• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    CENTRAL LIMIT THEOREM AND MODERATE DEVIATIONS FOR A CLASS OF SEMILINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATIONS*

    2020-11-14 09:41:42ShulanHU胡淑蘭

    Shulan HU (胡淑蘭)

    School of Statistics and Mathematics, Zhongnan University of Economics and Law,Wuhan 430073, China

    E-mail :hu shulan@zuel.edu.cn

    Ruinan LI (李瑞囡)

    School of Statistics and Information, Shanghai University of International Business and Economics,Shanghai 201620, China

    E-mail :ruinanli@amss.ac.cn

    Xinyu WANG (王新宇)?

    School of Mathematics and Statistics, Huazhong University of Science and Technology,Wuhan 430074, China

    E-mail :wang xin yu@hust.edu.cn

    Abstract In this paper we prove a central limit theorem and a moderate deviation principle for a class of semilinear stochastic partial differential equations, which contain the stochastic Burgers’ equation and the stochastic reaction-diffusion equation. The weak convergence method plays an important role.

    Key words stochastic Burgers’ equation; stochastic reaction-diffusion equation; large deviations; moderate deviations

    1 Introduction

    For any ε > 0, consider the semilinear stochastic partial differential equation (SPDE for short)

    for all (t,x) ∈ [0,T]× [0,1], with Dirichlet boundary conditions (Uε(t,0) = Uε(t,1) = 0) and initial condition Uε(0,x) = η(x) ∈ Lp([0,1]),p ≥ 2; W denotes the Brownian sheet defined on a probability space (?,F,{Ft}t≥0,P); the coefficients f =f(t,x,r),g =g(t,x,r),σ = σ(t,x,r)are Borel functions of (t,x,r) ∈ R+× [0,1]× R (see Section 2 for details). This family of semilinear equations contain both the stochastic Burgers’equation and the stochastic reactiondiffusion equation; see Gyngy [15]for details.

    Intuitively, as the parameter ε tends to zero, the solutions Uεof (1.1) will tend to the solution of

    for all (t,x)∈ [0,T]× [0,1], with the Dirichlet boundary conditions and initial condition η(x).

    It is always interesting to investigate deviations of Uεfrom the deterministic solution U0as ε decreases to 0; that is, the asymptotic behavior of the trajectory

    where λ(ε) is some deviation scale which strongly influences the asymptotic behavior of Xε.

    (2) If λ(ε)is identically equal to 1,we are in the domain of the central limit theorem(CLT for short). We will show thatconverges to a random field as ε ↓ 0.

    (3) When the deviation scale satisfies

    We are dealing with the moderate deviations (see [7, 13]). Throughout this paper, we assume that (1.3) is in place.

    The moderate deviation principle (MDP for short) enables us to refine the estimates obtained through the central limit theorem. It provides the asymptotic behavior forwhile the CLT gives asymptotic bounds for

    Like large deviations, moderate deviations arise quite naturally in the theory of statistical inference. The MDP can provide us with the rate of convergence and a useful method for constructing asymptotic confidence intervals; refer to the recent works [10, 11, 14]and the references therein. Usually, the quadratic form of the MDP’s rate function allows for explicit minimization and, in particular, it allows one to obtain an asymptotic evaluation for the exit time;see[18]. Quite recently,the study of the MDP estimates for stochastic(partial)differential equations was carried out as well; see [4, 8, 12, 17, 19, 21, 22]etc.. In particular,Belfadli et al.[1]proved an MDP for the law of a stochastic Burgers’ equation and established some useful estimates toward a CLT.

    In this paper, we shall study the problems of the CLT and the MDP for the semilinear SPDE (1.1)which contains a stochastic Burgers’equation and the stochastic reaction-diffusion equation. We generalize the moderate deviation result in[1]and prove the central limit theorem.

    The rest of this paper is organized as follows: in Section 2, we give the framework of the the semilinear SPDEs, and state the main results of the paper. In Section 3, we prove some convergence results. Section 4 is devoted to the proof of the central limit theorem. In Section 5, we prove the moderate deviation principle by using the weak convergence method.

    Throughout the paper,C(p) is a positive constant depending on the parameter p, and C is a constant depending on no specific parameter (except T and the Lipschitz constants), whose value may be different from line to line by convention.

    2 Framework and Main Results

    2.1 Framework

    Let us give the framework taken from [9]and [15].

