• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Fluorescent antibiotics for real-time tracking of pathogenic bacteria

    2020-11-09 01:05:38LuMioWeiweiLiuQinglongQioXiolinLiZhochoXu
    Journal of Pharmaceutical Analysis 2020年5期

    Lu Mio,Weiwei Liu,b,Qinglong Qio,Xiolin Li,Zhocho Xu,*

    aCAS Key Laboratory of Separation Science for Analytical Chemistry,Dalian Institute of Chemical Physics,Chinese Academy of Sciences,Dalian,116023,China

    bState Key Laboratory of Fine Chemicals,Dalian University of Technology,Dalian,116012,China

    Keywords:

    Fluorescent antibiotics

    Live-cell tracking

    Fluorophore

    Pathogenic bacteria

    Fluorescent imaging

    ABSTRACT

    The harm of pathogenic bacteria to humans has promoted extensive research on physiological processes of pathogens,such as the mechanism of bacterial infection,antibiotic mode of action,and bacterial antimicrobial resistance.Most of these processes can be better investigated by timely tracking of fluorophore-derived antibiotics in living cells.In this paper,we will review the recent development of fluorescent antibiotics featuring the conjugation with various fluorophores,and focus on their applications in fluorescent imaging and real-time detection for various physiological processes of bacteria in vivo.

    1.Introduction

    Bacterial infections are one of the major causes of human diseases and death in the world.At present,bacterial infections have caused 700,000 deaths worldwide each year,and recent projections indicate that this annual deaths number may reach 10 million by 2050[1,2].This is mainly attributed to the emergence of multi-drugs resistant(MDR)bacteria stimulated by long-term overuse of antibacterial drugs for patients,especially in secondworld countries[3,4].For instance,the number of hospital infections caused by antimicrobial resistant bacteria has accounted for about 30% of the total number of pathogenic bacteria infections in hospitalized patients[5,6].More timely and effective treatment is an urgent need for patients.

    Antibiotics,one of the greatest discoveries of the 20th century,can effectively inhibit bacterial infections and reduce mortality.But with the increasing prevalence of MDR bacteria,many antibiotics including some potent broad spectrum drugs are no longer susceptible to most therapeutic regimens[7].Before developing new antibacterial drugs,we should first improve our fundamental understanding of how bacteria infect the human body,how drugs work with both bacteria and the human body,and the mechanism of bacterial resistance to drugs[8,9].

    The fluorescent tracking capability of fluorophore-derived recognition element conjugate makes it an increasingly prevalent strategy used to monitor targets timely within organelles,whole cells,and entire animals.Recently,small-molecule fluorophores have been widely used in covalently linking to antibiotics,generally named fluorescent antibiotics.The monitoring of fluorescent antibiotics in living organisms has the potential in diagnosis of bacterial infections,elucidating antimicrobial agents mode of action,assessing drug toxicity,and examining bacterial antimicrobial resistance[10-16].Fluorescent antibiotics generally divided into two types according to structural differences.One is autofluorescent antibiotics:antibiotics have functional groups with intrinsic fluorescence;the other is fluorophore-conjugated fluorescent antibiotics:a fluorophore was covalently linked to an existing antibiotic to produce a fluorophore-antibiotic compound.

    Recently,Blaskovich’s group[17]reviewed the development of fluorescent antibiotics from the perspective of various antibiotics used for intracellular or cell wall targeting,and especially discussed the biological applications in how to fight antibiotic resistance.In this review,we mainly discuss the classification and composition of fluorescent antibiotics dependent on diverse fluorophores,and review the application in fluorescent imaging and real-time detection of pathogenic bacteria in vivo.

    2.Auto fluorescent antibiotics

    Tetracycline is a classical intrinsic auto fluorescent antibiotic(Fig.1A).Early in the 1960s,tetracycline fluorescence was studied across bacterial membranes[18].Both Escherichia coli(E.coli)and Bacillus cereus(B.cereus)with tetracycline were observed in dying guinea pig phagocytes under fluorescence microscopy.Furthermore,Glazier’group[19]reported their initial studies on fermented product monitoring by fluorescence measurements of tetracycline signal in model fermentation media samples containing Streptomyces aureofaciens cell mass.In addition,some studies using auto fluorescent antibiotics with fluorescent anthraquinone core,such as olivomycin and mithramycin(Fig.1A),to stain DNA in cell cultures and for flow cytometry detection[20-24].However,auto fluorescent antibiotics generally showed weak fluorescence and poor stability,which limited their applications,especially in super-resolution fluorescent imaging of bacteria.

    3.Fluorophore-antibiotic conjugates

    3.1.Antibiotics

    Antibiotics with recognition groups of fluorophore-antibiotic conjugates were used to specific recognition of target bacteria.Antibiotics interacted with bacteria by targeting essential survival processes such as inhibiting cell-wall synthesis and interfering with the synthesis of vital proteins or DNA[25].There are several kinds of bacterial cell-wall related antibiotics,such as β-lactams,glycopeptides,lipopeptides,and polypeptides[26-29].Among them,βlactam antibiotics,such as penicillin(Fig.1B)and ceftaroline,can inhibit the peptidoglycans biosynthesis by covalently binding penicillin-binding proteins(PBPs)[30-34].Vancomycin and ramoplanin treat Gram-positive infections by targeting lipid II(a precursor for bacterial peptidoglycan biosynthesis)of cell wall[27].In addition,polymyxins as naturally occurring cyclic antibiotic lipopeptides are typically Gram-negative bacteria antibiotics and bind to lipid A on the bacterial outer membrane through electrostatic interaction(Fig.1B)[28,35].Antibiotics that act by targeting DNA or protein intra bacterial cell include macrolides,aminoglycosides,and quinolones etc.For example,erythromycin(macrolides)and kanamycin(aminoglycosides)act with ribosome of bacteria to block protein synthesis in the cells[36].Trimethoprim(TMP)is the substrate of the intracellular protease dihydrofolate reductase(DHFR)[37].The structures of them are shown in Fig.1C.All of the antibiotics above have been linked to a fluorophore for studying in physiological processes of pathogenic bacteria.

