• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    NONLINEAR STABILITY OF RAREFACTION WAVES FOR A COMPRESSIBLE MICROPOLAR FLUID MODEL WITH ZERO HEAT CONDUCTIVITY?

    2020-11-14 09:41:12JingJIN金晶NoorREHMAN2QinJIANG江芹
    關(guān)鍵詞:金晶

    Jing JIN (金晶)1? Noor REHMAN2 Qin JIANG (江芹)1

    1. School of Mathematics and Statistics, Huanggang Normal University, Huanggang 438000, China

    2. School of Mathematics and Statistics, Central China Normal University, Wuhan 430079, China

    E-mail : jinjing@hgnu.edu.cn; noorwzr786@gmail.com; 113572710@qq.com

    We assume, as is usual in thermodynamics, that by using any given two of the five thermodynamical variables – v,p,e,θ, and s – the remaining three variables are their functions.Furthermore, their relation is implied by the second law of thermodynamics:

    According to this, if we choose (v,θ) as independent variables and write (p,e,s) = (p(v,θ),e(v,θ),s(v,θ)), then we can deduce that

    Therefore, the energy equation (1.1)3can be converted into the equations for the entropy s or the absolute temperature θ by the second law of thermodynamics as follows:

    We supplement this system with the initial condition

    The corresponding initial data at far field x=±∞are given by

    where we assume that ω?= ω+=0.

    Large time behavior was considered in[8–10],which studied the local stability of rarefaction waves, contact waves and viscous shocks wave when heat conductivity is a positive constant.

    We note that all of the above analyses take advantage of the fact that the entropy is dissipative,because of the non-zero heat conductivity. However,in this article,we are concerned with the time-asymptotic stability of rarefaction waves to the Cauchy problems(1.1),(1.5)and(1.6), with zero heat conductivity (κ = 0). On account of the lack of heat conductivity,the estimates of the termwhich plays an essential role in closing the energy estimates,could hardly be obtained by applying the usual L2-energy estimates. Hence we could not apply the method of [9]here. However, in [1], inspired by [11], the author successfully closed the energy estimates by considering the equations as a system of unknowns relating to pressure, velocity and entropy, instead of system relating to unknowns of density, velocity and temperature.

    In this article, we consider the polytropic gas that admits

    Here the specific gas constants A, R and the specific heat at constant volume Cvare positive constants, and γ > 1 is the adiabatic constant. Inspired by [1], we first convert (1.1) into the system of pressure, velocity and entropy as follows:

    As we will focus on the expansion waves, we assume in the rest of this article that s+=s?=. According to Darcy’s law, we see from (1.11)4that ω → 0 as t → ∞. Therefore the system should tend time-asymptotically to

    where we see that the first three equations in (1.9) happen to be non-isentropic Navier-Stokes equations, and combined with the initial data (1.6), they should tend time-asymptotically to the Riemann problem on a Euler system in the setting

    with Riemann data

    We consider the case when the Riemann problem(1.10),(1.11)admits a unique global weak(rarefaction wave)solutionwhich consists of a rarefaction wave of the first family, denoted byand another of the third family, denoted byThat is, there exists a unique constant state (vm,um) ∈R2(vm> 0)such that (vm,um)∈ R1(v?,u?) and (v+,u+)∈ R3(vm,um). Here,

    In other words, the unique weak solutionto the Riemann problem(1.10) and (1.11) is given by

    To study the above problem,as in [12]and[13],we first construct a smooth approximation to the above Riemann solution (1.13). Let mi(t,x) (i = 1,3) be the unique global smooth solution to the Cauchy problem

    Then, by setting ? = δ = |v?? v+|+|u?? u+|, the smooth approximation of the rarefaction wave profile (V(t,x),U(t,x),S(t,x)) is constructed as follows:

    Here, (Vi(t,x),Ui(t,x)) (i=1,3) are given by the equations

    and Θ is defined by

    Under the above preparation, for the ideal polytropic gas, our nonlinear stability result on the rarefaction wave VR(t,x),UR(t,x),SR(t,x),0 can be stated as follows:

    Theorem 1.1(Nonlinear Stability) Assume that VR(t,x),UR(t,x),SR(t,x),0 is the solution to the Riemann problem of the compressible Euler equations (1.10),(1.9)4and (1.11),given by(1.13),and that the initial data(v0(x),u0(x),s0(x),ω0(x))of the compressible micropolar equations (1.8) satisfies (1.6), and that

    for all (t,x)∈ R+×R and some positive constantsLet

    denote the H2(R)-norm of the initial perturbation and let δ = |u?? u+|+|v?? v+| denote the strength of rarefaction wave. If E(0) and δ are suitably small such that

    for a positive constant ?0>0, whereis a constant depending only onwhich will be defined at the end of this article,then the Cauchy problem(1.1)1,(1.8)2,(1.8)3,(1.8)4,(1.5)and (1.6) admits a unique global solution (v(t,x),u(t,x),θ(t,x),ω(t,x)) satisfying

    Remark 1.2Due to the assumption that the initial perturbation E(0) and the strength of the rarefaction wave δ are suitably small, the result obtained in Theorem 1.1 is essentially the local stability of weak rarefaction waves.

    Now we would like to make two comparisons in order to point out the main novelties of this article. First, compared with [1], where the initial data (v0(x),u0(x),s0(x),ω0(x)) is a perturbation of a non-vacuum constant state, the main difficulty confronted in this article is determining how to control the possible growth of the solution of Cauchy problem (1.8), (1.5)and (1.6) induced by the interactions between the solution itself and the underlying expansive waves from different families. Such a difficulty is overcame by the expansive property and the temporal decay estimates of the smooth approximation of the rarefaction waves. Secondly,compared with [9](where μ > 0, κ > 0), which studied the nonlinear stability of rarefaction waves to the Cauchy problem of(1.1),(1.6), in our paper,even the basic energy type estimates cannot be closed, and we introduce another functional E(t) defined by (3.3) to deduce the desired estimate; see the proof of Lemma 4.1.

