• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Influence of correlation scale errors on aquifer hydraulic conductivity inversion precision

    2020-11-15 07:44:16YunxiaoMuLeiZhuTongqingShenMengZhangYuanyuanZha
    Water Science and Engineering 2020年3期

    Yun-xiao Mu ,Lei Zhu ,*,Tong-qing Shen ,Meng Zhang ,Yuan-yuan Zha

    a School of Civil Engineering and Water Conservancy,Ningxia University,Yinchuan 750021,China

    b Engineering Research Center for Efficient Utilization of Modern Agricultural Water Resources in Arid Regions,Ministry of Education,Yinchuan 750021,China

    c State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University,Wuhan 430072,China

    Received 11 July 2019;accepted 16 February 2020

    Available online 28 September 2020

    Abstract In order to investigate the influence of correlation scale error on the inversion precision of the hydraulic conductivity of the aquifer,the successive linear estimator(SLE)was used to invert the hydraulic conductivity field of a heterogeneous aquifer based on synthetic experiments.By increasing the numbers of observation wells and pumping tests,we analyzed the difference between the estimated and true values of hydraulic conductivity with different correlation scale errors.The relationships between the observation well number and the error in inversion results,and between the pumping test number and the error in inversion results were investigated.The results show that,if the amount of observed head data is insufficient,there will be errors in inversion results with changing correlation scale.Due to the existence of correlation scale error,the improvement of inversion precision gradually slows down with the increase of the amount of observed head data,which indicates that too much observed head data causes data redundancy.Therefore,for the synthetic experiments described in this paper,the observation well number should be less than 41,the pumping test number should be less than 17,and a more suitable method should be selected according to the precision requirements of specific situations in practical engineering.

    ? 2020 Hohai University.Production and hosting by Elsevier B.V.This is an open access article under the CC BY-NC-ND license(http://creativecommons.org/licenses/by-nc-nd/4.0/).

    Keywords:Hydraulic conductivity;Parameter inversion;Successive linear estimator;Correlation scale error;Observation well number;Pumping test number

    1.Introduction

    Uncertain hydraulic parameters are crucial to groundwater flow modeling.The observed head data from pumping tests are usually used to invert these unknown parameters.However,the nonlinear relationship between head data and hydraulic parameters hinders the effectiveness of the inversion.Yeh's group presented an iterative cokriging technique,the successive linear estimator(SLE),which used a linear estimation method to introduce the nonlinear relationship between head and the hydraulic parameters of aquifers(Yeh et al.,1996;Zhang and Yeh,1997).SLE is a parameter-estimation method based on geostatistics.It has been successfully applied to parameter estimation of saturated and unsaturated zones(Yeh et al.,1995;Hanna and Yeh,1998;Hughson and Yeh,2000),hydraulic tomography(Zhu and Yeh,2005),and electrical resistivity tomography(Yeh et al.,2002;Hao et al.,2008).Many scholars have conducted research based on SLE(Bohling et al.,2002;Zhu and Yeh,2005;Cardiff and Barrash,2011;Jimenez et al.,2013;Jiang et al.,2017).In contrast to the kriging method,SLE considers the nonlinear relationship between head and the hydraulic parameters of aquifers,and reveals more detailed aquifer properties with the same amount of head data(Kitanidis and Vomvoris,1983;Hoeksema and Kitanidis,1984).Zhu and Yeh(2005)have developed a sequential successive linear estimator(SSLE),which reduces the computational cost by sequentially containing the information obtained from different pumping tests(Yeh and Liu,2000;Chen et al.,2014;Liu et al.,2002;Illman et al.,2007;Dong et al.,2009;Zha et al.,2015,2016).Xiang et al.(2009)have proposed a simultaneous successive linear estimator(SimSLE),which contains all the head data from different pumping tests,to estimate the hydraulic properties of aquifers.SimSLE provides more constraints for the inversion problem and presents a higher convergence speed than SSLE(Xiang et al.,2009).

    For specific research areas,the properties of any point in space are definite.If we know the measured data of a point in space,then the spatial distribution of its properties is determined.However,due to the limitations of observation technology and measurement cost,it is impossible to obtain the hydrogeological parameters of every point in the soil(Tang et al.,2012).Through numerical experiments,Yeh and Liu(2000)concluded that when there were enough observed head data,the variance and correlation scale of the estimated values of hydraulic parameters used for inversion had little influence on inversion results(Zhao et al.,2015).However,in practice,the number of observation wells is much less than the number of nodes required in numerical models,and the prior understanding of the correlation scale contains errors.This study aimed to investigate the influence of correlation scale error on inversion precision with different amounts of observation data based on synthetic experiments.