    3.2.Fluorophores

    Commonly used fluorophores for fluorophore-antibiotics conjugates are displayed in Fig.1D.They include nitrobenzofurazan(NBD),7-(dimethylamino)-coumarin-4-acetic acid(DMACA),dansyl,boron-dipyrromethene(BODIPY),fluorescein,rhodamine,and cyanine 7(Cy7).Researchers bound these fluorophores or their derivatives to antibiotics for fluorescent monitoring antibiotics in bacteria or tracking target bacteria in live animals.The selection of fluorophore mainly depends on the physicochemical properties of fluorophore,such as size,biocompatibility,brightness,and sensing wavelength.The size and biocompatibility of fluorophores are likely to influence the antibacterial activity of antibiotics,which will be discussed in next section.

    A fluorophore with higher brightness is considered to study detail physiological processes of pathogenic bacteria.BODIPY(ε = 9.1 × 104M-1cm-1,and φ = 0.94),fluorescein(ε= 9.3 × 104M-1cm-1,and φ = 0.95),or rhodamine(ε= 7.4× 104M-1cm-1,andφ = 0.92)derived fluorophores are commercially available fluorophores with excellent extinction coefficient(ε)and quantum yield(φ,important parameters of fluorophore brightness,the relative brightness=ε×φ),and are widely employed in many different biological imaging applications[38].Furthermore,near-infrared(sensing wavelength in the region of 650-900 nm) fluorophores conjugated with antibiotic can be used for fluorescent imaging of bacterial infections in vivo(detail description in section 4.2)[39].In addition,the fluorogenic probe(the probe presenting turn-on or ratiometric signal while identifying target in situ)is created by linking one or two selective fluorophores to an antibiotic for real-time detection of target objects(detail description in section 4.3)[40,41].

    3.3.Effect on antibacterial activity of antibiotics

    In principle,it is important for fluorophore-derived antibiotics to maintain specificity and affinity to target.Unfortunately,the minimum inhibitory concentration(MIC,a commonly used measure of the efficacy of an antibiotic)of most of fluorophore-derived antibiotics display an inevitable increasing trend(Table 1)[42-47].This may be due to not only the reduced affinity of the derived antibiotic,but also the fact that the molecules cannot reach the target caused by the change in the physical properties of molecules.While fluorescein is a negatively charged fluorophore,Walker’group[42]considered that the increased MICs of their fluoresceinderived antibiotics may be caused by the repulsive interactions of the compound to the cell wall(generally with amount of negative charges)and/or poor solubility of the compound.On the contrary,the relatively smaller and neutral BODIPY-derived antibiotics displayed lower MICs(10 μg/mL for BODIPY-Ramoplanin,2.5 μg/mL for BODIPY-Vancomycin)than fluorescein derivatives(20μg/mL for fluorescein-Ramoplanin,20μg/mL for fluorescein-Vancomycin).However,the MICs of BODIPY-derived antibiotics are still much higher than those of conventional antibiotics.

    The introduction of fluorophore with smaller size would greatly reduce the influence on the properties of antibiotics.Li’s group[43,44,48]constructed fluorescent polymyxin probes by linking dansyl fluorophore to the N-terminus of polymyxin B.They consider that the small size of the dansyl group helps reduce the likelihood of negative steric effects on the pharmacophore of polymyxins.The MIC of dansyl-polymyxin B was 4 fold higher than that of polymyxin B(Table 1).And polymyxin mechanisms of action were explored by imaging of polymyxin interactions with kidney proximal tubular cells.Furthermore,the smaller fluorophores NBD(M=164 g/mol)and DMACA(M=261 g/mol)have been selected to combine with fluoroquinolone antibiotic ciprofloxacin in order to maximize the penetrance of the compound into the cytosol,particularly with Gram-negative bacteria[45,46].However,not all antibiotics linked to small fluorophores maintain great antibacterial activity;the MIC of NBD-derived Trimethoprim(TMP-3CTzNBD,MIC= 64μg/mL)was much higher than that of TMP(MIC= 1μg/mL)for Staphylococcus aureus(S.aureus)ATCC 25923[47].But the MIC value seemed to decrease with the prolonging of the linker(TMP-4C-TzNBD,MIC= 16μg/mL;TMP-5C-TzNBD,MIC= 8μg/mL).Nevertheless,DMACA-derived TMP did not display the same phenomenon,and all probes with different linkers showed lower antibacterial activity(MIC> 64μg/mL).Authors considered the lack of whole cell activity was likely due to compound efflux.