    Before concluding this section, we first recall that the study on compressible Micropolar fluid has become an important area of interest for theoretical mathematicians. For the one dimensional case on the existence, uniqueness and regularity of either the Cauchy problem or the initial-boundary problems, we refer to [4, 5, 14–25]and the references therein. In addition,just as the dissipation effect of heat conductivity is neglected in this article, there is another work that considers the large time behavior without the dissipation effect of viscosity [26].For the three dimensional case on the existence, uniqueness, large time behavior and decay rate, blow up criterion and low mach number limit for either the Cauchy or initial-boundary problems,we refer to[27–41]and the references therein. Here,we also recall the classical works on the stability and vanishing viscosity limit on the rarefaction waves [42–56], which give us a deeper understanding of these elementary waves.

    This article is arranged as follows: in Section 2, we give some properties of the smooth approximation of the rarefaction wave solutions and reformulate the problem. In Section 3, we state the main result for the reformulated problem and prove the main theorem by combining the local existence and the a priori estimates. Finally, the a priori estimates are established in Section 4.

    NotationsThroughout the rest of this article,C or O(1)will be used to denote a generic positive constant independent of t and x,and Ci(·,·)(i ∈ Z+)stands for some generic constants depending only on the quantities listed in parenthesis. Note that all these constants may vary from line to line. Hl(R)(l ≥ 0) denotes the usual Sobolev space with normandwill be used to denote the usual L2-norm. For 1 ≤ p ≤ +∞, f(x) ∈ Lp(R,Rn),It is easy to see thatFinally,are used to denoterespectively.

    2 Preliminaries

    Lemma 2.1For each i ∈{1,3}, the Cauchy problem (1.15) admits a unique global smooth solution mi(t,x) which satisfies the following properties:

    (i) m?0 for each (t,x)∈R+×R;

    (ii) For any p with 1 ≤ p ≤ ∞, there exists a constant Cp,q, depending only on p,q, such that

    where

    (iii) If 0

    (iv) If (mi?)

    Based on the results obtained in Lemma 2.1, and from (1.16) and (1.17), we can deduce

    Lemma 2.2Letting ? = δ, q = 2, the smooth approximation (V(t,x),U(t,x),Θ(t,x))constructed in (1.16) and (1.17) has the following properties:

    (i) Vt(t,x)=Ux(t,x)>0 for each (t,x)∈R+×R;

    (ii) For any p with 1 ≤ p ≤ ∞ there exists a constant Cp, depending only on p, such that

    (iii) For each p ≥1,

    we deduce that (?(t,x),ψ(t,x),φ(t,x),ξ(t,x),W(t,x), ω(t,x)) yield

    with initial data

    Here we note that(2.5)i(i=1,2,3,6)and the corresponding initial data in(2.6)have formed a closed system, and that this is equivalent to (2.5)i(i=2,4,5,6)with the corresponding initial data. We write these together in order to facilitate future use.

    Define the following normalized entropy η(v,u,s;V,U,S) around (V(t,x),U(t,x),S(t,x)):

    which yields the entropy identity

    3 Proof of Theorem 1.1

    This section is devoted to proving Theorem 1.1. For convenience of presentation, in what follows we will choose(?,ψ,φ,ω) as independent variables,and for some fixed T >0,we define

    the solution space of (2.5)i(i=1,2,3,6) and the corresponding data in (2.6) by

    Then, a standard contracting-mapping argument (cf. [5]) yields the following local existence result:

    Proposition 3.1(Local existence result) Under the assumptions stated in Theorem 1.1, the Cauchy problem (2.5)i(i = 1,2,3,6), (2.6) admits a unique solution ?(t,x),ψ(t,x),φ(t,x),ω(t,x) ∈ X(0,t1)for some sufficiently small t1>0,and ?(t,x),ψ(t,x),φ(t,x),ω(t,x) satisfies

    Here t1depends only on

    To extend the local solution obtained in Proposition 3.1 globally, we need only to get the H2-norm a priori estimates on the solution that can be stated in the following:

    Proposition 3.2Under the assumptions stated in Theorem 1.1, suppose that (?(t,x),ψ(t,x),φ(t,x),ω(t,x)) obtained in Proposition 3.1 has been extended to the time t=T ≥ t1–that is, (?(t,x),ψ(t,x),ξ(t,x),ω(t,x)) ∈ X(0,T) – and satisfies the a priori assumption

    for some positive constant ?0>0. Then we can obtain the energy estimate in the form

    Remark 3.3If we have obtained (3.4), then by choosing the initial perturbation E(0)=and δ = |v?? v+|+|u?? u+| sufficiently small such that (1.21) holds, we can deduce that E(t) ≤ 2?0for 0 < t ≤ T. This implies that the a priori assumption (3.3)makes sense.

    Remark 3.4In fact, from (3.3) and (1.19), we have, from Sobolev’s inequality and by choosing ?0>0 suitably small,

    (3.6), (3.7) and (3.8) will be used in the proof of Proposition 3.2.

    The proof is a combination of a sequence of energy estimates that will be given at the end of Section 4.

    Now we are ready to extend the local solutions to global ones,that is the proof of Theorem 1.1 by a continuity argument.