    2.Model description

    2.1.Successive linear estimator

    SLE was developed with the kriging and cokriging methods(Yeh et al.,1995;Hughson and Yeh,2000;Zhang and Yeh,1997).SLE calculates the head h field using the groundwater flow governing equation,and the corresponding hydraulic conductivity K field is obtained from the kriging or cokriging method to determine the difference between the observed and estimated values at each observation point.These differences are applied to the linear estimation to modify the initial estimated value of K,which is subsequently used to calculate the new head field.The differences between the observed head value and the modified head value at each observation point are obtained again.Then,the differences are replaced by the linear estimation to further modify the estimated value of K.This process iterates until the misfit error is stable or can be ignored(Yeh et al.,1996;Ye,2017).Considering the case in which head during a steady-state flow condition is used to estimate the hydraulic conductivity,SLE takes the following form:

    where xmand xjrepresent observation points;^f(k)(xm)is the previous estimate at xmmade using the kriging or cokriging method;h*(xj)and h(k)(xj)are the observed and simulated head values,respectively,at observation location xj;the superscript k is the iteration index;represents the contribution of the difference between the observed value and the estimated value of h at xjto the estimated value of f at xmat the kth iteration;and n represents the total number of observation points(Zhang and Yeh,1997;Xiang et al.,2009;Ye,2017).

    2.2.Evaluation criteria for inversion results

    The mean absolute error MAE,root mean square error RMSE,correlation coefficient r,and determination coefficient R2are used as the criteria to evaluate the error of SLE inversion results.The mathematical expressions of MAE,RMSE,and r are as follows:

    3.Numerical experiments

    The numerical experiments were based on variably saturated flow and transport utilizing the modified method of characteristics,in two dimensions(VSAFT2),a model developed by Yeh et al.(1993).VSAFT2 can execute forward calculation and groundwater parameter inversion of twodimensional groundwater flow.Its core algorithm is SLE,and the simulation results can be displayed and postprocessed with Tecplot 360.

    3.1.Synthetic experiments

    The study area is a horizontal two-dimensional heterogeneous aquifer of 10 km×10 km.The mean value of the hydraulic conductivity K is 6.5 m/d;the variance of lnK is 4;the correlation scale of K values in the x and y directions is 3.0 km;the upper boundary and lower boundary are constant head boundaries,with values of 5 m and 4 m,respectively;and the left and right boundaries are impermeable boundaries.In the experiment,a pumping well P1 with a flow rate of 3 000 m3/d was set.The material field of hydraulic conductivity K is shown in Fig.1,and the head results of the synthetic experimental study area are shown in Fig.2,in which the white dots represent observation wells,and the red dot represents the pumping well.

    Fig.1.Material field of hydraulic conductivity.

    Fig.2.Contour map of head.

    3.2.SLE parameter inversion

    The setting of the study area,the hydraulic conductivity,and the boundary conditions of SLE parameter inversion were the same as the settings of the synthetic experiments.The correlation scale of K was the same in the x and y directions,and was changed based on the synthetic experiments.The head values calculated from the synthetic experiments were used as observed values in parameter inversion to obtain the spatial distribution of the hydraulic parameter estimation values.In scenario 1,with the change of the correlation scale,the observation well number(nw)was increased in turn(from 9 to 25,41,57,73,and 81)for parameter inversion.In scenario 2,the pumping test number(nt)was increased in turn(from 1 to 17,33,49,and 65)for parameter inversion.The values and errors of the correlation scale are shown in Table 1.

    Table 1 Values and errors of correlation scale.

    4.Results and discussion

    4.1.Inversion results of synthetic experiments

    4.1.1.Increased observation well number

    The parameter inversion results when the correlation scale in parameter inversion is 3.0 km(which is the same as that in the true field in synthetic experiments)and the observation well number is nine are shown in Fig.3.

    The parameter inversion results using the correlation scale of 1.5 km as an example,with the observation well number increasing from 9 to 81 are shown in Fig.4 and Fig.5.

    When the estimated value of lnK deviates more from the true value,the error between the estimated value and true value is larger.Through comparison,it can be seen from Fig.3(b)and Fig.5(a)that the estimated lnK obtained through inversion is more scattered and more deviated from the true value when the correlation scale is 1.5 km,as compared with that when the correlation scale is 3.0 km,indicating that the error in inversion results increases when the correlation scale is decreased.

    Fig.5 shows that for the correlation scale of 1.5 km,when only nine observation wells are used to invert hydraulic conductivity,the inversed hydraulic conductivity field is relatively dispersed and the deviation of the inversion results from the true value is large.When the observation well number increases from 9 to 25,41,57,73,and 81,the inversed hydraulic conductivity moves closer and closer to the true value,with R2increasing from 0.07 to 0.39,0.51,0.54,0.57,and 0.58,respectively.Therefore,with the increase of the observation well number,there is a gradual decrease in the error of the estimated hydraulic conductivity value and an improvement of the inversion precision.

    4.1.2.Increased pumping test number

    Using the correlation scale of 1.5 km as an example,when the observation well number is nine,and the pumping test number is increased from 1 to 65,the parameter inversion results are shown in Figs.6 and 7.