    For any T > 0, assume that the coefficients f = f(t,x,r),g = g(t,x,r),σ = σ(t,x,r) in(1.1) are Borel functions of (t,x,r) ∈ [0,T]× [0,1]× R and that there exist positive constants K,L satisfying the following conditions:

    (H1) for all (t,x,r)∈ [0,T]×[0,1]×R, it holds that

    (H2) the function g is of the form g(t,x,r) = g1(t,x,r)+g2(t,r), where g1and g2are Borel functions satisfying that

    (H3) σ is bounded and for any (t,x,p,q)∈ [0,T]×[0,1]×R2,

    Furthermore, f and g are locally Lipschitz with a linearly growing Lipschitz constant, i.e.,

    Definition 2.1(mild solution) A random field Uε= {Uε(t,x) : t ∈ [0,T],x ∈ [0,1]} is called a mild solution of (1.1) with initial condition η if Uε(t,x) is Ft-measurable, (t,x) →Uε(t,x) is continuous a.s., and

    Here Gt(·,·) is the Green kernel associated with the heat operator ?/?t ? ?2/?x2with the Dirichlet boundary conditions.

    Foondun and Setayeshgar [9]proved the following result for the existence and uniqueness of the solution to eq.(1.1):

    Theorem 2.1([9, Theorem 2.2]) Under conditions (H1)–(H3), for any η ∈ Lp([0,1]),p ≥2, there exists a measurable functional

    Furthermore,from the proof of[9,Theorem 2.2],we know thatis bounded in probability, i.e.,

    Particularly,taking ε=0 in(1.1),we know that the determinate equation(1.2)admits a unique solution U0∈C([0,T];L2([0,1])), given by

    2.2 Main results

    To study the CLT and the MDP, we furthermore suppose that

    (H4) the coefficients f and g are differentiable with respect to the last variable, and the derivatives f′and g′are uniformly Lipschitz with respect to the last variable; more precisely,there exists a positive constant K′such that

    for all (t,x)∈ [0,T]× [0,1],p,q ∈ R.

    Combined with the growth condition (H3), we conclude that

    Our first main result is the following functional central limit theorem:

    Theorem 2.2Under conditions (H1)–(H4), for any T > 0, the processconverges to a random field V in probability on C([0,T];L2([0,1])), determined by

    The Cameron-Martin space associated with the Brownian sheet {W(t,x);t ∈ [0,T], x ∈[0,1]} is given by

    The space H is a Hilbert space with inner product

    The Hilbert space H is endowed with the norm

    In view of the assumption (1.3) and (2.5), by the LDP for SPDE (see [6]), one can obtain that V/λ(ε) obeys an LDP on C([0,T];L2([0,1])) with the speed λ2(ε) and with the good rate function

    where the function Xhis the solution of the following deterministic partial differential equation:

    Our second main result reads as follows:

    Theorem 2.3Under conditionsobeys an LDP on C([0,T];L2([0,1])) with the speed λ2(ε) and with the rate function I given by (2.9).

    3 Some Preliminary Estimates

    3.1 Some preliminary estimates

    The following estimates of Green function G hold (see Cardon-Weber [6], Walsh [20],Gyngy [15]): there exist positive constants K,a,b,d such that for all x,y ∈ [0,1]and 0 ≤s

    where ρ is the Euclidean distance in [0,T]× [0,1].

    For any v ∈ L∞([0,T];L1([0,1])),t ∈ [0,T],x ∈ [0,1], let J be a linear operator defined by

    Lemma 3.1([15, Lemma 3.1]) For any ρ ∈ [1,∞],q ∈ [1,ρ],K := 1+ 1/ρ ? 1/q, it holds that J is a bounded linear operator from Lγ([0,T];Lq[0,1])into C([0,T];Lρ[0,1])for any γ >2K?1. Moreover,J satisfies the following inequalities:

    (1) For every t ∈ [0,T]and γ >2K?1,

    (2) For every 0< α (K/2 ? α)?1, there exists a constant C >0 such that for all 0 ≤ s ≤ t ≤ T,

    3.2 The convergence of Uε

    This section is concerned with the convergence of Uεto U0as ε → 0.

    For any M >0, define the stopping time

    By (2.2), we know that

    Proposition 3.2Under conditions (H1)–(H3), there exists some constant C(M,L,σ,T)depending on M,L,σ,T such that

    ProofSince

    by (H3) and Cauchy-Schwarz’s inequality, we have that for any (t,x)∈ [0,T]× [0,1],

    Hence, applying Lemma 3.1 with ρ =2,q =1, and by Cauchy-Schwarz’s inequality, we have

    First taking the supremum of time over [0,t ∧ τM,ε], and then taking the expectation, by the definition of τM,εwe obtain that

    where we have used Fubini’s theorem in the last inequality.

    Putting (3.10), (3.12), (3.13) and (3.14) together, we have

    By Gronwall’s inequality (see [23]), we know that there exists a constant C(M,L,σ,T) such that

    The proof is complete.