    4.Fluorescent tracking of pathogenic bacteria in vivo

    Fig.1.Structure of various antibiotics and fluorophores.NBD:nitrobenzofurazan,DMACA:7-(dimethylamino)-coumarin-4-acetic acid,BODIPY:dansyl,boron-dipyrromethene.

    Fluorescent tracking of pathogenic bacteria includes monitoring antibiotics in live bacteria or tracking target bacteria in live animals.The fluorescent tracking ability depends on the response fluorescent signals of different fluorophores and the recognition of the antibiotics.Here,we mainly discuss various fluorophoresdependent fluorescent antibiotics utility in fluorescent imaging and real-time detection to better understand physiological processes of pathogenic bacteria in vivo.

    Table 1Minimum inhibitory concentration of fluorescent and conventional antibiotics.

    4.1.Fluorescent imaging in live cells

    Visualization study by fluorescent microscopy is critical to our understanding of bacterial growth and pathogenesis in their native environment.And fluorescent antibiotic is one of the essential tools to identify and track these physiological processes under fluorescent microscopy[49-52].For example,Fluorescein-derived vancomycins have been used to visualize peptidoglycan biosynthesis in living cells[53,54].Brightest staining was observed at the division site of Bacillus subtillis(B.subtilis)cells,which was predicted to be the site that peptidoglycan synthesis occurs,along with less apparent sidewall staining in a helical pattern.Fluorescein was further conjugated to ramoplanin(another peptidoglycan-binding antibiotic beside vancomycin) and the probes displayed concentration-dependent staining patterns in B.subtilis[42].At low concentrations,the probes labeled the nascent division sites,the cell poles,and a helix-like sidewall pattern.The authors also compared the straining effect of the fluorescein and BODIPY-conjugated antibiotics,respectively.BODIPY-conjugated ramoplaninwas able to stain both at the poles and the sidewalls of B.subtilis cells,while fluorescein-ramoplanin could only stain the poles.Moreover,many fluorescent antibiotics have been used for live-cell imaging.For example,9a-NBD-azithromycin,a compound with the most similar cellular pharmacokinetic profile to azithromycin,was used to study azithromycin’s in vivo distribution by confocal microscopy[55].The fluorescent imaging of BODIPY-daptomycin in bacterial membrane revealed the mechanism of action of daptomycin on cell wall morphology and septation[56].Lastly,Cy3-polymyxin B and Cy5-vancomycin(Cy3 and Cy5 are analogues of Cy7 fluorophore in Fig.1D)can selectively labeled Gram-negative and Gram-positive bacteria in various kinds of complex bacterial samples[57].

    However,the light diffraction of conventional fluorescence microscopes is limited to 200-300 nm and 500-700 nm in the lateral and axial dimensions,respectively.The size of bacteria is so small(1-10μm)[58],and the spatial resolution of conventional fluorescence microscopes is insufficient for this.Thus,the utility of super-resolution microscopy has become essential to adequately visualizing the subcellular structures of these organisms[59,60].The super-resolution structured illumination microscopic(SR-SIM)imagings of 4C-Tz-NBD in live S.aureus and E.coli have been reported by Phetsang et al.[47].4C-Tz-NBD was created by binding NBD to TMP antibiotic(Fig.2A),and then S.aureus,wild type E.coli andΔtolC type E.coli(efflux pump deficient E.coli mutant strain)were strained with FM4-64FX,Hoechst 33342,and 4C-Tz-NBD,respectively.The bacteria were clearly imaged by SR-SIM(Figs.2B-D),and more details have been observed.Cross sections of representative bacteria demonstrated that the 4C-Tz-NBD was largely localized inside the bacterial membrane when compared to the location of the red FM4-64FX dye(Figs.2E and F).Moreover,4C-Tz-NBD displayed higher cellular accumulation inΔtolC E.coli compared to wild type E.coli,which indicates that in normal bacteria TMP probe accumulation at a sufficiently high concentration to inhibit the DHFR target is prevented due to the removal by the TolC-dependent efflux pump system.

    The brightness of NBD(ε=1.54×104M-1cm-1,andφ=0.55)fluorophore was relatively lower than that of other probes,which may limit the investigation of detailed information[61].BODIPY(ε = 9.1 × 104M-1cm-1,and φ = 0.94),fluorescein(ε= 9.3 × 104M-1cm-1,and φ = 0.95),or rhodamine(ε=7.4×104M-1cm-1,andφ=0.92)are commercially available fluorophores with excellent light brightness,and widely employed in super resolution imaging applications[62].BODIPY-derived penicillin V(aβ-lactam antibiotic),BOCILLIN-FL(Boc-FL),is typical commercial probe.It was first developed in 1999 with the aim of detecting and studying the expression and folding of PBPs[63-65].PBPs are an important membrane protein involved in cell wall peptidoglycan synthesis and they can be inhibited by β-lactam antibiotics.Thus,Boc-FL is widely used to investigate the structure[66,67]and activity[68-70]of PBPs,and antibiotics mode of action[71-75].The roles of PBPs in live Gram-positive bacteria were also studied with SR-SIM imagings by combination Boc-FL and rhodamine-derived cephalosporin C(Ceph C-T,structures are shown in Fig.2G)[76].SR-SIM imaging of B.subtilis and Streptococcus pneumoniae(S.pneumoniae)divisional septa labeled by Ceph C-T and Boc-FL show greater details compared to the image of wide-field fluorescence microscopy.Comparatively little overlap of the stains was observed as shown in Figs.2H and I,which indicates that different populations of PBPs are active at discrete locations in the midcell during division of B.subtilis and S.pneumoniae.