    Fig.7(a)shows that for the correlation scale of 1.5 km,when the pumping test number is only one,the inversed hydraulic conductivity field is relatively dispersed,and the deviation of the inversion results from the true value is large.When the pumping test number is increased from 1 to 17,33,49,and 65,the estimated values of hydraulic conductivity gradually approach the true value,with the R2value increasing from 0.07 to 0.81,0.87,0.90,and 0.91,respectively,showing that with the increase of the pumping test number,the error of the estimated values of hydraulic conductivity gradually decreases,and the inversion precision is improved.

    Fig.3.Inversion results of hydraulic conductivity at a correlation scale of 3.0 km.

    Fig.4.Field of hydraulic conductivity at a correlation scale of 1.5 km with increasing observation well number.

    4.2.Error analysis

    4.2.1.Increased observation well number

    Fig.5.Scatter diagram of lnK at a correlation scale of 1.5 km with increasing observation well number.

    Fig.6.Field of hydraulic conductivity at a correlation scale of 1.5 km with increasing pumping test number.

    The variations of the inversion result error with different observation well numbers and inversion correlation scale values when the pumping test number is one are shown in Fig.8.When the correlation scale is decreased by 10%-90%,the inversion result errors MAE and RMSE decrease when the observation well number is less than 41,while r and R2increase.When the observation well number is greater than 41,changes in MAE,RMSE,r,and R2diminish.Table 2 shows the variations of R2with the observation well number for the correlation scale errors of-50%and-90%.The results show that the precision is improved more rapidly when the observation well number is less than 41,compared with when the observation well number is greater than 41.

    Fig.7.Scatter diagram of lnK at a correlation scale of 1.5 km with increasing pumping test number.

    The variations of the inversion result error with the increas e of inversion correlation scale value at different numbers of observation wells are shown in Fig.9.When the correlation scale is increased by 10%-100%,MAE and RMSE decrease,and r and R2increase when the observation well number is less than 41.When the observation well number is greater than 41,MAE,RMSE,r,and R2flatten and the changes become relatively small.Table 3 shows the variations of R2with the observation well number for the correlation scale errors of 50% and 100%.The results show that the precision is improved more rapidly when the observation well number is less than 41,compared with when the observation well number is greater than 41.

    Fig.8.Relationship between observation well number and inversion result evaluation indices of MAE,r,RMSE,and R2 with reducing correlation scale.

    4.2.2.Increased pumping test number

    The variations of the inversion result error with the decrease of inversion correlation scale value at different pumping test numbers when the observation well number is nine are shown in Fig.10.When the correlation scale is decreased by 10%-90%,the values of MAE and RMSE decrease with a pumping test number less than 17,and the r and R2values increases.When the pumping test number is greater than 17,changes in MAE,RMSE,r,and R2diminish.It should be noted that when the correlation scale error is-90%,increasing the pumping test number cannot reduce the inversion result error since the correlation scale error is too large.Table 4 shows the variations of R2with the pumping test number for the correlation scale errors of-50% and-90%.The results show that the precision is improved more rapidly when the pumping test number is less than 17,compared with when the pumping test number is greater than 17.

    Table 2 Variation of R2 with observation well number for correlation scale errors of-50% and-90%.

    Fig.9.Relationship between observation well number and inversion result evaluation indices of MAE,r,RMSE,and R2 with increasing correlation scale.

    Table 3 Variation of R2 with observation well number for correlation scale errors of 50% and 100%.

    Fig.10.Relationship between pumping test number and inversion result evaluation indices of MAE,r,RMSE,and R2 with reducing correlation scale.

    Table 4 Variation of R2 with pumping test number for correlation scale errors of-50% and-90%.

    Based on the correlation scale of 3.0 km in synthetic experiments,with the increase of inversion correlation scale value,the variation of inversion result error with different pumping test numbers is shown in Fig.11.When the correlation scale is increased by 10%-100% and the pumping test number is less than 17,MAE and RMSE decrease,while r and R2increase.When the pumping test number is greater than 17,MAE,RMSE,r,and R2begin to flatten gradually and the change becomes relatively small.Table 5 shows the variations of R2with the pumping test number for the correlation scale errors of 50%and 100%.The results show that the precision is improved more rapidly when the pumping test number is less than 17,compared with when the pumping test number is greater than 17.

    Fig.11.Relationship between pumping test number and inversion result evaluation indices of MAE,r,RMSE,and R2 with increasing correlation scale.

    Table 5Variation of R2 with pumping test number for correlation scale errors of 50% and 100%.