    4 Proof of the Theorem 2.2

    Proof of Theorem 2.2LetWe will prove that for any δ >0,

    Recall the stopping time defined by

    to prove (4.1) by (3.8), it is sufficient to prove that for any M >0 large enough,

    By the definition of Vεand V, we have

    By Taylor’s formula, there exists a random field ηεtaking values in (0,1) such that

    Since f′is Lipschitz continuous, we have

    If we frist take the supremum of s over[0,t∧τM,ε],and then take the expectation,by Proposition 3.2 we have

    By first taking the supremum of s over [0,t ∧ τM,ε], and then taking the expectation, we have

    Using (4.5) and (4.6), we have

    For the term A3, by first taking the supremum of time over [0,t ∧ τM,ε], and then taking the expectation, by Burkholder’s inequality for stochastic integrals against Brownian sheets(see [16]), the Lipschitz continuity of σ and Proposition 3.2, we have

    Putting (4.3) and (4.7)–(4.9) together, we have

    By Gronwall’s inequalities ([23, Theorem 1]), (2.4) and (2.6), we have

    which implies (4.2).

    The proof is complete.

    5 Proof of the Theorem 2.3

    5.1 Weak convergence approach in LDP

    First, recall the definition of a large deviation principle (c.f.[7]). Let (?,F,P) be a probability space with an increasing family {Ft}0≤t≤Tof the sub-σ-fields of F satisfying the usual conditions. Let E be a Polish space with the Borel σ-field B(E).

    Definition 5.1A function I : E → [0,∞]is called a rate function on E, if for each M < ∞, the level set {x ∈ E : I(x) ≤ M} is a compact subset of E. A family of positive numbers {λ(ε)}ε>0is called a speed function if λ(ε)→ +∞ as ε → 0.

    Definition 5.2{Xε}is said to satisfy the large deviation principle on E with rate function I and with speed function {λ(ε)}ε>0, if the following two conditions hold:

    (a) (Upper bound) For each closed subset F of E,

    (b) (Lower bound) For each open subset G of E,

    Let A denote the class of real-valued{Ft}-predictable processes φ belonging to H a.s.,and let

    The set SNendowed with the weak topology is a Polish space. Define

    Recall the following result from Budhiraja et al. [5], which is based on certain variational representations for infinite dimensional Brownian motions ([2, 3]):

    Theorem 5.1([5, Theorem 7]) For any ε > 0, let Γεbe a measurable mapping from C([0,T]× [0,1];R) into E. Suppose that {Γε}ε>0satisfies that there exists a measurable map Γ0:C([0,T]×[0,1];R)?→ E such that

    (a) for any N <+∞ and family {hε}ε>0? ANsatisfying that hεconverge in distribution as SN-valued random elements to h as ε → 0,converges in distribution to

    (b) for every N <+∞, the setis a compact subset of E.Then the family {Γε(W)}ε>0satisfies an LDP in E with the rate function I given by

    with the convention inf ? = ∞.

    5.2 The skeleton equation

    The purpose of this part is to study the skeleton equation, which will be used in the weak convergence approach.

    Recall the skeleton equation defined in (2.10). Using the same strategy as that in the proof of the existence and uniqueness of the solution to eq.(1.1), we can state

    Proposition 5.2Under conditions (H1)–(H4), eq.(2.10) admits a unique solution in C([0,T];L2([0,1])) satisfying that

    For any h ∈H, set

    where Xhis the solution of (2.10).

    Theorem 5.3Under conditions (H1)–(H4), the mapping SN? h → Xh∈ C([0,T];L2([0,1])) is continuous with respect to the weak topology.

    ProofLet {h,(hn)n≥1} ? SNsuch that for any g ∈ H,

    We need to prove that

    Notice that

    By Cauchy-Schwarz’s inequality, (2.4), (2.6) and (5.2), we have

    Similarly, we obtain that

    Since σ is bounded, for any fixed (t,x)∈ [0,T]×[0,1],the function Gt?s(x,y)σ(s,y,U0(s,y)):(s,y) ∈[0,t]×[0,1]→R belongs to L2([0,T]×[0,1];R). Asweakly in L2([0,T]×[0,1];R), it holds that

    For any 0 ≤ s ≤ t ≤ T, applying formulas (3.5) and (3.6), by the boundness of σ and Hlder’s inequality, we obtain that

    In particular, taking s=0, we obtain that

    Hence, by a generalized Gronwall lemma (eg. [23, Theorem 1]), we have

    which, together with (5.12), implies the desired estimate (5.5).

    The proof is complete.

    5.3 The controlled equation

    This equation admits the unique strong solution

    where Γεstands for the solution functional from C([0,T]× [0,1];R) into C([0,T];L2([0,1])).

    The following lemma is a direct consequence of Girsanov’s theorem (refer to [9, Theorem 3.2]):

    Lemma 5.4For every fixed N ∈ N, let h ∈ ANand Γεbe given by (5.14). Then Xε,h:= Γε(W + λ(ε)h)∈ C([0,T];L2([0,1])) solves the following equation:

    Furthermore, by a similar calculation to that of [19, Lemma 5.2], we know that

    Proposition 5.5Assume(H1)–(H4). For every fixed N ∈ N,let hε,h ∈ ANbe such that hεconverges in distribution to h as ε → 0. Then

    in C([0,T];L2([0,1])) as ε → 0, where Γεand Γ0are given by (5.14) and (5.3), respectively.