    Fig.2.Super resolution imaging with different fluorescent antibiotics.(A)Structure of NBD-derived fluorescent antibiotic 4C-Tz-NBD[47].SR-SIM fluorescence imaging of(B)S.aureus,(C)wild type E.coli,and(D)ΔtolC E.coli.And cross section of fluorescent imaging of(E)wild type E.coli and(F)ΔtolC E.coli:green,4C-Tz-NBD;red,FM4-64FX;blue,Hoechst 33342.(G)Structures of fluorescent antibiotics Boc-FL and Ceph C-T[76].3D-SIM super-resolution microscope imaging of(H)B.subtilis and(I)S.pneumoniae IU 1945 PBPs after dual labeling with Ceph C-T(red)and Boc-FL(green)in live cells.NBD:nitrobenzofurazan,SR-SIM:super-resolution structured illumination microscopy,PBPs:penicillinbinding proteins.

    Fig.3.(A)Near-infrared fluorescent antibiotic vanco-800CW[39]and(B)its real-time imaging of bacterial infections in living mice.Left side:bioluminescence imaging;right side:fluorescence imaging(excitation 745 nm,emission 840 nm).

    4.2.Fluorescent imaging of bacterial infection in live animals

    Fig.4.Schematic representation of ratiometric signal generation process of CCF2 probe while degrated by β-Lactamase.

    Optical imaging of bacterial infection in living animals is emerging as a powerful tool to study preclinical models of infectious disease[77-79].Near-infrared(NIR) fluorophores with emission wavelengths in the region of 650-900 nm have been developed to target specific tissues that are otherwise difficult to image[80,81].Oosten’s group[39]created a NIR probe vanco-800CW by covalently linking IRDye 800CW(a derivative of Cy7 fluorophore)to vancomycin.As shown in Fig.3,the probe was successfully targeted to Gram-positive bacterial infections in living animals and a human cadaver.And it also can discriminate bacterial infections from sterile inflammation in vivo,indicating the suf ficient resolution of the probe.The NIR fluorophores Cy5 and Cy5.5 as fluorescence resonant energy transfer donor-acceptor pair were further attached to cephalosporin constructing ratiometric substrate of β-Lactamase(the mechanism is described in next section),which was used for the real-time imaging of pulmonary infections and rapid quantification of bacteria in live mice[82].The NIR fluorescent antibiotics were anticipated as a promising clinical optical imaging agent to fight against severe bacterial infections in the future.

    4.3.Fluorescent real-time detection of bacteria

    The fluorescent real-time detection requires a turn-on or ratiometric signal of the designed probe while recognizing a target.Turn-on probes exhibit no/weak fluorescence in their native states,and then they display a selective enhanced fluorescence after binding to objects.Rao and colleagues developed turn-on probes with high selectivity for Mycobacterium tuberculosis(Mtb)protein β-Lactamase(BlaC,an enzyme produced by resistant bacteria that degradesβ-lactam antibiotics by destroying the cyclic core)for realtime and accurate detection of very low numbers of Mtb in patient sputum[83,84].Furthermore,several groups have created ratiometric β-lactam probes by linking fluorescence resonant energy transfer(FRET)donor-accept fluorophores to β-lactam antibiotic.Zlokarnik and coworkers[85] first reported a ratiometric substrate ofβ-Lactamase in 1998 for real-time monitoring gene expression.7-hydroxycoumarin and fluorescein as FRET donor-acceptor pair were attached to the 7 and 3′positions of a cephalosporin,respectively,creating the FRET substrate CCF2(Fig.4).It emitted acceptor fluorescein fluorescence at 520 nm when excited at 7-hydroxycoumarin’swavelength 409 nm.β-Lactamasecould cleave CCF2 to separate the donorand acceptor.And then the donor emitted fluorescence at 447 nm.Using this ratiometric probe,β-Lactamase was detected in real-time to measure gene expression in single live mammalian cells with high sensitivity.In addition,various ratiometric fluorescent antibiotics based on cephalosporin were developed by attaching different fluorophores[40,86,87].Ratiometric fluorescent probe C-2 with fluorescein and rhodamine donor-acceptor pair was used for screening microbes resistant to methoxyimino cephalosporins[87].

    5.Conclusion

    In this review,we have provided a brief introduction of fluorescent antibiotics for physiological studies on pathogenic bacteria in recent years.These studies were done by fluorescent tracking of antibiotics in live cells using autofluorescent antibiotics or fluorophore-antibiotics conjugates.Most probes have potential values for more extensive and in-depth research.Looking forward,the use of bio-specific small molecule probes with high specificity carries both a great potential and significant challenges.To date,the current understanding of microorganisms is still limited,and more excellent fluorophores should try to be incorporated into antibiotics.Meanwhile,super resolution fluorescence imaging is expected to study more details of the physiological processes of pathogenic bacteria.This may help researchers develop new antibiotics to prevent the potential outbreak of resident evil caused by super-resistant bacteria in the near future.

    Declaration of competing interest

    The authors declare that there are no conflicts of interest.

    Acknowledgments

    We are grateful for the financial support from the National Natural Science Foundation of China(21878286,21908216,21576043)and Dalian Institute of Chemical Physics(DICPI201938,DICP I202006).