    5.Discussion

    It can be seen from Figs.8 and 9 that,when there are nine observation wells,the inversion result errors are large due to the small amount of observed head data and the existence of correlation scale errors.As shown in Figs.10 and 11,when there is only one pumping test,the inversion result errors are large due to the small amount of observed head data and the existence of correlation scale errors.With the increase of observation well number and pumping test number,the errors in inversion results diminish,and the inversion precision is improved gradually,but the rate of improvement slows.For example,when the correlation scale is 2.7 km(relative error of-10%)and the observation well number increases from 9 to 41(increases by 39.5%),the inversion precision is improved by 237%;when the observation well number increases from 41 to 81(increases by 49.4%),the inversion precision is only improved by 15%.When the pumping test number increases from 1 to 33(increases by 40.7%),the inversion precision is improved by 443%;when the pumping test number increases from 33 to 65(increases by 39.5%),the inversion precision is only improved by 5.7%.The reason is as follows:the error in the inversion result is caused by the correlation scale error,the insufficient observed head data amount,and the numerical calculation error.The errors in the inversion result caused by the correlation scale error and the insufficient observed head data amount are offset gradually with the increase of observation well number and pumping test number.However,the numerical calculation error cannot be eliminated,which will become more apparent with a large number of observation wells and pumping tests.

    In terms of improving inversion precision,based on the correlation scale of 3.0 km in synthetic experiments,the inversion correlation scale value is changed.For a correlation scale error of-50%,the determination coefficient is 0.51 when the observation well number is 81;while the determination coefficient increases to 0.84 when the pumping test number is 65.For a correlation scale error of 50%,the determination coefficient is 0.37 when the observation well number is 81;while the determination coefficient increases to 0.67 when the pumping test number is 65.Considering that the method of increasing the pumping test number needs less wells than the method of increasing the observation well number,for a constant correlation scale error,increasing the pumping test number is more effective than increasing the observation well number.However,when the observation well number is greater than 41 and the pumping test number is more than 17,the variations of MAE,RMSE,r,and R2begin to flatten gradually and the change becomes relatively small.Therefore,for the synthetic experiments described in this paper,in order to obtain better inversion results,we can select the observation well number less than 41 and the pumping test number less than 17 to inverse the hydraulic conductivity of aquifers.However,when the error of the correlation scale is too great,it is difficult to obtain the ideal inversion result no matter which method is used.

    6.Conclusions

    (1)When the amount of observed head data is insufficient,changing the correlation scale based on the value in synthetic experiments will introduce errors into the inversion results of hydraulic conductivity.

    (2)With the correlation scale error,the inversion precision of aquifer hydraulic conductivity increases rapidly with the observation well number and the pumping test number at first,then the improvement of inversion precision slows down when the observation well number and the pumping test number are increased to certain numbers.This is mainly due to the fact that with the increase of observed head data amount,the errors caused by correlation scale error and the insufficient observed head data amount are gradually offset,while the errors of numerical calculation become more and more apparent.For the synthetic experiments in this paper,the observation well number should be less than 41,and the pumping test number should be less than 17.

    (3)When the precision of inversion results is required to be high,it is recommended to adopt the method of increasing the pumping test number.When the inversion precision is not required to be particularly high,it should be considered to increase the observation well number,because this method has the advantages of higher computational efficiency and less time than the method of increasing the pumping test number.If the correlation scale error is too great,no matter which method is used,it is difficult to obtain the ideal inversion results.Determination of which method is better should still include consideration of the economic benefits,which is not discussed in this paper.

    (4)The results reveal that the correlation scale is crucial for inversion results if the amount of observed head data is insufficient,which should be measured before the synthetic experiments.The correlation scale can be obtained by measuring the saturated hydraulic conductivity of a geologic medium at some intervals along a transect line.It is assumed that this geologic medium consists of many clay lenses.Intuitively,we would expect that pairs of hydraulic conductivity values measured at intervals within a clay lens will be highly correlated,and measurements taken at intervals greater than the dimension of the clay lens are uncorrelated.

    Declaration of competing interest

    The authors declare no conflicts of interest.