    ProofBy the Skorokhod representation theorem, there exists a probability basisand, on this basis, a sequence of independent Brownian sheetsand a family of Fˉt-predictable processesbelonging totaking values on SN,such that the joint law of (hε,h,W) under P coincides with that ofunderand

    From now on, we drop the bars in the notation for the sake of simplicity. Notice that

    Term. Since σ is bounded, by Burkholder’s inequality for stochastic integrals against Brownian sheets (see [16]), we have

    By Taylor’s formula, there exists a random field ηε(s,y) taking values in (0,1) such that

    Since f′is Lipschitz continuous, we have

    Define the stopping time

    where M is some constant large enough.

    Taking the supremum of time over[0,t∧τM,ε],and then taking the expectation,we obtain that

    Putting (5.21) and (5.22) together, we have

    In a fashion similar to the proof of (5.23), we obtain the following estimate for:

    Using the same argument as that in the proof of (5.12), we obtain that

    By the Lipschitz continuity of σ, we know that

    By first taking the supremum of t over[0,T ∧τM,ε],and then taking the expectation,we obtain that

    According to (5.25)–(5.27), we have that

    Putting (5.18), (5.19),(5.23),(5.24)and(5.28)together,and by Gronwall’s inequality([23,Theorem 1]), we have

    By Chebychev’s inequality, we have

    Letting M →∞, by (5.16) we get the desired result (5.17).

    The proof is complete.

    5.4 The proof of Theorem 2.3

    We are now ready to prove our main result. Recall the mapping Γ0given by (5.3). For any u ∈C([0,T];L2([0,1])), let

    Proof of Theorem 2.3According to Theorem 5.1, we need to prove that the following two conditions are fulfilled:

    (a) the set {Xh;h ∈SN} is a compact set of C([0,T];L2([0,1])), where Xhis the solution of eq.(2.10);

    (b) for any family {hε}ε>0? ANwhich converges in distribution as ε → 0 to h ∈ ANas SN-valued random variables, we have that

    as C([0,T];L2([0,1]))-valued random variables, where Xhdenotes the solution of eq.(2.10)corresponding to the SN-valued random variable h (instead of a deterministic function).

    Condition(a)follows from the continuity of the mapping SN? h → Xh∈ C([0,T];L2([0,1])),which was established in Theorem 5.3. The verification of condition(b)is given by Proposition 5.5.

    The proof is complete.

    AcknowledgementsWe would like to express our appreciation for R.Belfadli,L.Boulanba and M.Mellouk. They told us about their work on the stochastic Burgers’equation and pointed out a mistake in our paper.