    Proof of Theorem 1.1First,we take the time t=0 as initial data. Employing the local existence result Proposition 3.1, there exists a positive constant=t1(E(0)) > 0 , which depends only on E(0), such that there exists a unique solution ?(t,x),ψ(t,x), φ(t,x),ω(t,x)∈ X(0,t1) to (2.5)i(i=1,2,3,6) and (2.6) satisfying

    By the assumption on E(0) stated in Theorem 1.1, we have

    and then we have from Proposition 3.2 that for 0 ≤ t ≤ t1,

    By (3.10) and the assumptions (1.21), we observe that for 0 ≤ t ≤ t1,

    that is,

    for 0 ≤ t ≤ t1. In particlular, we have E(t1) ≤ ?0.

    Next, taking time t = t1as the initial time and applying Proposition 3.1 again, we have that t2= t2(E(t1)) = t2(?0) > 0 depending only on E(t1) such that there exists a unique solution (?(t,x),ψ(t,x),φ(t,x),ω(t,x)) ∈ X(t1,t1+t2) to (2.5), (2.6) satisfying

    which is precisely estimates (3.9) and the condition (3.3) in Proposition 3.2. Then, applying Proposition 3.2 again, we once more have (3.11) and (3.12) for t1≤ t ≤ t1+t2. In particular,we have

    From (3.13), if we take t = t1+t2as the new initial time, then by applying local existence result Proposition 3.1,there exists a t3(?0)=t2(?0)>0 such that there exists a unique solution(?(t,x),ψ(t,x),φ(t,x),ω(t,x)) ∈ X(t1,t1+2t2) to (2.5), (2.6) satisfying

    Repeating the above procedure we can thus extend the solution(?(t,x),ψ(t,x),φ(t,x),ω(t,x))step by step to a global one.

    Now to complete the proof of Theorem 1.1,we only need to prove that(1.22)holds. Before doing this, we need the following lemma, whose proof can be found in [57, 58]:

    Lemma 3.5Suppose that g(t) ≥ 0,g(t) ∈ L1(0,+∞) and g′(t) ∈ L1(0,+∞). Then g(t)→0 as t →+∞.

    Now we turn to proving (1.22). For simplicity, here we only show the asymptotic behavior ofas t → +∞. A similar analysis can be used to show the asymptotic behavior ofas t → +∞. To this end, letFrom (3.4), we can easily check that g(t)∈L1(0,+∞) and

    Thus (1.22) is proved, and we finish the proof of Theorem 1.1.

    4 A Priori Estimate

    This section is devoted to the proof of Proposition 3.2, which is a combination of a series of energy estimates. We start with the following basic energy estimate with the help of entropy identity.

    Lemma 4.1Under the assumptions stated in Proposition 3.2, and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution (?,ψ,φ,ω)(t,x)∈ X(0,T)to the Cauchy problem (2.5), (2.6) satisfies

    ProofUnder the a priori assumption (3.6) and the assumption that p(v,s) is a convex function of v and s, we can easily deduce that

    On the basis of this observation, and the fact that |(?,ψ,ξ)|2is equivalent to |(?,ψ,φ)|2, we have,by multiplying(2.5)6by ω,adding this to the entropy identity(2.8),and then integrating the result with respect to t and x over [0,t]×R, that

    where Ii(i = 1,2,··· ,12) denote the corresponding terms related to those on the right hand side of(2.8). By employing Lemma 2.2,Cauchy-Schwarz inequality,Hlder inequality, Young’s inequality, and Sobolev’s inequality, I1–I12can be estimated as follows:

    Here ?1>0 is a positive constant which will be specified later. We then have that

    If we choose ?1> 0 sufficiently small such thatthen we can get(4.1) by substituting the above estimates into (4.2) and using Gronwall’s inequality. We finish this proof.

    which will be used later. Next, to complete the proof of Proposition 3.2,we need to deduce the following estimates onin Lemma 4.2–Lemma 4.4:

    Lemma 4.2Under the assumptions stated in Proposition 3.2, and if ?0in (3.3) is sufficiently small such that (3.5) holds, the solution (W,ψ)(t,x) ∈ X(0,T) to the Cauchy problem(2.5), (2.6) satisfies

    ProofFirst, differentiating (2.5)2and (2.5)5with respect to x once, and multiplying the new equations byand ψx, respectively, we have by summing them up that

    Integrating (4.6) with respect to t and x over [0,t]×R, we have from (3.6) that

    where Ii(i=13,14,··· ,31)denote the corresponding terms related to those on the right hand side of (4.6). By employing Lemma 2.2, the a priori assumptions (3.3) and (3.6), Cauchy-Schwarz inequality, Hlder’s inequality, Young’s inequality and Sobolev’s inequality, as well as(4.4), I13–I37can be estimated as follows:

    where ?2>0 is a positive constant which will be specified later. We further have that

    If we choose ?2>0 sufficiently small such thatwe can get (4.5) by substituting the above estimates into (4.7) and by exploiting Gronwall’s inequality, (4.3) and Lemma 4.1. Thus Lemma 4.2 is proven.

    Lemma 4.3Under the assumptions stated in Proposition 3.2 and if ?0in (3.3) is sufficiently small such that (3.5) holds, the solution ξ(t,x)∈ X(0,T) to the Cauchy problem (2.5),(2.6) satisfies that

    Proof First, differentiating (2.5)4with respect to x once,and multiplying the new equations by ξx, we have

    Integrating (4.9) with respect to t and x over [0,t]×R, we have from (3.6) that

    where Ii(i=32,33,··· ,40)denote the corresponding terms related to those on the right hand side of (4.9). By employing Lemma 2.2, the a priori assumptions (3.3) and (3.6), Cauchy-Schwarz inequality, Hlder’s inequality, Young’s inequality and Sobolev’s inequality, I32–I41can be estimated as follows:

    Thus, we can get (4.8) by substituting the above estimates into (4.10) and by exploiting Gronwall’s inequality, (4.3), Lemma 4.1 and Lemma 4.2 . Thus Lemma 4.3 is proven.

