搜索| 18禁观看日本| 亚洲人成伊人成综合网2020| 国产亚洲精品第一综合不卡| 久久草成人影院| 日韩精品免费视频一区二区三区| 色尼玛亚洲综合影院| 亚洲成人国产一区在线观看| 人人澡人人妻人| 亚洲,欧美精品.| 脱女人内裤的视频| 叶爱在线成人免费视频播放| 欧美日韩av久久| 欧美日韩成人在线一区二区| 婷婷成人精品国产| 国产男女超爽视频在线观看| 无人区码免费观看不卡| 精品人妻1区二区| 最近最新免费中文字幕在线| 国产亚洲av高清不卡| tocl精华| 飞空精品影院首页| 国产欧美日韩一区二区精品| 少妇粗大呻吟视频| 操美女的视频在线观看| 村上凉子中文字幕在线| 欧美日韩亚洲国产一区二区在线观看 | 一级黄色大片毛片| 欧美乱妇无乱码| 日韩欧美国产一区二区入口| 十分钟在线观看高清视频www| 精品亚洲成国产av| 亚洲avbb在线观看| 亚洲第一青青草原| 人人妻人人添人人爽欧美一区卜| 成人免费观看视频高清| 亚洲欧美一区二区三区久久| 91国产中文字幕| 美女午夜性视频免费| 一区二区三区国产精品乱码| 亚洲人成电影观看| 日本欧美视频一区| 91精品国产国语对白视频| 在线观看午夜福利视频| 久久国产乱子伦精品免费另类| 免费在线观看日本一区| 天天操日日干夜夜撸| 乱人伦中国视频| 91老司机精品| 国产精品久久久久久人妻精品电影| 999久久久国产精品视频| 国产精品 欧美亚洲| 欧美日韩亚洲综合一区二区三区_| 国产精品1区2区在线观看. | 国产精品久久久久久精品古装| 高清av免费在线| 天天添夜夜摸| 老司机靠b影院| 美女扒开内裤让男人捅视频| 久久国产精品大桥未久av| 国产无遮挡羞羞视频在线观看| 91麻豆av在线| 人人妻人人澡人人爽人人夜夜| 精品国产超薄肉色丝袜足j| 中出人妻视频一区二区| 久久久久精品人妻al黑| 搡老熟女国产l中国老女人| 中文字幕人妻丝袜制服| 国产成人影院久久av| 黄色成人免费大全| 在线观看免费日韩欧美大片|