    成人三级黄色视频| 美女 人体艺术 gogo| 亚洲精品久久国产高清桃花| 亚洲成a人片在线一区二区| 91大片在线观看| 亚洲午夜精品一区,二区,三区| 亚洲av成人不卡在线观看播放网| 久久久久亚洲av毛片大全| 国产熟女xx| av在线天堂中文字幕| 国产欧美日韩精品亚洲av| 久久99热这里只有精品18| 亚洲精品色激情综合| 日本免费一区二区三区高清不卡| 欧美日韩亚洲国产一区二区在线观看| 久久精品国产99精品国产亚洲性色| 中文在线观看免费www的网站 | 国产爱豆传媒在线观看 | 老司机福利观看| 日本在线视频免费播放| 欧美黄色淫秽网站| 欧美成人免费av一区二区三区| 亚洲avbb在线观看| 免费观看精品视频网站| 亚洲专区字幕在线| 国产精品久久久久久久电影 | 性欧美人与动物交配| 精品午夜福利视频在线观看一区| 91在线观看av| 在线观看66精品国产| 嫩草影视91久久| 日韩精品免费视频一区二区三区| 久久久国产精品麻豆| 两性夫妻黄色片| 欧美成狂野欧美在线观看| 日韩高清综合在线| 国产精品美女特级片免费视频播放器 | 18禁国产床啪视频网站| www.999成人在线观看| 国产三级黄色录像| 99热只有精品国产| 国产精品久久久人人做人人爽| 国产高清视频在线观看网站| 国产精品自产拍在线观看55亚洲| www.www免费av| 午夜激情福利司机影院| 亚洲免费av在线视频| 中出人妻视频一区二区| 在线播放国产精品三级| 国产成人av激情在线播放| 91在线观看av| 日韩成人在线观看一区二区三区| 成人国产一区最新在线观看| 亚洲成人精品中文字幕电影| 亚洲片人在线观看| 亚洲国产欧洲综合997久久,| 亚洲狠狠婷婷综合久久图片| 日韩大码丰满熟妇| 国产成人一区二区三区免费视频网站| 在线观看66精品国产| 757午夜福利合集在线观看| 国产午夜福利久久久久久| 成人三级黄色视频| 99re在线观看精品视频| 91大片在线观看| 国产激情偷乱视频一区二区| 亚洲自偷自拍图片 自拍| 黄色成人免费大全| 12—13女人毛片做爰片一| 亚洲美女黄片视频| 国产av一区二区精品久久| 九色成人免费人妻av| 日本免费a在线| 成在线人永久免费视频| 一级片免费观看大全| 最近在线观看免费完整版| 正在播放国产对白刺激| 国内精品一区二区在线观看| 亚洲美女黄片视频| 色综合站精品国产| 俺也久久电影网| 两性夫妻黄色片| 老司机午夜十八禁免费视频| 在线看三级毛片| 欧美极品一区二区三区四区| 精品高清国产在线一区| 在线a可以看的网站| 女人高潮潮喷娇喘18禁视频| 午夜a级毛片| 九色成人免费人妻av| av超薄肉色丝袜交足视频| 在线看三级毛片| 免费看日本二区| 午夜福利高清视频| 亚洲国产欧洲综合997久久,| 色精品久久人妻99蜜桃| 久久这里只有精品19| 亚洲avbb在线观看| 中文资源天堂在线| 婷婷精品国产亚洲av| 国产午夜福利久久久久久| 中文亚洲av片在线观看爽| 91字幕亚洲| 亚洲激情在线av| 日韩欧美免费精品| 国产熟女午夜一区二区三区| svipshipincom国产片| 日韩欧美在线乱码| 国产一区二区三区视频了| 中文字幕人成人乱码亚洲影| 90打野战视频偷拍视频| 毛片女人毛片| 性欧美人与动物交配| 天堂av国产一区二区熟女人妻 | 日韩精品青青久久久久久| 在线免费观看的www视频| 色播亚洲综合网| 欧美色欧美亚洲另类二区| 精品一区二区三区av网在线观看| 免费观看精品视频网站| 久久精品国产亚洲av高清一级| 成在线人永久免费视频| 日韩av在线大香蕉| 久久这里只有精品19| 国产精品一区二区免费欧美| 国产伦在线观看视频一区| 两个人的视频大全免费| 国产91精品成人一区二区三区| av视频在线观看入口| 午夜老司机福利片| 免费在线观看日本一区| 国产视频一区二区在线看| av欧美777| 91av网站免费观看| 无人区码免费观看不卡| 脱女人内裤的视频| 全区人妻精品视频| 色噜噜av男人的天堂激情| av在线天堂中文字幕| 别揉我奶头~嗯~啊~动态视频| 国产1区2区3区精品| 2021天堂中文幕一二区在线观| 亚洲一码二码三码区别大吗| 看免费av毛片| 亚洲国产看品久久| 午夜免费激情av| 一级毛片精品| 亚洲片人在线观看| 亚洲人成伊人成综合网2020| 成人特级黄色片久久久久久久| 麻豆国产97在线/欧美 | 日本黄色视频三级网站网址| 精品国产乱码久久久久久男人| 