    Lemma 4.4Under the assumptions stated in Proposition 3.2, and if ?0in (3.3) is sufficiently small such that (3.5) holds,the solution ω(t,x)∈ X(0,T)to the Cauchy problem(2.5),(2.6) satisfies

    ProofFirst,differentiating each equation in(2.5)6with respect to x once,and multiplying the new equations by ωx, we have

    Integrating (4.12) with respect to t and x over [0,t]×R, we have, from (3.6), that

    By employing Lemma 2.2,the a priori assumptions(3.3)and(3.6),Cauchy-Schwarz inequality,Hlder’s inequality, Young’s inequality and Sobolev’s inequality,

    Thus, we can get (4.11), and Lemma 4.4 is proven.

    Next, we continue to deduce higher-order estimates on solutions; that is, we deduceby Lemma 4.5–Lemma 4.7.

    Lemma 4.5Under the assumptions stated in Proposition (3.2), and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution (W,ψ) ∈ X(0,T) to the Cauchy problem (2.5), (2.6) satisfies

    ProofFirst, differentiating(2.5)2and(2.5)5with respect to x twice,and multiplying the new equations byand ψxx, respectively, we have, by summing them up, that

    Integrating (4.21) with respect to t and x over [0,t]×R, we have from (3.1) that

    where Ri(i = 1,2,··· ,43) denote the corresponding terms related to those on the right hand side of(4.6). By employing Lemma 2.2 and Lemma 4.4,the a priori assumptions(3.3)and(3.6),Cauchy-Schwarz inequality, Hlder’s inequality, Young’s inequality and Sobolev’s inequality,R1–R43can be estimated as follows:

    where ?3>0 is a positive constant which will be specified later. We further have that

    If we choose ?3>0 sufficiently small such thatwe can get(4.14) by substituting the above estimates into (4.16) and using Gronwall’s inequality. Thus Lemma 4.5 is proven.

    Lemma 4.6Under the assumptions stated in Proposition (3.2), and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution ξ ∈ X(0,T) to the Cauchy problem(2.5), (2.6) satisfies

    ProofFirst, differentiating(2.5)4with respect to x twice,and multiplying the new equations by ξxx, we have that

    Integrating (4.21) with respect to t and x over [0,t]×R, we have, from (3.1), that

    where Ri(i=44,45,···,56)denote the corresponding terms related to those on the right hand side of (4.6). By employing Lemma 2.2, Lemma 4.5, the a priori assumptions (3.3) and (3.6),Cauchy-Schwarz inequality, Hlder’s inequality, Young’s inequality and Sobolev’s inequality,R44–R56can be estimated as follows:

    We can get(4.17)by substituting the above estimates into(4.19)using Gronwall’s inequality.

    Lemma 4.7Under the assumptions stated in Proposition (3.2), and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution ω ∈ X(0,T) to the Cauchy problem(2.5), (2.6) satisfies

    ProofFirst, differentiating(2.5)6with respect to x twice,and multiplying the new equations by ωxx, we have that

    Integrating (4.21) with respect to t and x over [0,t]×R, we have, from (3.1), that

    where Ri(i = 57,58,···,61) denote the corresponding terms related to those on the right hand side of(4.6). By employing Lemma 2.2,the a priori assumptions(3.3)and(3.6),Cauchy-Schwarz inequality, Hlder’s inequality, Young’s inequality and Sobolev’s inequality, R57–R61can be estimated as follows:

    We can get (4.20) by substituting the above estimates into (4.22).

    To complete the proof of Proposition 3.2,we need to obtain some estimates onFirst, we give the estimates on

    Lemma 4.8Under the assumptions stated in Proposition (3.2), and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution (W,ψ,ξ,ω)∈ X(0,T) to the Cauchy problem (2.5), (2.6) satisfies

    ProofMultiplying the equation (2.5)2by Wx, and from (2.5)1, we have that

    Integrating (4.24) with respect to t and x over [0,t]×R, we have that

    where Ki(i = 1,2,··· ,7) denote the corresponding terms related to those on the right hand of (4.24). By employing Lemma 2.2, the a priori assumptions (3.3), (4.3) and (4.6), and some useful inequalities, K1–K7can be estimated as follows:

    where ?4>0 is a positive constant which will be specified later. We further have that

    If we choose ?4> 0 sufficiently small such thatwe can get (4.23) by substituting the above estimates into (4.25)and by exploiting (4.1), (4.5), (4.8), (4.11), (4.14),(4.17) and (4.20). Thus Lemma 4.8 is proven.

    Finally, we will obtain the estimates on

    Lemma 4.9Under the assumptions stated in Proposition 3.2, and if ?0in (3.3) is sufficiently small such that (3.5) holds, then the solution (W,ψ,ξ,ω) ∈ X(0,T) to the Cauchy problem (2.5), (2.6) satisfies

    ProofFirst, differentiating (2.5)2with respect to x once, multiplying the result by Wxx,and using (2.5)1, we have

    Integrating (4.27) with respect to t and x over [0,t]×R, we have, from (3.6), that

    where Ki(i= 8,9,··· ,23) denote the corresponding terms related to those on the right hand of(4.27). By employing Lemma(2.2), the a priori assumptions(3.3),(3.5)and(3.6),and some useful inequalities, K12–K31can be estimated as follows:

    If we choose ?5>0 sufficiently small such thatwe can get(4.26) by substituting the above estimates into (4.28) and using (4.1), (4.5), (4.8), (4.11), (4.14), (4.17),(4.20) and (4.23). Thus Lemma 4.9 is proven.