    国产av不卡久久| 中文字幕av在线有码专区| 欧美区成人在线视频| 国产一区二区三区av在线| 精品久久国产蜜桃| 人妻少妇偷人精品九色| 中文字幕久久专区| 天堂中文最新版在线下载 | 国产综合懂色| 国产白丝娇喘喷水9色精品| 亚洲乱码一区二区免费版| 国产成人福利小说| av女优亚洲男人天堂| 高清毛片免费看| 日本熟妇午夜| 男女下面进入的视频免费午夜| 男人舔奶头视频| 国产精品国产三级国产av玫瑰| av卡一久久| 麻豆av噜噜一区二区三区| 久久久欧美国产精品| 精品一区二区三区人妻视频| 亚洲熟妇中文字幕五十中出| 好男人在线观看高清免费视频| 蜜桃久久精品国产亚洲av| 两性午夜刺激爽爽歪歪视频在线观看| 五月伊人婷婷丁香| 久久韩国三级中文字幕| 成人亚洲精品av一区二区| 欧美日韩国产亚洲二区| 3wmmmm亚洲av在线观看| 91久久精品国产一区二区成人| 色视频www国产| 国产又色又爽无遮挡免| 人人妻人人澡欧美一区二区| 最近视频中文字幕2019在线8| 熟女人妻精品中文字幕| 成人午夜精彩视频在线观看| 国产亚洲5aaaaa淫片| 国产亚洲最大av| 日韩 亚洲 欧美在线| 青春草视频在线免费观看| 午夜福利在线观看免费完整高清在| 97人妻精品一区二区三区麻豆| 深爱激情五月婷婷| 中文字幕亚洲精品专区| 免费看光身美女| 亚洲成人精品中文字幕电影| 综合色丁香网| 蜜桃久久精品国产亚洲av| 国产精品.久久久| 国产不卡一卡二| 国产高清有码在线观看视频| 国产av一区在线观看免费| 一个人看的www免费观看视频| 久久久久精品久久久久真实原创| 插阴视频在线观看视频| 国产精品电影一区二区三区| 国产免费一级a男人的天堂| 亚洲熟妇中文字幕五十中出| 久久久久性生活片| 亚洲最大成人中文| 色综合亚洲欧美另类图片| 卡戴珊不雅视频在线播放| 欧美另类亚洲清纯唯美| 在线观看66精品国产| 亚洲精品日韩在线中文字幕| 日韩欧美 国产精品| 日本五十路高清| 国产精品精品国产色婷婷| 国产精品国产三级国产专区5o | 91在线精品国自产拍蜜月| 青春草视频在线免费观看| 日韩欧美国产在线观看| 精品一区二区三区人妻视频| 国产视频首页在线观看| 亚洲国产成人一精品久久久| 色网站视频免费| 亚洲综合色惰| 国产淫片久久久久久久久| 久久精品熟女亚洲av麻豆精品 | 深夜a级毛片| 一级毛片久久久久久久久女| 成人亚洲精品av一区二区| 伦理电影大哥的女人| 亚洲av成人精品一二三区| 少妇猛男粗大的猛烈进出视频 | 午夜激情福利司机影院| 日本熟妇午夜| www.色视频.com| 日本一二三区视频观看| 国产午夜精品一二区理论片| 欧美日本亚洲视频在线播放| 亚洲aⅴ乱码一区二区在线播放| 亚洲国产成人一精品久久久| 夜夜看夜夜爽夜夜摸| 亚洲18禁久久av| 成人av在线播放网站| 中文字幕av在线有码专区| 人人妻人人澡欧美一区二区| 日韩av在线大香蕉| 亚洲人成网站高清观看| 亚洲精品自拍成人| 岛国在线免费视频观看| 国产精品麻豆人妻色哟哟久久 | 国产黄a三级三级三级人| 亚洲成人久久爱视频| 97超碰精品成人国产| 久久99蜜桃精品久久| 免费观看人在逋| 亚洲欧美精品综合久久99| 免费无遮挡裸体视频| 日日撸夜夜添| 欧美色视频一区免费| 日韩一区二区视频免费看| 男人舔奶头视频| 中国国产av一级| 干丝袜人妻中文字幕| 久久精品国产亚洲av涩爱| 在线观看一区二区三区| 亚洲精品国产av成人精品| 亚洲三级黄色毛片| 午夜日本视频在线| 69av精品久久久久久| 国产久久久一区二区三区| 天堂中文最新版在线下载 | 国产免费一级a男人的天堂| 丰满乱子伦码专区| 成人亚洲精品av一区二区| 99视频精品全部免费 在线| 亚洲自偷自拍三级| 又爽又黄无遮挡网站| 三级经典国产精品| 欧美精品国产亚洲| 国产一级毛片在线| 免费无遮挡裸体视频| 高清日韩中文字幕在线| 亚洲成人久久爱视频| 欧美激情国产日韩精品一区| 97超视频在线观看视频| 美女高潮的动态| 99久国产av精品| www.av在线官网国产| 99热网站在线观看| 精品无人区乱码1区二区| 国产午夜精品一二区理论片| 久久99热这里只有精品18| 毛片女人毛片| 亚洲欧美成人精品一区二区| 精华霜和精华液先用哪个| 午夜老司机福利剧场| 欧美97在线视频| 汤姆久久久久久久影院中文字幕 | 久久6这里有精品| 国产亚洲av片在线观看秒播厂 | 亚洲国产精品sss在线观看| 久久韩国三级中文字幕| 国产一区有黄有色的免费视频 | 中文欧美无线码| 亚洲国产精品成人综合色| 国产 一区 欧美 日韩| 男的添女的下面高潮视频| 99九九线精品视频在线观看视频| 国产高清三级在线| 免费观看a级毛片全部| 嫩草影院入口| 国产又色又爽无遮挡免| 美女国产视频在线观看| 亚洲欧美中文字幕日韩二区| 亚洲最大成人中文| 国产一区二区亚洲精品在线观看| 又爽又黄无遮挡网站| 国产精品一区二区在线观看99 | 国产精品女同一区二区软件| 午夜久久久久精精品| 天天躁夜夜躁狠狠久久av| 国产高清有码在线观看视频| 国产激情偷乱视频一区二区| 九九久久精品国产亚洲av麻豆| 午夜精品在线福利| 看免费成人av毛片| 有码 亚洲区| 晚上一个人看的免费电影| 欧美日韩综合久久久久久| 床上黄色一级片| 成人鲁丝片一二三区免费| 三级男女做爰猛烈吃奶摸视频| 床上黄色一级片| 亚洲欧美精品综合久久99| 大话2 男鬼变身卡| 91在线精品国自产拍蜜月| 国产成人精品一,二区| 日本五十路高清| 欧美xxxx黑人xx丫x性爽| 欧美变态另类bdsm刘玥| 亚洲综合色惰| 国产精品久久久久久久久免| 永久网站在线| av在线播放精品| 啦啦啦观看免费观看视频高清| 日韩欧美精品v在线| 一边摸一边抽搐一进一小说| 不卡视频在线观看欧美| 国产私拍福利视频在线观看| 麻豆乱淫一区二区| 亚洲欧美精品自产自拍| 在线观看美女被高潮喷水网站| 国产 一区 欧美 日韩| 亚洲精品,欧美精品| 欧美成人一区二区免费高清观看| 少妇的逼水好多| 亚洲欧洲国产日韩| 建设人人有责人人尽责人人享有的 | 午夜福利在线观看免费完整高清在| 欧美性感艳星| 国产日韩欧美在线精品| 久久婷婷人人爽人人干人人爱| 久99久视频精品免费| 白带黄色成豆腐渣| 美女xxoo啪啪120秒动态图| 丝袜喷水一区| 3wmmmm亚洲av在线观看| a级毛色黄片| 高清午夜精品一区二区三区| 日韩av在线大香蕉| 高清视频免费观看一区二区 | 亚洲欧美日韩高清专用| 两性午夜刺激爽爽歪歪视频在线观看| 国产视频首页在线观看| 大又大粗又爽又黄少妇毛片口| 美女大奶头视频| 国产淫片久久久久久久久| 99久久九九国产精品国产免费| 亚洲欧洲日产国产| 十八禁国产超污无遮挡网站| 欧美日本亚洲视频在线播放| 在线免费十八禁| h日本视频在线播放| a级毛片免费高清观看在线播放| 亚洲图色成人| 精华霜和精华液先用哪个| 亚洲欧美中文字幕日韩二区| 久久精品91蜜桃| 免费大片18禁| 免费一级毛片在线播放高清视频| 亚洲精品色激情综合| 婷婷色av中文字幕| 欧美一区二区精品小视频在线| 91在线精品国自产拍蜜月| 日韩一区二区视频免费看| 久久99热这里只有精品18| 国产亚洲一区二区精品| 日韩精品青青久久久久久| 国模一区二区三区四区视频| 内射极品少妇av片p| 国产黄a三级三级三级人| 国产久久久一区二区三区| 久久欧美精品欧美久久欧美| 日本一二三区视频观看| 在线观看66精品国产| 超碰av人人做人人爽久久| 久久久a久久爽久久v久久| 久久99精品国语久久久| 国产精品熟女久久久久浪| 特级一级黄色大片| a级毛片免费高清观看在线播放| 国产综合懂色| 日韩制服骚丝袜av| 嘟嘟电影网在线观看| 我的老师免费观看完整版| 岛国在线免费视频观看| 久久久久免费精品人妻一区二区| 欧美一区二区国产精品久久精品| 国产精品麻豆人妻色哟哟久久 | 成人午夜高清在线视频| 亚洲在久久综合| 国产高清视频在线观看网站| 午夜久久久久精精品| 日本午夜av视频| 好男人在线观看高清免费视频| 亚洲av二区三区四区| 男女国产视频网站| 青春草视频在线免费观看| 免费av毛片视频| 超碰97精品在线观看| 91久久精品电影网| 久久国内精品自在自线图片| av福利片在线观看| 国产高清有码在线观看视频| 亚洲性久久影院| 亚洲内射少妇av| 国产 一区 欧美 日韩| 欧美日韩精品成人综合77777| 久久精品夜色国产| 熟女电影av网| 女人被狂操c到高潮| 国内少妇人妻偷人精品xxx网站| 好男人视频免费观看在线| 内射极品少妇av片p| 国产精品三级大全| 国产探花在线观看一区二区| 国产亚洲91精品色在线| 亚洲人成网站高清观看| 亚州av有码| 日本三级黄在线观看| 亚洲成人精品中文字幕电影| 亚洲一区高清亚洲精品| 亚洲精品,欧美精品| 乱系列少妇在线播放| 