    99久久人妻综合| 亚洲精品乱码久久久久久按摩| 免费日韩欧美在线观看| 人妻系列 视频| 国产成人精品福利久久| 国产乱来视频区| 亚洲图色成人| 国产免费又黄又爽又色| 18禁国产床啪视频网站| 久久久久久久久久久免费av| 国产福利在线免费观看视频| 制服诱惑二区| 国产精品人妻久久久影院| 国产成人精品婷婷| 国产视频首页在线观看| 国产欧美另类精品又又久久亚洲欧美| 国产精品一二三区在线看| 色视频在线一区二区三区| 国产欧美日韩综合在线一区二区| 精品一品国产午夜福利视频| 国产日韩欧美视频二区| 亚洲,一卡二卡三卡| 日韩大片免费观看网站| 一级,二级,三级黄色视频| 亚洲精品一二三| 午夜精品国产一区二区电影| 亚洲综合精品二区| 激情五月婷婷亚洲| 99香蕉大伊视频| 精品福利永久在线观看| 久久久欧美国产精品| 免费看av在线观看网站| 久久 成人 亚洲| 亚洲一级一片aⅴ在线观看| 人成视频在线观看免费观看| 国产精品国产av在线观看| 国产一级毛片在线| 精品卡一卡二卡四卡免费| av又黄又爽大尺度在线免费看| 狠狠婷婷综合久久久久久88av| 欧美97在线视频| 久久精品久久久久久久性| 大片免费播放器 马上看| 日韩av免费高清视频| 黄片无遮挡物在线观看| 欧美日韩综合久久久久久| 成人午夜精彩视频在线观看| 天天躁夜夜躁狠狠躁躁| a级毛片黄视频| 国产av国产精品国产| 久久久国产一区二区| 一区在线观看完整版| 午夜福利在线观看免费完整高清在| 男女无遮挡免费网站观看| 如何舔出高潮| 在线 av 中文字幕| 啦啦啦视频在线资源免费观看| 各种免费的搞黄视频| 男人操女人黄网站| 久久久久久久久久久久大奶| 色94色欧美一区二区| 久久毛片免费看一区二区三区| 久久久精品区二区三区| 国产 精品1| 久久精品夜色国产| 99热全是精品| 欧美精品高潮呻吟av久久| 国产高清不卡午夜福利| 精品国产露脸久久av麻豆| 国产精品一二三区在线看| 在线免费观看不下载黄p国产| 国产精品熟女久久久久浪| 精品少妇内射三级| 午夜福利视频精品| 国产精品久久久久久av不卡| 黑人欧美特级aaaaaa片| 亚洲情色 制服丝袜| 在线观看美女被高潮喷水网站| 大片电影免费在线观看免费| 成人18禁高潮啪啪吃奶动态图| 免费不卡的大黄色大毛片视频在线观看| 熟女电影av网| 成人毛片60女人毛片免费| 免费女性裸体啪啪无遮挡网站| 国产一区二区三区综合在线观看 | 久久久国产一区二区| 亚洲精品乱久久久久久| 日韩av不卡免费在线播放| 国产av精品麻豆| 国产不卡av网站在线观看| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 狂野欧美激情性xxxx在线观看| 午夜久久久在线观看| 久久影院123| 最近中文字幕高清免费大全6| 中文字幕最新亚洲高清| 狂野欧美激情性xxxx在线观看| 亚洲一级一片aⅴ在线观看| 国产亚洲午夜精品一区二区久久| 极品人妻少妇av视频| 波多野结衣一区麻豆| 亚洲精品自拍成人| 久久人妻熟女aⅴ| 永久网站在线| 亚洲欧美精品自产自拍| 国产有黄有色有爽视频| 国产av精品麻豆| 一级毛片黄色毛片免费观看视频| 伦精品一区二区三区| 一区二区日韩欧美中文字幕 | 九草在线视频观看| 精品人妻熟女毛片av久久网站| 国产一区有黄有色的免费视频| 中文字幕免费在线视频6| 亚洲国产成人一精品久久久| 久久99热6这里只有精品| 国产老妇伦熟女老妇高清| 一本久久精品| 王馨瑶露胸无遮挡在线观看| 久久国产亚洲av麻豆专区| 久久99热这里只频精品6学生| 日韩中文字幕视频在线看片| 天天操日日干夜夜撸| 精品视频人人做人人爽| 午夜精品国产一区二区电影| 日日摸夜夜添夜夜爱| 国产精品国产三级国产av玫瑰| 日本-黄色视频高清免费观看| 久久这里有精品视频免费| 国产色爽女视频免费观看| 久热久热在线精品观看| av天堂久久9| av又黄又爽大尺度在线免费看| av播播在线观看一区| 精品久久久精品久久久| 校园人妻丝袜中文字幕| 亚洲欧洲日产国产| 国产精品国产三级国产av玫瑰| 哪个播放器可以免费观看大片| 亚洲av日韩在线播放| 男的添女的下面高潮视频| 黑人猛操日本美女一级片| 欧美人与性动交α欧美软件 | 这个男人来自地球电影免费观看 | 久久人妻熟女aⅴ| 久久久久精品久久久久真实原创| 国产成人av激情在线播放| 久久久久久久大尺度免费视频| 