    Proof of Proposition 3.2Joining(4.1),(4.5),(4.8),(4.11),(4.14),(4.17),(4.20),(4.23)and (4.26) together, by (3.8) we gain the following inequality:

    猜你喜歡
    金晶
    一帆風順
    寶藏(2022年2期)2022-07-30 08:11:18
    愛穿迷彩服的志愿者
    上海故事(2021年12期)2021-01-20 04:32:38
    畫堂春·酷夏下鄉(xiāng)記
    詩選刊(2020年12期)2020-12-03 13:58:18
    基于數(shù)學三個世界理論的矩陣乘法課堂教學研究
    金晶的大自然情懷:那是夢開始的地方
    金晶:隱形的翅膀
    鏗鏘金晶:做自己的幸福造夢師
    女士(2014年3期)2014-03-18 21:53:22
    金晶:守護“祥云”的天使
    37°女人(2008年6期)2008-07-14 09:23:00
    金晶的笑
    錯過和相遇一樣美麗
    幸福(2004年7期)2004-04-29 00:44:03
    妹子高潮喷水视频| 欧美日韩瑟瑟在线播放| 在线播放国产精品三级| 国产人伦9x9x在线观看| 国产人伦9x9x在线观看| 日日爽夜夜爽网站| 午夜福利影视在线免费观看| 热re99久久精品国产66热6| 久久精品aⅴ一区二区三区四区| 视频区欧美日本亚洲| 久久午夜亚洲精品久久| 欧美久久黑人一区二区| 中文亚洲av片在线观看爽| avwww免费| 免费观看人在逋| 波多野结衣一区麻豆| 国产高清国产精品国产三级| 国产精品亚洲一级av第二区| 一区二区日韩欧美中文字幕| 午夜亚洲福利在线播放| 操美女的视频在线观看| 色综合婷婷激情| 午夜视频精品福利| 女生性感内裤真人,穿戴方法视频| 青草久久国产| 亚洲欧美日韩高清在线视频| 国产99白浆流出| 欧美午夜高清在线| 十八禁人妻一区二区| 久久伊人香网站| 欧美人与性动交α欧美软件| 午夜影院日韩av| videosex国产| 夜夜夜夜夜久久久久| 亚洲中文日韩欧美视频| 亚洲精品一区av在线观看| 色综合站精品国产| 97超级碰碰碰精品色视频在线观看| 99国产精品99久久久久| 亚洲精品在线观看二区| 精品国产乱码久久久久久男人| 三级毛片av免费| 日日爽夜夜爽网站| 免费看a级黄色片| 久久久久久久午夜电影 | 香蕉久久夜色| 在线观看一区二区三区激情| 欧美激情高清一区二区三区| 久久久国产成人精品二区 | 久久亚洲真实| 中文字幕最新亚洲高清| 黑人巨大精品欧美一区二区mp4| 亚洲精品久久成人aⅴ小说| 免费搜索国产男女视频| 91大片在线观看| 在线观看免费视频日本深夜| 日本欧美视频一区| 国产精品久久视频播放| 国产精品一区二区免费欧美| 日韩中文字幕欧美一区二区| 欧美黄色片欧美黄色片| 国产成人一区二区三区免费视频网站| 99国产精品一区二区三区| 免费在线观看影片大全网站| 国产精品香港三级国产av潘金莲| 亚洲,欧美精品.| videosex国产| 久久性视频一级片| 成人亚洲精品av一区二区 | 美女高潮喷水抽搐中文字幕| 高清黄色对白视频在线免费看| 别揉我奶头~嗯~啊~动态视频| aaaaa片日本免费| 午夜成年电影在线免费观看| 黑人欧美特级aaaaaa片| 91精品国产国语对白视频| 视频区欧美日本亚洲| 高清毛片免费观看视频网站 | 精品日产1卡2卡| 欧美黄色淫秽网站| 正在播放国产对白刺激| 中文字幕高清在线视频| 黄色成人免费大全| 日本五十路高清| 国产精品久久久人人做人人爽| 亚洲熟妇熟女久久| 1024视频免费在线观看| 亚洲欧美激情综合另类| 天堂影院成人在线观看| 香蕉久久夜色| 亚洲精品国产区一区二| 日韩 欧美 亚洲 中文字幕| 女性生殖器流出的白浆| 最近最新免费中文字幕在线| 日韩一卡2卡3卡4卡2021年| 最近最新中文字幕大全电影3 | 男女下面进入的视频免费午夜 | 香蕉国产在线看| 女人被狂操c到高潮| 正在播放国产对白刺激| 精品国产国语对白av| 亚洲熟女毛片儿| 久久狼人影院| 女性生殖器流出的白浆| 又大又爽又粗| 精品欧美一区二区三区在线| 欧美最黄视频在线播放免费 | 黄色女人牲交| 日本免费a在线| 欧美日韩福利视频一区二区| 国内久久婷婷六月综合欲色啪| 免费一级毛片在线播放高清视频 | 欧美激情久久久久久爽电影 | 精品久久久久久,| 黄色视频不卡| 亚洲五月天丁香| 日本vs欧美在线观看视频| 黑人欧美特级aaaaaa片| 色老头精品视频在线观看| 纯流量卡能插随身wifi吗| 80岁老熟妇乱子伦牲交| 日本a在线网址| 