欧美日韩综合久久久久久| or卡值多少钱| 国产又色又爽无遮挡免| 综合色av麻豆| 中文字幕av在线有码专区| 天堂√8在线中文| 又爽又黄a免费视频| 最新中文字幕久久久久| 久久久久久久国产电影| 成人三级黄色视频| 麻豆av噜噜一区二区三区| 亚洲精品乱码久久久久久按摩| 国产精品熟女久久久久浪| 国产老妇女一区| 亚洲欧美日韩卡通动漫| 色综合色国产| 亚洲国产精品成人综合色| 两性午夜刺激爽爽歪歪视频在线观看| 日韩成人av中文字幕在线观看| 看黄色毛片网站| 久久人人爽人人爽人人片va| 99热这里只有是精品50| 亚洲av福利一区| 国产高清三级在线| 国产高清视频在线观看网站| 成人综合一区亚洲| 亚洲精品乱久久久久久| 日本一本二区三区精品| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | АⅤ资源中文在线天堂| 91精品国产九色| 日韩人妻高清精品专区| 老司机影院成人| 亚洲无线观看免费| 久久精品夜夜夜夜夜久久蜜豆| 六月丁香七月| 国产精品人妻久久久久久| 日韩欧美三级三区| 久久久久久久亚洲中文字幕| 亚洲av福利一区| 国产一区有黄有色的免费视频 | 国产精品爽爽va在线观看网站| 国产精品野战在线观看| 91久久精品国产一区二区三区| 国产伦精品一区二区三区四那| 亚洲av成人av| 成人综合一区亚洲| 亚洲欧洲日产国产| 18+在线观看网站| 亚洲国产欧美人成| 午夜免费男女啪啪视频观看| 成人漫画全彩无遮挡| 亚洲人成网站在线观看播放| 久久久精品94久久精品| 亚洲精华国产精华液的使用体验| 久久精品综合一区二区三区| 久久亚洲国产成人精品v| 国产视频首页在线观看| 国产午夜精品论理片| 听说在线观看完整版免费高清| 欧美变态另类bdsm刘玥| 美女xxoo啪啪120秒动态图| 亚洲无线观看免费| 久久精品久久精品一区二区三区| 九草在线视频观看| 亚洲国产精品成人综合色| 国产精品.久久久| 91精品伊人久久大香线蕉| 国产黄片美女视频| 最后的刺客免费高清国语| 成人亚洲欧美一区二区av| 18禁裸乳无遮挡免费网站照片| 最近中文字幕2019免费版| 午夜福利在线观看吧| 小说图片视频综合网站| 男人和女人高潮做爰伦理| 身体一侧抽搐| 最近的中文字幕免费完整| 91午夜精品亚洲一区二区三区| 在线免费观看不下载黄p国产| 男女啪啪激烈高潮av片| 色视频www国产| 亚洲欧美日韩无卡精品| 中文字幕制服av| 亚洲欧美成人综合另类久久久 | 久久精品综合一区二区三区| 日韩成人伦理影院| 69人妻影院| 国内精品一区二区在线观看| 99久久无色码亚洲精品果冻| 精品不卡国产一区二区三区| 国产亚洲av嫩草精品影院| 麻豆久久精品国产亚洲av| 大香蕉97超碰在线| 波野结衣二区三区在线| 99久久精品国产国产毛片| 中文亚洲av片在线观看爽| 午夜免费激情av| 日本-黄色视频高清免费观看| 国产精品熟女久久久久浪| 一区二区三区高清视频在线| 热99re8久久精品国产| 自拍偷自拍亚洲精品老妇| 久久精品国产99精品国产亚洲性色| av免费观看日本| 欧美另类亚洲清纯唯美| 色吧在线观看| 久久精品熟女亚洲av麻豆精品 | 日日摸夜夜添夜夜爱| 三级经典国产精品| 大香蕉97超碰在线| 亚洲激情五月婷婷啪啪| 超碰97精品在线观看| 26uuu在线亚洲综合色| 99热这里只有精品一区| 高清日韩中文字幕在线| 国产一区有黄有色的免费视频 | 偷拍熟女少妇极品色| 亚洲无线观看免费| 一个人观看的视频www高清免费观看| 国产黄片美女视频| 国产精品熟女久久久久浪| 精品人妻偷拍中文字幕| 国产精品一二三区在线看| 国产真实伦视频高清在线观看| 欧美极品一区二区三区四区| 在线免费观看的www视频| 联通29元200g的流量卡| 欧美性感艳星| 波野结衣二区三区在线| 精品一区二区三区视频在线| 国产极品天堂在线| 亚洲av电影不卡..