国产亚洲av片在线观看秒播厂| a级片在线免费高清观看视频| 国产精品 国内视频| 黑人高潮一二区| 国产成人a∨麻豆精品| 欧美成人精品欧美一级黄| 97超碰精品成人国产| 纵有疾风起免费观看全集完整版| 日韩大片免费观看网站| 亚洲成人手机| av视频免费观看在线观看| 高清黄色对白视频在线免费看| 五月伊人婷婷丁香| 日韩成人av中文字幕在线观看| 国产69精品久久久久777片| 秋霞伦理黄片| 母亲3免费完整高清在线观看 | 九草在线视频观看| 欧美日韩精品成人综合77777| 亚洲情色 制服丝袜| 狂野欧美激情性bbbbbb| 国产不卡av网站在线观看| 中文欧美无线码| 欧美性感艳星| 国产成人欧美| 一级毛片黄色毛片免费观看视频| 亚洲av成人精品一二三区| 人人妻人人添人人爽欧美一区卜| 日韩欧美精品免费久久| 国产成人午夜福利电影在线观看| 日本免费在线观看一区| 爱豆传媒免费全集在线观看| 一级黄片播放器| 国产一级毛片在线| 国产精品人妻久久久久久| www.av在线官网国产| 纵有疾风起免费观看全集完整版| 久久精品久久久久久噜噜老黄| 黄色毛片三级朝国网站| 老司机亚洲免费影院| 中文字幕免费在线视频6| 亚洲少妇的诱惑av| 久久久欧美国产精品| 国产伦理片在线播放av一区| 色5月婷婷丁香| 免费大片黄手机在线观看| 国产成人精品一,二区| 国产深夜福利视频在线观看| 精品亚洲成a人片在线观看| 久久精品熟女亚洲av麻豆精品| 亚洲精品久久成人aⅴ小说| 永久免费av网站大全| 黄片无遮挡物在线观看| 街头女战士在线观看网站| 国产国语露脸激情在线看| 亚洲综合色网址| 人妻系列 视频| 久久久久国产精品人妻一区二区| 丝袜美足系列| 成人无遮挡网站| 久久国内精品自在自线图片| 久久国内精品自在自线图片| 午夜福利影视在线免费观看| 一本大道久久a久久精品| 9热在线视频观看99| av国产久精品久网站免费入址| 五月开心婷婷网| 亚洲精品美女久久久久99蜜臀 | xxxhd国产人妻xxx| 高清不卡的av网站| 狂野欧美激情性bbbbbb| 最近手机中文字幕大全| 一二三四在线观看免费中文在 | 黄网站色视频无遮挡免费观看| 校园人妻丝袜中文字幕| 亚洲婷婷狠狠爱综合网| 日韩欧美精品免费久久| 少妇猛男粗大的猛烈进出视频| 欧美性感艳星| 精品久久久精品久久久| 下体分泌物呈黄色| 久久精品国产a三级三级三级| 久久久久久久久久成人| 国产免费福利视频在线观看| 亚洲美女黄色视频免费看| 国产成人免费观看mmmm| 丰满迷人的少妇在线观看| 精品久久久精品久久久| 欧美丝袜亚洲另类| 久久精品熟女亚洲av麻豆精品| 伦精品一区二区三区| 色94色欧美一区二区| 男女高潮啪啪啪动态图| 午夜精品国产一区二区电影| 街头女战士在线观看网站| 久久精品久久精品一区二区三区| 如何舔出高潮| 交换朋友夫妻互换小说| 久久99热这里只频精品6学生| 亚洲精品成人av观看孕妇| 人体艺术视频欧美日本| 多毛熟女@视频| 青春草国产在线视频| 另类亚洲欧美激情| 18禁裸乳无遮挡动漫免费视频| 精品卡一卡二卡四卡免费| 高清在线视频一区二区三区| 日韩一本色道免费dvd| 欧美精品av麻豆av| 国产色爽女视频免费观看| 人妻一区二区av| 亚洲精品自拍成人| 亚洲四区av| 三上悠亚av全集在线观看| www.av在线官网国产| 七月丁香在线播放| 亚洲精品成人av观看孕妇| 亚洲久久久国产精品| 亚洲国产av新网站| 水蜜桃什么品种好| 黄色配什么色好看| 婷婷色麻豆天堂久久| 亚洲av日韩在线播放| 亚洲精品成人av观看孕妇| 精品视频人人做人人爽| 性高湖久久久久久久久免费观看| 免费女性裸体啪啪无遮挡网站| 波多野结衣一区麻豆| 一级a做视频免费观看| 中文字幕精品免费在线观看视频 | 男女午夜视频在线观看 | 91aial.com中文字幕在线观看| 亚洲欧美成人综合另类久久久| 一级片'在线观看视频| 中文字幕精品免费在线观看视频 | kizo精华| 亚洲欧美精品自产自拍| 国产一区亚洲一区在线观看| 午夜老司机福利剧场| 高清毛片免费看| 在线天堂中文资源库| 超色免费av| 26uuu在线亚洲综合色| 制服人妻中文乱码| 麻豆乱淫一区二区| 国产高清三级在线| 亚洲在久久综合| 高清黄色对白视频在线免费看| 国产精品一国产av| 欧美精品国产亚洲| 丝袜美足系列| 美女视频免费永久观看网站| 老女人水多毛片| 