精品国产一区二区久久| 夜夜躁狠狠躁天天躁| 国产一区二区三区视频了| 亚洲精品美女久久久久99蜜臀| 男人操女人黄网站| 色婷婷久久久亚洲欧美| 国产欧美日韩一区二区三| 在线观看免费日韩欧美大片| 国产激情欧美一区二区| 国产av在哪里看| 少妇裸体淫交视频免费看高清 | 亚洲熟女毛片儿| 亚洲精品美女久久av网站| 视频区图区小说| 欧美 亚洲 国产 日韩一| 日本 av在线| 又大又爽又粗| 久久精品亚洲精品国产色婷小说| 少妇被粗大的猛进出69影院| 国产精品美女特级片免费视频播放器 | 久久人人97超碰香蕉20202| 国产精品日韩av在线免费观看 | 午夜成年电影在线免费观看| 999久久久国产精品视频| 国产精品爽爽va在线观看网站 | 一夜夜www| 久久久久精品国产欧美久久久| 免费在线观看影片大全网站| 最近最新中文字幕大全免费视频| 久久影院123| 久久人人97超碰香蕉20202| 国产伦人伦偷精品视频| 亚洲欧美日韩高清在线视频| 久久国产乱子伦精品免费另类| 精品福利永久在线观看| 日日摸夜夜添夜夜添小说| 午夜免费成人在线视频| cao死你这个sao货| 精品第一国产精品| 亚洲美女黄片视频| 91国产中文字幕| 久久国产亚洲av麻豆专区| 亚洲美女黄片视频| 久久久国产成人免费| 欧美日韩国产mv在线观看视频| 一a级毛片在线观看| 嫁个100分男人电影在线观看| 啦啦啦在线免费观看视频4| 国产亚洲精品第一综合不卡| 亚洲五月婷婷丁香| 一区二区三区国产精品乱码| 黄色女人牲交| 亚洲人成伊人成综合网2020| 日韩中文字幕欧美一区二区| 精品免费久久久久久久清纯| 久久青草综合色| 午夜影院日韩av| 国产黄色免费在线视频| 咕卡用的链子| 亚洲熟妇中文字幕五十中出 | 国产真人三级小视频在线观看| 日韩高清综合在线| av电影中文网址| av视频免费观看在线观看| 18禁裸乳无遮挡免费网站照片 | 十分钟在线观看高清视频www| 欧美日韩精品网址| 久久久精品欧美日韩精品| 免费av中文字幕在线| 成人国语在线视频| 亚洲专区国产一区二区| 国产精品自产拍在线观看55亚洲| 国产日韩一区二区三区精品不卡| 亚洲国产毛片av蜜桃av| 在线观看免费日韩欧美大片| 色老头精品视频在线观看| 亚洲av成人av| 欧洲精品卡2卡3卡4卡5卡区| 黑人巨大精品欧美一区二区蜜桃| 一级,二级,三级黄色视频| 国产精品电影一区二区三区| 久久天堂一区二区三区四区| 亚洲欧美激情综合另类| 免费在线观看影片大全网站| 国产精品爽爽va在线观看网站 | 色尼玛亚洲综合影院| 黄色毛片三级朝国网站| 身体一侧抽搐| 国产成年人精品一区二区 | 国产亚洲精品久久久久久毛片| 黄色视频不卡| 久久这里只有精品19| 丝袜美足系列| 自线自在国产av| 亚洲中文av在线| 99香蕉大伊视频| 日韩大尺度精品在线看网址 | 国产成人系列免费观看| 亚洲欧美一区二区三区黑人| 中出人妻视频一区二区| 午夜日韩欧美国产| av中文乱码字幕在线| 女性生殖器流出的白浆| 成人国语在线视频| 国产精品一区二区精品视频观看| 日韩欧美一区视频在线观看| cao死你这个sao货| 人人澡人人妻人| 午夜视频精品福利| 国产成人精品在线电影| 国产熟女午夜一区二区三区| 久久精品亚洲av国产电影网| 午夜老司机福利片| 怎么达到女性高潮| 国产成人系列免费观看| 99riav亚洲国产免费| 啪啪无遮挡十八禁网站| 国产成人精品久久二区二区91| 可以免费在线观看a视频的电影网站| 国产成人免费无遮挡视频| 精品国产亚洲在线| 天天影视国产精品| 久久99一区二区三区| 老鸭窝网址在线观看| 日本撒尿小便嘘嘘汇集6| 黑人操中国人逼视频| 无遮挡黄片免费观看| 国产亚洲精品久久久久5区| 少妇的丰满在线观看| 激情在线观看视频在线高清| 精品一区二区三卡| 免费人成视频x8x8入口观看| 色尼玛亚洲综合影院| 亚洲 欧美 日韩 在线 免费| 精品乱码久久久久久99久播| tocl精华| 窝窝影院91人妻| 韩国精品一区二区三区| 久久人妻熟女aⅴ| 亚洲第一欧美日韩一区二区三区| 老熟妇乱子伦视频在线观看| 久久人妻福利社区极品人妻图片| 亚洲国产欧美网| 宅男免费午夜| 免费久久久久久久精品成人欧美视频| 久久人人精品亚洲av| 69精品国产乱码久久久| 欧美日韩瑟瑟在线播放| 日本免费a在线| 国产成人免费无遮挡视频| 亚洲精品一二三| 国产97色在线日韩免费| 99国产极品粉嫩在线观看| 大香蕉久久成人网| 午夜激情av网站| 国产精品自产拍在线观看55亚洲| 中文字幕高清在线视频| 国产亚洲欧美在线一区二区| 50天的宝宝边吃奶边哭怎么回事| 在线免费观看的www视频| 婷婷丁香在线五月| 色在线成人网| 人人妻人人澡人人看| 动漫黄色视频在线观看| 久久天躁狠狠躁夜夜2o2o| 