在线观看| 我的女老师完整版在线观看| 免费黄网站久久成人精品| 只有这里有精品99| 99热这里只有精品一区| 五月玫瑰六月丁香| 欧美日本视频| 丝袜美腿在线中文| 中文亚洲av片在线观看爽| 亚洲欧美中文字幕日韩二区| 亚洲欧美精品专区久久| 亚洲美女搞黄在线观看| 长腿黑丝高跟| 看黄色毛片网站| 国产黄片视频在线免费观看| 熟女电影av网| 非洲黑人性xxxx精品又粗又长| 日本色播在线视频| 99久久成人亚洲精品观看| 亚洲国产欧美在线一区| 亚洲国产日韩欧美精品在线观看| 91久久精品国产一区二区成人| 亚洲国产高清在线一区二区三| 国产美女午夜福利| 五月伊人婷婷丁香| 久久久久久久亚洲中文字幕| 乱人视频在线观看| 99久久九九国产精品国产免费| 日本一二三区视频观看| 久久久午夜欧美精品| 欧美成人精品欧美一级黄| 免费av毛片视频| 国产精品电影一区二区三区| 搡老妇女老女人老熟妇| 欧美日韩一区二区视频在线观看视频在线 | 国产精品国产三级专区第一集| 91精品国产九色| 我的女老师完整版在线观看| 看黄色毛片网站| 永久网站在线| 国产精品美女特级片免费视频播放器| 深夜a级毛片| 午夜久久久久精精品| 97在线视频观看| 亚洲在久久综合| 插阴视频在线观看视频| 亚洲av中文av极速乱| 18禁动态无遮挡网站| 爱豆传媒免费全集在线观看| 国产精品不卡视频一区二区| 午夜福利在线观看吧| 国内少妇人妻偷人精品xxx网站| 国产精品伦人一区二区| 久久久久久久久久黄片| 欧美日本视频| 日韩高清综合在线| 婷婷色麻豆天堂久久 | 中文精品一卡2卡3卡4更新| 欧美97在线视频| 国产精品人妻久久久影院| 免费观看精品视频网站| 丰满乱子伦码专区| 亚洲色图av天堂| 久久久色成人| 亚洲乱码一区二区免费版| 又爽又黄a免费视频| a级毛片免费高清观看在线播放| 国产毛片a区久久久久| 午夜精品在线福利| 少妇人妻一区二区三区视频| 久久人妻av系列| 99九九线精品视频在线观看视频| 九九在线视频观看精品| 秋霞在线观看毛片| 搡女人真爽免费视频火全软件| 午夜精品一区二区三区免费看| 美女xxoo啪啪120秒动态图| 欧美区成人在线视频| 一级黄片播放器| 久久99热这里只有精品18| 午夜视频国产福利| 六月丁香七月| 国产三级中文精品| 久久精品国产亚洲av天美| 亚洲欧洲日产国产| 国产白丝娇喘喷水9色精品| 能在线免费观看的黄片| 亚洲欧美成人综合另类久久久 | 女人十人毛片免费观看3o分钟| 国产精品一区二区性色av| 欧美3d第一页| 精品午夜福利在线看| 两性午夜刺激爽爽歪歪视频在线观看| 在现免费观看毛片| 亚洲乱码一区二区免费版| 真实男女啪啪啪动态图| 成人漫画全彩无遮挡| 国产熟女欧美一区二区| 三级国产精品片| 日韩大片免费观看网站 | 成年女人永久免费观看视频| 一个人看的www免费观看视频| 狂野欧美白嫩少妇大欣赏| 九九久久精品国产亚洲av麻豆| 久久久久久久久中文| 嫩草影院入口| 午夜福利在线在线| 久久人妻av系列| 日本免费a在线| 日本-黄色视频高清免费观看| 女人被狂操c到高潮| 亚洲国产欧洲综合997久久,| www.av在线官网国产| 国产精品一区www在线观看| 久久亚洲精品不卡| 18+在线观看网站| 一本久久精品| 国产 一区精品| 黄色欧美视频在线观看| 一区二区三区四区激情视频| 精品人妻偷拍中文字幕| 亚洲精品一区蜜桃| 青春草亚洲视频在线观看| 亚洲成色77777| 国产精品国产三级国产专区5o | 尾随美女入室| 日本欧美国产在线视频| 国产 一区精品| 欧美潮喷喷水| 亚洲精品影视一区二区三区av| 又粗又爽又猛毛片免费看| 久久精品国产鲁丝片午夜精品| 听说在线观看完整版免费高清| 日本黄色视频三级网站网址| 欧美3d第一页| 九色成人免费人妻av| 欧美最新免费一区二区三区| 成年免费大片在线观看| 亚洲熟妇中文字幕五十中出| 白带黄色成豆腐渣| 国产精品国产三级国产专区5o | 欧美+日韩+精品| 亚洲av免费高清在线观看| 在线观看一区二区三区| 少妇的逼水好多| 男插女下体视频免费在线播放| 2021少妇久久久久久久久久久| 美女大奶头视频| a级一级毛片免费在线观看| 午夜老司机福利剧场| 久久国产乱子免费精品| 99久久精品一区二区三区| 一边摸一边抽搐一进一小说| 国产真实伦视频高清在线观看| 可以在线观看毛片的网站| 午夜福利在线观看吧| 欧美日韩在线观看h| 美女被艹到高潮喷水动态| 国产免费视频播放在线视频 | 亚洲av电影在线观看一区二区三区 | 级片在线观看| 一夜夜www| 亚洲精品亚洲一区二区| 男女那种视频在线观看| 91久久精品国产一区二区成人| 国产极品天堂在线| 精品久久久噜噜| 亚洲精品影视一区二区三区av| 国产午夜精品久久久久久一区二区三区| 午夜精品一区二区三区免费看| 六月丁香七月| 成人三级黄色视频| 少妇的逼水好多| 在现免费观看毛片|