蜜桃久久精品国产亚洲av| 国产99白浆流出| 久久久久久大精品| 久久久久精品国产欧美久久久| 色哟哟哟哟哟哟| 听说在线观看完整版免费高清| 校园春色视频在线观看| 成人国产一区最新在线观看| 久久久久九九精品影院| 又黄又粗又硬又大视频| 1024香蕉在线观看| 少妇的丰满在线观看| 黑人巨大精品欧美一区二区mp4| 亚洲熟妇熟女久久| 亚洲男人的天堂狠狠| 国产精品美女特级片免费视频播放器 | 国产亚洲精品综合一区在线观看 | 欧美最黄视频在线播放免费| 日韩精品免费视频一区二区三区| 亚洲欧美日韩高清专用| 亚洲一区二区三区不卡视频| 长腿黑丝高跟| 亚洲人成电影免费在线| 国产精品久久电影中文字幕| 淫秽高清视频在线观看| 99国产精品一区二区蜜桃av| 毛片女人毛片| 天堂影院成人在线观看| 免费无遮挡裸体视频| 日韩 欧美 亚洲 中文字幕| 最近视频中文字幕2019在线8| 99久久国产精品久久久| 日日摸夜夜添夜夜添小说| 国产一级毛片七仙女欲春2| 黄片小视频在线播放| 久久精品成人免费网站| 蜜桃久久精品国产亚洲av| 手机成人av网站| 一级a爱片免费观看的视频| 亚洲av第一区精品v没综合| 久久草成人影院| 熟妇人妻久久中文字幕3abv| 成人三级黄色视频| 夜夜爽天天搞| 久久久久免费精品人妻一区二区| 十八禁网站免费在线| 久久久国产成人精品二区| 一区二区三区激情视频| 极品教师在线免费播放| 久久热在线av| 欧美在线黄色| av片东京热男人的天堂| 亚洲一区二区三区色噜噜| 我要搜黄色片| 波多野结衣巨乳人妻| 日韩精品免费视频一区二区三区| 成年免费大片在线观看| 精品国产亚洲在线| 免费搜索国产男女视频| 亚洲一区二区三区不卡视频| av有码第一页| 国产av一区在线观看免费| 日本成人三级电影网站| 久久久国产欧美日韩av| 精品国内亚洲2022精品成人| 又黄又粗又硬又大视频| 国产成人系列免费观看| 久久天躁狠狠躁夜夜2o2o| 色尼玛亚洲综合影院| 搞女人的毛片| 亚洲美女黄片视频| 嫩草影院精品99| 1024手机看黄色片| 看免费av毛片| 欧美一区二区精品小视频在线| 变态另类丝袜制服| x7x7x7水蜜桃| 久久精品亚洲精品国产色婷小说| 国产成人系列免费观看| 亚洲黑人精品在线| 丰满人妻熟妇乱又伦精品不卡| 亚洲人成网站在线播放欧美日韩| 国产精品免费一区二区三区在线| 国产精品久久久久久人妻精品电影| 校园春色视频在线观看| www日本在线高清视频| 色噜噜av男人的天堂激情| 一级片免费观看大全| 日本三级黄在线观看| 成人高潮视频无遮挡免费网站| 99久久99久久久精品蜜桃| 可以免费在线观看a视频的电影网站| 老司机深夜福利视频在线观看| 国产一级毛片七仙女欲春2| 午夜免费观看网址| 俺也久久电影网| 人妻丰满熟妇av一区二区三区| 国产一区二区三区视频了| 女生性感内裤真人,穿戴方法视频| 18禁黄网站禁片午夜丰满| 亚洲成av人片在线播放无| 日韩成人在线观看一区二区三区| 操出白浆在线播放| 亚洲人成网站在线播放欧美日韩| 国产精品久久久久久人妻精品电影| 亚洲国产欧美网| 亚洲18禁久久av| 亚洲男人的天堂狠狠| av天堂在线播放| 欧美乱妇无乱码| 激情在线观看视频在线高清| 在线观看美女被高潮喷水网站 | 神马国产精品三级电影在线观看 | 欧美又色又爽又黄视频| 真人一进一出gif抽搐免费| 亚洲色图av天堂| 丝袜美腿诱惑在线| 久久久久久久久中文| 国产精品,欧美在线| 老司机午夜福利在线观看视频| 99久久久亚洲精品蜜臀av| 麻豆av在线久日| 99国产精品一区二区三区| 欧美性猛交黑人性爽| 两个人看的免费小视频| 国产免费av片在线观看野外av| 成人国语在线视频| 亚洲av成人不卡在线观看播放网| 日韩有码中文字幕| 身体一侧抽搐| 桃红色精品国产亚洲av| 在线观看66精品国产| 国产黄色小视频在线观看| 中文字幕高清在线视频| 亚洲精品美女久久av网站| 天堂影院成人在线观看| 国产精品久久久久久精品电影| 成人国语在线视频| 色在线成人网| 在线看三级毛片| 少妇粗大呻吟视频| 麻豆国产av国片精品| 一边摸一边做爽爽视频免费| 免费看十八禁软件| 黄色成人免费大全| 久久天躁狠狠躁夜夜2o2o| 欧美精品啪啪一区二区三区| 亚洲性夜色夜夜综合| 啦啦啦观看免费观看视频高清| 男女做爰动态图高潮gif福利片| 国产69精品久久久久777片 | 国产精品av久久久久免费| 日日摸夜夜添夜夜添小说| 