国产伦一二天堂av在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 少妇被粗大的猛进出69影院| 性少妇av在线| 黄网站色视频无遮挡免费观看| 日日干狠狠操夜夜爽| 丁香六月欧美| 99国产精品免费福利视频| 免费久久久久久久精品成人欧美视频| 国产xxxxx性猛交| 嫁个100分男人电影在线观看| 久久人妻av系列| 9191精品国产免费久久| 久久中文字幕人妻熟女| 久久久国产成人免费| 高潮久久久久久久久久久不卡| 身体一侧抽搐| 99热只有精品国产| 日韩高清综合在线| 亚洲色图综合在线观看| 久久久久亚洲av毛片大全| 亚洲欧美一区二区三区黑人| 国产高清国产精品国产三级| 妹子高潮喷水视频| 亚洲九九香蕉| svipshipincom国产片| 身体一侧抽搐| 香蕉丝袜av| 一级片'在线观看视频| 午夜两性在线视频| 露出奶头的视频| 久久久国产一区二区| 国产一区二区三区视频了| 国产精品av久久久久免费| 黑人猛操日本美女一级片| 999久久久国产精品视频| 亚洲黑人精品在线| 精品国产乱子伦一区二区三区| 亚洲自拍偷在线| www.www免费av| 又黄又粗又硬又大视频| 99re在线观看精品视频| 在线观看免费日韩欧美大片| 99精品久久久久人妻精品| 变态另类成人亚洲欧美熟女 | 18禁黄网站禁片午夜丰满| 妹子高潮喷水视频| 日韩大码丰满熟妇| 国产亚洲av高清不卡| 免费人成视频x8x8入口观看| 欧美精品亚洲一区二区| 免费搜索国产男女视频| 亚洲欧美精品综合一区二区三区| av网站免费在线观看视频| 高清欧美精品videossex| 成人亚洲精品一区在线观看| 美女福利国产在线| 视频区欧美日本亚洲| 欧美最黄视频在线播放免费 | 日韩人妻精品一区2区三区| 国产一区二区三区综合在线观看| 香蕉丝袜av| 波多野结衣一区麻豆| 国产在线精品亚洲第一网站| 亚洲 国产 在线| 日韩人妻精品一区2区三区| 久久国产亚洲av麻豆专区| 精品国产一区二区三区四区第35| 欧美色视频一区免费| 搡老熟女国产l中国老女人| 欧美激情 高清一区二区三区| 97超级碰碰碰精品色视频在线观看| 一二三四在线观看免费中文在| 久久精品人人爽人人爽视色| 亚洲第一欧美日韩一区二区三区| 国产一区二区三区视频了| 国产伦人伦偷精品视频| 黄色怎么调成土黄色| 美女午夜性视频免费| 欧美日韩一级在线毛片| 国产精品一区二区精品视频观看| 精品久久久久久久毛片微露脸| 国产日韩一区二区三区精品不卡| 亚洲精品国产精品久久久不卡| 欧美日韩福利视频一区二区| 曰老女人黄片| 男女下面进入的视频免费午夜 | 人人妻人人添人人爽欧美一区卜| 亚洲成人精品中文字幕电影 | 人人妻人人添人人爽欧美一区卜| 亚洲国产精品999在线| 超碰成人久久| 亚洲国产精品sss在线观看 | 999精品在线视频| 成人手机av| 亚洲人成网站在线播放欧美日韩| 制服诱惑二区| 每晚都被弄得嗷嗷叫到高潮| 久久亚洲真实| 精品一区二区三区av网在线观看| 不卡一级毛片| 黄色视频不卡| x7x7x7水蜜桃| 国产精品电影一区二区三区| 亚洲成人久久性| 亚洲第一青青草原| 久99久视频精品免费| 午夜激情av网站| 嫩草影院精品99| 日本vs欧美在线观看视频| 老汉色∧v一级毛片| 欧美在线一区亚洲| 人人妻人人添人人爽欧美一区卜| 欧美在线黄色| x7x7x7水蜜桃| 色哟哟哟哟哟哟| 一边摸一边抽搐一进一小说| 国产免费男女视频| 国产一区二区三区综合在线观看| 欧洲精品卡2卡3卡4卡5卡区| 亚洲精品一区av在线观看| 男人操女人黄网站| 黄色成人免费大全| 国产亚洲精品久久久久5区| 久久国产亚洲av麻豆专区| 精品乱码久久久久久99久播| 亚洲欧美精品综合久久99| 国产无遮挡羞羞视频在线观看| 一级,二级,三级黄色视频| 两性午夜刺激爽爽歪歪视频在线观看 | 黄网站色视频无遮挡免费观看| 日韩欧美免费精品| 国产成人精品久久二区二区免费| 亚洲美女黄片视频| 欧美日韩福利视频一区二区| 老汉色∧v一级毛片| 久久天躁狠狠躁夜夜2o2o| 中文亚洲av片在线观看爽| 国产精品成人在线| 国产欧美日韩一区二区三区在线| 亚洲免费av在线视频| 亚洲一区二区三区色噜噜 | 国产精品电影一区二区三区| av在线天堂中文字幕 | 大陆偷拍与自拍| 欧美精品啪啪一区二区三区| 中亚洲国语对白在线视频| 激情视频va一区二区三区| 两性夫妻黄色片| 悠悠久久av| 无人区码免费观看不卡| 满18在线观看网站| 亚洲午夜精品一区,二区,三区| 中国美女看黄片| 精品少妇一区二区三区视频日本电影| 啪啪无遮挡十八禁网站| 在线观看舔阴道视频| 黄色视频不卡| 9色porny在线观看| 黄色女人牲交| 美女扒开内裤让男人捅视频| 日韩成人在线观看一区二区三区| 国产国语露脸激情在线看| 身体一侧抽搐| 香蕉国产在线看| 在线观看免费视频日本深夜| 久久亚洲真实| a级毛片黄视频| 午夜亚洲福利在线播放| 亚洲欧美一区二区三区久久| 亚洲av成人av| 国产高清videossex| 好男人电影高清在线观看| 欧美成狂野欧美在线观看| 色综合婷婷激情| 国产精品日韩av在线免费观看 | 老司机深夜福利视频在线观看| 国产av精品麻豆| 精品卡一卡二卡四卡免费| 亚洲人成网站在线播放欧美日韩| 亚洲,欧美精品.