免费大片黄手机在线观看| 亚洲av成人精品一二三区| 久久热在线av| 狂野欧美激情性bbbbbb| 国产淫语在线视频| 亚洲av电影在线进入| 亚洲美女黄色视频免费看| 一二三四中文在线观看免费高清| 国产精品熟女久久久久浪| 精品亚洲乱码少妇综合久久| 亚洲国产日韩一区二区| 欧美日韩精品成人综合77777| 最后的刺客免费高清国语| 亚洲人与动物交配视频| 国产色婷婷99| 国产高清不卡午夜福利| 亚洲国产av新网站| 国精品久久久久久国模美| 麻豆精品久久久久久蜜桃| 久久婷婷青草| 国产精品一区二区在线观看99| 在线看a的网站| 搡女人真爽免费视频火全软件| 成人黄色视频免费在线看| 爱豆传媒免费全集在线观看| 9191精品国产免费久久| 中文字幕免费在线视频6| 国产又色又爽无遮挡免| 美女大奶头黄色视频| 大码成人一级视频| 大香蕉97超碰在线| 国产亚洲av片在线观看秒播厂| 黄色一级大片看看| 日本色播在线视频| 国产精品女同一区二区软件| 99热全是精品| 亚洲国产色片| 亚洲精品美女久久av网站| 日韩中文字幕视频在线看片| 成人二区视频| 一区二区三区精品91| 夜夜骑夜夜射夜夜干| 欧美老熟妇乱子伦牲交| xxx大片免费视频| 国产成人欧美| av.在线天堂| 咕卡用的链子| 国产精品不卡视频一区二区| 爱豆传媒免费全集在线观看| 老女人水多毛片| 国产精品成人在线| 热99国产精品久久久久久7| 最近手机中文字幕大全| 亚洲经典国产精华液单| 男女边吃奶边做爰视频| 午夜福利视频在线观看免费| 波多野结衣一区麻豆| 最近最新中文字幕免费大全7| 国产精品免费大片| 亚洲精品中文字幕在线视频| 插逼视频在线观看| 亚洲精品久久午夜乱码| 国产一区有黄有色的免费视频| 两性夫妻黄色片 | 国产极品天堂在线| 亚洲五月色婷婷综合| 女人久久www免费人成看片| 爱豆传媒免费全集在线观看| 久久国产精品男人的天堂亚洲 | 欧美成人午夜免费资源| 亚洲精品自拍成人| 亚洲精品国产av成人精品| 亚洲经典国产精华液单| 亚洲情色 制服丝袜| 三级国产精品片| 亚洲一区二区三区欧美精品| 日韩免费高清中文字幕av| 免费在线观看完整版高清| 亚洲伊人久久精品综合| 国产日韩欧美亚洲二区| 日韩中字成人| 国产精品一二三区在线看| 免费看光身美女| 狂野欧美激情性xxxx在线观看| 女性被躁到高潮视频| 久久 成人 亚洲| av一本久久久久| 青青草视频在线视频观看| 免费日韩欧美在线观看| 亚洲伊人色综图| 一区二区日韩欧美中文字幕 | 欧美成人午夜精品| 久久精品熟女亚洲av麻豆精品| 成人亚洲欧美一区二区av| 精品一区二区三区四区五区乱码 | 久久人人97超碰香蕉20202| 免费高清在线观看日韩| 亚洲国产精品专区欧美| 欧美 亚洲 国产 日韩一| 欧美成人精品欧美一级黄| 黑丝袜美女国产一区| 中国国产av一级| 日韩欧美一区视频在线观看| 亚洲熟女精品中文字幕| 麻豆乱淫一区二区| 欧美人与性动交α欧美精品济南到 | 你懂的网址亚洲精品在线观看| 日日爽夜夜爽网站| videosex国产| 亚洲欧美日韩卡通动漫| 久久亚洲国产成人精品v| 国产成人av激情在线播放| 国产成人精品一,二区| 国产男女内射视频| 在线观看人妻少妇| 人人妻人人澡人人看| 国产乱人偷精品视频| 日本av免费视频播放| 亚洲国产色片| 五月开心婷婷网| 精品卡一卡二卡四卡免费| 日韩成人伦理影院| 日韩av免费高清视频| 免费人成在线观看视频色| 亚洲av.av天堂| 三上悠亚av全集在线观看| 日韩精品有码人妻一区| 国产一级毛片在线| 亚洲一区二区三区欧美精品| 国产无遮挡羞羞视频在线观看| 亚洲人成77777在线视频| 在线观看美女被高潮喷水网站| 巨乳人妻的诱惑在线观看| 国产一区二区在线观看av| 国产乱来视频区| 国产一区二区三区av在线| 日韩 亚洲 欧美在线| 母亲3免费完整高清在线观看 | 午夜免费鲁丝| 欧美变态另类bdsm刘玥| 亚洲内射少妇av| 丝袜脚勾引网站| 国产在线视频一区二区| 国产日韩一区二区三区精品不卡| 国产成人一区二区在线| √禁漫天堂资源中文www| 国产色爽女视频免费观看| 成人毛片60女人毛片免费| 亚洲欧美日韩另类电影网站| 国产永久视频网站| 亚洲欧美日韩卡通动漫| 久久国产精品大桥未久av| 热re99久久国产66热| 国产成人一区二区在线| 中文字幕av电影在线播放| 国产成人一区二区在线| 午夜福利视频精品| 