岛国视频午夜一区免费看| 欧美国产日韩亚洲一区| 国产一区在线观看成人免费| 久久草成人影院| 国产男靠女视频免费网站| bbb黄色大片| 老司机靠b影院| 舔av片在线| 亚洲 欧美一区二区三区| 99热只有精品国产| 精品久久久久久久久久免费视频| 久久中文看片网| 欧美中文综合在线视频| 亚洲美女视频黄频| 日本在线视频免费播放| 色综合亚洲欧美另类图片| 日本撒尿小便嘘嘘汇集6| 又紧又爽又黄一区二区| 一级a爱片免费观看的视频| 亚洲成人中文字幕在线播放| 这个男人来自地球电影免费观看| 看片在线看免费视频| 又粗又爽又猛毛片免费看| 久久精品国产亚洲av高清一级| 成人18禁高潮啪啪吃奶动态图| 婷婷精品国产亚洲av在线| 免费看十八禁软件| 亚洲av成人一区二区三| 国产欧美日韩一区二区三| 日本一区二区免费在线视频| 夜夜夜夜夜久久久久| svipshipincom国产片| 亚洲自偷自拍图片 自拍| 久久亚洲精品不卡| 久久久国产成人免费| 日韩欧美在线乱码| 99久久精品热视频| 老鸭窝网址在线观看| 黄色a级毛片大全视频| 无遮挡黄片免费观看| 国产亚洲av嫩草精品影院| 一本大道久久a久久精品| 日本精品一区二区三区蜜桃| 国产69精品久久久久777片 | 亚洲av五月六月丁香网| 90打野战视频偷拍视频| 黑人操中国人逼视频| 亚洲中文av在线| 啦啦啦观看免费观看视频高清| 亚洲男人天堂网一区| 欧美久久黑人一区二区| 男女床上黄色一级片免费看| 精品国内亚洲2022精品成人| 琪琪午夜伦伦电影理论片6080| 丁香六月欧美| 中文字幕熟女人妻在线| 国产亚洲精品一区二区www| 嫩草影院精品99| 国产亚洲精品综合一区在线观看 | 国产精品一区二区精品视频观看| 久久天躁狠狠躁夜夜2o2o| 久热爱精品视频在线9| 国产精品久久视频播放| 亚洲国产高清在线一区二区三| 高清毛片免费观看视频网站| 精品国产超薄肉色丝袜足j| 亚洲成av人片免费观看| 国产爱豆传媒在线观看 | 18禁黄网站禁片免费观看直播| 狂野欧美激情性xxxx| 天天躁狠狠躁夜夜躁狠狠躁| 亚洲欧美精品综合久久99| 啦啦啦免费观看视频1| 亚洲第一欧美日韩一区二区三区| av欧美777| 日本三级黄在线观看| 少妇被粗大的猛进出69影院| 日本一本二区三区精品| 老汉色av国产亚洲站长工具| 麻豆一二三区av精品| 欧美日韩中文字幕国产精品一区二区三区| 亚洲av成人一区二区三| 精品免费久久久久久久清纯| 国产黄片美女视频| 91国产中文字幕| 三级国产精品欧美在线观看 | 亚洲av中文字字幕乱码综合| av在线天堂中文字幕| 亚洲自偷自拍图片 自拍| 国产高清有码在线观看视频 | 国产精品av视频在线免费观看| 成人三级做爰电影| 男女做爰动态图高潮gif福利片| 国产成人啪精品午夜网站| 一a级毛片在线观看| 精品欧美一区二区三区在线| 巨乳人妻的诱惑在线观看| 狂野欧美激情性xxxx| 天天躁狠狠躁夜夜躁狠狠躁| 91麻豆av在线| 久久这里只有精品中国| 日本三级黄在线观看| 亚洲精品久久成人aⅴ小说| 人妻久久中文字幕网| av国产免费在线观看| 久久草成人影院| 国产野战对白在线观看| 美女 人体艺术 gogo| 亚洲真实伦在线观看| xxxwww97欧美| 亚洲国产精品999在线| 美女 人体艺术 gogo| 97碰自拍视频| 免费在线观看成人毛片| 97人妻精品一区二区三区麻豆| 国产单亲对白刺激| 亚洲国产看品久久| 色尼玛亚洲综合影院| 久久精品国产亚洲av香蕉五月| 欧美另类亚洲清纯唯美| 亚洲精品久久成人aⅴ小说| 欧美中文综合在线视频| 他把我摸到了高潮在线观看| 丰满人妻熟妇乱又伦精品不卡| 久久这里只有精品中国| 欧美大码av| 在线免费观看的www视频| 两个人看的免费小视频| av有码第一页| 国产熟女xx| 精品国产乱码久久久久久男人| 国产成+人综合+亚洲专区| 日日干狠狠操夜夜爽| 757午夜福利合集在线观看| cao死你这个sao货| 国产精品久久久久久久电影 | 波多野结衣高清作品| 中文字幕久久专区| 亚洲国产欧美人成| 久久久久免费精品人妻一区二区| 亚洲狠狠婷婷综合久久图片| 国产91精品成人一区二区三区| 少妇的丰满在线观看| 嫩草影视91久久| 99在线视频只有这里精品首页| 熟女电影av网| 欧美zozozo另类| 免费在线观看视频国产中文字幕亚洲| 亚洲国产欧美人成| 啦啦啦观看免费观看视频高清| 国产精品,欧美在线| 