| 黄色丝袜av网址大全| 国产真人三级小视频在线观看| x7x7x7水蜜桃| 大型黄色视频在线免费观看| 国产熟女午夜一区二区三区| 欧美日韩福利视频一区二区| 免费一级毛片在线播放高清视频 | 日韩精品青青久久久久久| 欧美日韩一级在线毛片| 不卡一级毛片| 后天国语完整版免费观看| 日韩中文字幕欧美一区二区| www.www免费av| 在线观看66精品国产| 日韩人妻精品一区2区三区| 欧美精品啪啪一区二区三区| 日本免费a在线| 好看av亚洲va欧美ⅴa在| 黑丝袜美女国产一区| 一本综合久久免费| 大陆偷拍与自拍| 在线观看舔阴道视频| 精品久久久久久久毛片微露脸| 久久久久久久久中文| 成人亚洲精品一区在线观看| 窝窝影院91人妻| 欧美激情极品国产一区二区三区| 国产精品电影一区二区三区| 日本a在线网址| 成人特级黄色片久久久久久久| 日本wwww免费看| 久久亚洲精品不卡| 免费在线观看日本一区| 日日干狠狠操夜夜爽| 精品国产超薄肉色丝袜足j| 美女 人体艺术 gogo| 国产xxxxx性猛交| 免费久久久久久久精品成人欧美视频| 欧美黄色片欧美黄色片| 日韩免费高清中文字幕av| 日韩大码丰满熟妇| 亚洲少妇的诱惑av| 精品久久久久久成人av| 免费高清视频大片| 国产熟女xx| 日韩大码丰满熟妇| 新久久久久国产一级毛片| 亚洲国产中文字幕在线视频| 女生性感内裤真人,穿戴方法视频| 免费在线观看视频国产中文字幕亚洲| 欧美日韩亚洲综合一区二区三区_| 日韩免费高清中文字幕av| 90打野战视频偷拍视频| 国产av一区在线观看免费| 久久精品国产综合久久久| 一二三四社区在线视频社区8| 最近最新中文字幕大全电影3 | 久久性视频一级片| 丰满饥渴人妻一区二区三| 超色免费av| 999久久久精品免费观看国产| 成人黄色视频免费在线看| 国产99白浆流出| 久久香蕉激情| 午夜精品国产一区二区电影| 香蕉国产在线看| 日本免费一区二区三区高清不卡 | 久9热在线精品视频| 免费av中文字幕在线| 日本欧美视频一区| 别揉我奶头~嗯~啊~动态视频| 老熟妇仑乱视频hdxx| a在线观看视频网站| 日韩中文字幕欧美一区二区| 欧美乱妇无乱码| 久久婷婷成人综合色麻豆| 在线观看免费午夜福利视频| 人人妻,人人澡人人爽秒播| 少妇的丰满在线观看| 午夜免费观看网址| 50天的宝宝边吃奶边哭怎么回事| 久久天堂一区二区三区四区| 日韩大尺度精品在线看网址 | 欧美黑人欧美精品刺激| 伦理电影免费视频| 啦啦啦 在线观看视频| 国产熟女xx| 欧美日韩乱码在线| 老熟妇乱子伦视频在线观看| 欧美乱妇无乱码| 乱人伦中国视频| 成人亚洲精品av一区二区 | 久久人人爽av亚洲精品天堂| 女性生殖器流出的白浆| 又黄又粗又硬又大视频| 国产精品久久视频播放| 国产99白浆流出| 日韩一卡2卡3卡4卡2021年| 一a级毛片在线观看| 国产精品一区二区免费欧美| 亚洲av日韩精品久久久久久密| 真人做人爱边吃奶动态| 少妇裸体淫交视频免费看高清 | 国产精品影院久久| 欧美日韩亚洲国产一区二区在线观看| 丰满的人妻完整版| 一级毛片女人18水好多| 黄色视频,在线免费观看| 欧美日韩精品网址| 成年人黄色毛片网站| 韩国精品一区二区三区| 欧美成人免费av一区二区三区| 另类亚洲欧美激情| 精品国产乱子伦一区二区三区| 99精国产麻豆久久婷婷| 午夜激情av网站| 两性夫妻黄色片| 精品人妻1区二区| 国产亚洲欧美精品永久| 欧美黑人欧美精品刺激| 在线观看舔阴道视频| 久久亚洲真实| 欧美日韩亚洲高清精品| 女人精品久久久久毛片| 80岁老熟妇乱子伦牲交| 亚洲精品av麻豆狂野| 亚洲精品中文字幕一二三四区| 亚洲熟女毛片儿| 亚洲人成伊人成综合网2020| 亚洲精品久久成人aⅴ小说| 亚洲精品久久午夜乱码| 国产亚洲精品久久久久5区| 老熟妇乱子伦视频在线观看| 亚洲一卡2卡3卡4卡5卡精品中文| 亚洲美女黄片视频| 制服人妻中文乱码| 成年人免费黄色播放视频| 亚洲va日本ⅴa欧美va伊人久久| 国产色视频综合| 亚洲 国产 在线| 自拍欧美九色日韩亚洲蝌蚪91| 波多野结衣av一区二区av| 精品第一国产精品| 久久中文字幕一级| 一边摸一边做爽爽视频免费| 在线观看免费午夜福利视频| 在线视频色国产色|