亚洲精品456在线播放app| 91午夜精品亚洲一区二区三区| 精品久久国产蜜桃| av女优亚洲男人天堂| 成年动漫av网址| 国国产精品蜜臀av免费| 久久久久久久国产电影| 你懂的网址亚洲精品在线观看| 蜜臀久久99精品久久宅男| 观看美女的网站| 晚上一个人看的免费电影| 九九在线视频观看精品| 色哟哟·www| 亚洲av综合色区一区| 看十八女毛片水多多多| 视频中文字幕在线观看| 我要看黄色一级片免费的| 欧美最新免费一区二区三区| 久久这里有精品视频免费| 久久人妻熟女aⅴ| 亚洲欧洲日产国产| 国产成人欧美| 亚洲中文av在线| 草草在线视频免费看| 国产成人免费无遮挡视频| 极品少妇高潮喷水抽搐| 国产免费福利视频在线观看| 有码 亚洲区| 麻豆精品久久久久久蜜桃| a级毛片在线看网站| 毛片一级片免费看久久久久| 97在线人人人人妻| 这个男人来自地球电影免费观看 | 中文精品一卡2卡3卡4更新| 麻豆精品久久久久久蜜桃| 国产免费现黄频在线看| 午夜久久久在线观看| 如何舔出高潮| 大香蕉久久成人网| av电影中文网址| 亚洲av电影在线进入| 国国产精品蜜臀av免费| 亚洲在久久综合| 制服人妻中文乱码| 赤兔流量卡办理| 久久99热这里只频精品6学生| 少妇的逼水好多| 亚洲精品国产色婷婷电影| 国产午夜精品一二区理论片| 在线观看美女被高潮喷水网站| 精品一区二区三卡| 欧美日韩视频高清一区二区三区二| 国产淫语在线视频| 一边亲一边摸免费视频| 日韩在线高清观看一区二区三区| 大片电影免费在线观看免费| 免费人成在线观看视频色| 久久人人爽人人爽人人片va| 久久久欧美国产精品| 久久ye,这里只有精品| 伊人久久国产一区二区| 各种免费的搞黄视频| 欧美精品高潮呻吟av久久| 黑人高潮一二区| av黄色大香蕉| 亚洲欧洲日产国产| 欧美变态另类bdsm刘玥| 久久午夜综合久久蜜桃| h视频一区二区三区| 人人妻人人添人人爽欧美一区卜| 亚洲欧美成人精品一区二区| 有码 亚洲区| 九草在线视频观看| 亚洲精品av麻豆狂野| 国产成人精品福利久久| 久久99热这里只频精品6学生| 中国美白少妇内射xxxbb| 亚洲av福利一区| 精品视频人人做人人爽| 啦啦啦视频在线资源免费观看| 高清视频免费观看一区二区| 久久影院123| 欧美日韩综合久久久久久| 精品卡一卡二卡四卡免费| 国产高清不卡午夜福利| 成年人午夜在线观看视频| 精品人妻偷拍中文字幕| 最近的中文字幕免费完整| 永久网站在线| 日韩 亚洲 欧美在线| 最近最新中文字幕大全免费视频 | 最新的欧美精品一区二区| 日韩av在线免费看完整版不卡| 亚洲av电影在线观看一区二区三区| 黄网站色视频无遮挡免费观看| 久久久久国产网址| 亚洲精品色激情综合| 乱人伦中国视频| 大香蕉久久成人网| 我要看黄色一级片免费的| 黄色一级大片看看| 狂野欧美激情性xxxx在线观看| 国产乱人偷精品视频| 亚洲天堂av无毛| 亚洲五月色婷婷综合| 成人毛片a级毛片在线播放| 国语对白做爰xxxⅹ性视频网站| 欧美变态另类bdsm刘玥| 99久久中文字幕三级久久日本| 97精品久久久久久久久久精品| videosex国产| 观看美女的网站| 久久毛片免费看一区二区三区| 制服诱惑二区| 97人妻天天添夜夜摸| 男女下面插进去视频免费观看 | 免费黄频网站在线观看国产| 久久久久精品久久久久真实原创| 秋霞在线观看毛片| 22中文网久久字幕| 亚洲国产色片| 在线看a的网站| 婷婷色综合www| 黑丝袜美女国产一区| 国精品久久久久久国模美| 日韩成人伦理影院| av一本久久久久| 亚洲丝袜综合中文字幕| 亚洲av福利一区| 精品亚洲成a人片在线观看| 亚洲国产av影院在线观看| 熟妇人妻不卡中文字幕| 日韩伦理黄色片| 在线亚洲精品国产二区图片欧美| 国产黄色免费在线视频| 一二三四在线观看免费中文在 | 嫩草影院入口| 在线精品无人区一区二区三| 久久久久人妻精品一区果冻| 赤兔流量卡办理| 国产精品免费大片| 成人综合一区亚洲| 国产成人精品婷婷| 在线观看一区二区三区激情| 桃花免费在线播放| 十八禁高潮呻吟视频| 草草在线视频免费看| 免费黄网站久久成人精品| 欧美人与性动交α欧美精品济南到 | 伊人久久国产一区二区| 草草在线视频免费看| 国产有黄有色有爽视频| 国产成人免费无遮挡视频| 欧美激情极品国产一区二区三区 | 午夜福利视频在线观看免费| 亚洲国产精品专区欧美| 乱人伦中国视频|