日本三级黄在线观看| 国产一区在线观看成人免费| 欧美3d第一页| 国产精品久久久久久亚洲av鲁大| 日韩有码中文字幕| 波多野结衣高清无吗| 可以免费在线观看a视频的电影网站| 草草在线视频免费看| 人妻丰满熟妇av一区二区三区| 最近视频中文字幕2019在线8| 日韩精品中文字幕看吧| 久久精品成人免费网站| 91字幕亚洲| 成熟少妇高潮喷水视频| 黄片小视频在线播放| 亚洲av中文字字幕乱码综合| 亚洲av熟女| 全区人妻精品视频| 亚洲人成伊人成综合网2020| 亚洲美女视频黄频| 丁香六月欧美| 大型av网站在线播放| 夜夜看夜夜爽夜夜摸| 中文字幕精品亚洲无线码一区| 亚洲国产精品999在线| 中文字幕最新亚洲高清| 亚洲精品久久成人aⅴ小说| 午夜福利成人在线免费观看| 熟女少妇亚洲综合色aaa.| 女人高潮潮喷娇喘18禁视频| 精品无人区乱码1区二区| 老熟妇仑乱视频hdxx| 一本一本综合久久| 在线观看www视频免费| 中国美女看黄片| 黄色成人免费大全| av超薄肉色丝袜交足视频| 国产黄片美女视频| a级毛片在线看网站| 精品福利观看| 亚洲国产欧美一区二区综合| 欧美日韩精品网址| 国产精品久久视频播放| 成人特级黄色片久久久久久久| 久久久久国内视频| 精品少妇一区二区三区视频日本电影| 精品久久久久久久末码| 久热爱精品视频在线9| 在线观看午夜福利视频| 日韩中文字幕欧美一区二区| 两性夫妻黄色片| 身体一侧抽搐| 成人av在线播放网站| 一区二区三区高清视频在线| 真人一进一出gif抽搐免费| 免费在线观看影片大全网站| 精品熟女少妇八av免费久了| 久久精品人妻少妇| 国产亚洲欧美98| 亚洲乱码一区二区免费版| 成人国语在线视频| 国产一区在线观看成人免费| 国产久久久一区二区三区| 黄色女人牲交| 亚洲国产欧美网| 久久天躁狠狠躁夜夜2o2o| 老汉色∧v一级毛片| 1024视频免费在线观看| 女同久久另类99精品国产91| 深夜精品福利| 欧美乱妇无乱码| 免费在线观看影片大全网站| 一进一出抽搐动态| 国产亚洲精品第一综合不卡| 久久草成人影院| 一a级毛片在线观看| 午夜福利成人在线免费观看| 美女午夜性视频免费| 成熟少妇高潮喷水视频| 久久婷婷人人爽人人干人人爱| www.熟女人妻精品国产| 欧美午夜高清在线| 成熟少妇高潮喷水视频| 亚洲美女视频黄频| 正在播放国产对白刺激| 在线免费观看的www视频| 中文字幕久久专区| 天堂√8在线中文| 成人一区二区视频在线观看| 色综合站精品国产| 搡老熟女国产l中国老女人| 一个人免费在线观看电影 | 精品久久久久久久人妻蜜臀av| 国产一区二区三区在线臀色熟女| 搡老熟女国产l中国老女人| 一个人免费在线观看电影 | 精品国产亚洲在线| 99精品久久久久人妻精品| 午夜福利高清视频| xxxwww97欧美| 男人舔女人下体高潮全视频| 一本精品99久久精品77| 亚洲国产欧洲综合997久久,| 真人做人爱边吃奶动态| 俄罗斯特黄特色一大片| 欧美激情久久久久久爽电影| 十八禁人妻一区二区| 亚洲 国产 在线| 国产片内射在线| 丝袜美腿诱惑在线| 身体一侧抽搐| 国产成人啪精品午夜网站| 亚洲人成77777在线视频| 夜夜看夜夜爽夜夜摸| 久久久久国产一级毛片高清牌| 长腿黑丝高跟| 老司机在亚洲福利影院| 久久久久性生活片| 黄片小视频在线播放| 亚洲欧美日韩东京热| 国产成人aa在线观看| 久久婷婷人人爽人人干人人爱| 欧美日本视频| 1024手机看黄色片| 草草在线视频免费看| 国产熟女xx| 好男人在线观看高清免费视频| 99re在线观看精品视频| 男女那种视频在线观看| 亚洲精品中文字幕一二三四区| 日本免费一区二区三区高清不卡| 伦理电影免费视频| 免费观看人在逋| 午夜视频精品福利| 伦理电影免费视频| 国产伦人伦偷精品视频| 12—13女人毛片做爰片一| 亚洲第一电影网av| 我要搜黄色片| 国内少妇人妻偷人精品xxx网站 | 熟女电影av网| 特大巨黑吊av在线直播| 中文字幕人妻丝袜一区二区| 欧美日韩精品网址| 亚洲成a人片在线一区二区| 长腿黑丝高跟| 三级男女做爰猛烈吃奶摸视频| 久久久国产成人精品二区| 亚洲精品国产精品久久久不卡| 精品不卡国产一区二区三区| 亚洲第一欧美日韩一区二区三区| 琪琪午夜伦伦电影理论片6080| 亚洲成人免费电影在线观看| 免费看日本二区| 欧美性猛交黑人性爽| 999久久久精品免费观看国产| 欧美中文综合在线视频| 国内毛片毛片毛片毛片毛片|