米爾古麗·阿布拉 郭瑞清 劉桂萍
摘 ?要:渭干河流經(jīng)南天山造山帶南緣,為了解南天山洋演化歷史,對該河流河砂樣品中碎屑鋯石進(jìn)行U-Pb定年測試,結(jié)果表明,碎屑鋯石年齡主要集中在460~400 Ma和310~260 Ma,少量分布在660~610 Ma和830~760 Ma,無中生代和新生代年齡記錄。據(jù)本文數(shù)據(jù)并結(jié)合南天山北緣河流樣品中已發(fā)表的鋯石U-Pb年齡數(shù)據(jù)對比研究表明:南天山洋古生代期間俯沖消減作用具長期性和多階段性。830~610 Ma(新元古代中期)超大陸裂解,南天山洋打開;460~400 Ma(晚奧陶世至中泥盆世)南天山洋南北雙向俯沖產(chǎn)生了大量的大陸弧巖漿作用,380~320 Ma(晚泥盆世至中石炭世)南天山洋為單一的北向俯沖,310~260 Ma(晚石炭至早二疊世)南天山洋最終閉合并伴隨發(fā)生后碰撞巖漿構(gòu)造活動。
關(guān)鍵詞:南天山造山帶;碎屑鋯石;年齡譜;古生代巖漿巖;演化歷史
南天山造山帶位于中亞造山帶西南緣,是中亞造山帶重要組成部分[1]。地質(zhì)演化伴隨著古南天山洋的開啟-閉合過程,以及塔里木克拉通與伊犁-中天山地塊的陸陸碰撞[2]。近年來國內(nèi)外學(xué)者在南天山地區(qū)進(jìn)行了大量的構(gòu)造地質(zhì)學(xué)、沉積地層學(xué)、變質(zhì)巖石學(xué),古地磁、巖石地球化學(xué)等方面的研究[3-11],但是,南天山洋在古生代期間的閉合時限和俯沖方向,以及塔里木克拉通與伊犁-中天山碰撞時間和構(gòu)造背景等科學(xué)問題至今仍未達(dá)到共識[4,6-7,12-16]。該地區(qū)在長期復(fù)雜的構(gòu)造演化過程中,伴隨相應(yīng)的巖漿活動,形成與之對應(yīng)的侵入巖或火山巖。但這些巖石遭受了后期的改造和剝蝕,保存和出露不全面,另外,南天山地形條件相對較差,交通不便,前人的研究大多局限于出露的單個或幾個花崗巖體,從而導(dǎo)致對上述一些科學(xué)問題未能很好解決。河流是一個天然的沉積物分選系統(tǒng),具有從各類巖石中收集和分選碎屑物質(zhì)的能力。因此,河流中的碎屑鋯石是揭示那些海拔較高、地形復(fù)雜、自然條件惡劣地區(qū)巖漿事件和構(gòu)造演化的有利工具[17]。較之單個巖體,碎屑鋯石所記錄的年齡范圍更廣、控制的區(qū)域更大。渭干河發(fā)育于南天山南緣(圖1-a),流經(jīng)南天山南部的廣大區(qū)域,屬塔里木克拉通北緣;南天山北緣河流流經(jīng)地域為伊犁-中天山地塊南緣,兩者以南天山造山帶為分水嶺(圖1-b)。河流中的碎屑鋯石主要源于流域內(nèi)的地質(zhì)體并攜帶有源巖的重要信息。通過對渭干河沉積物中的碎屑鋯石U-Pb年代學(xué)研究,并結(jié)合已有資料,揭示南天山造山帶構(gòu)造-巖漿熱事件并為其構(gòu)造演化提供一定的約束。
1 ?區(qū)域地質(zhì)背景
中國境內(nèi)的阿爾泰、準(zhǔn)噶爾和天山是組成中亞造山帶西南緣的主要構(gòu)造塊體(圖2-b)。天山呈EW走向延伸,西起烏茲別克斯坦,經(jīng)塔吉克斯坦、吉爾吉斯斯坦、哈薩克斯坦,東延至中國新疆和甘肅[1,7]。中國境內(nèi)天山又被分為東天山和西天山,西天山從南到北依次劃分為南天山造山帶、中天山地塊、伊犁地塊,北天山造山帶[7,18-19](圖2-a)。
南天山造山帶位處伊犁-中天山地塊與塔里木克拉通之間,北部以阿特巴希-依尼爾切克-那拉提南緣斷裂為界,南部以塔里木克拉通北緣斷裂為界(圖2-b)[20]。由大陸基底、古生代海相沉積巖、蛇綠巖和高壓超高壓變質(zhì)巖組成的一條復(fù)雜增生造山帶[19]。造山帶中發(fā)育有大量的花崗質(zhì)侵入巖,形成時代主要集中在早古生代至晚古生代。早古生代主要為花崗閃長巖、石英二長巖及閃長巖,巖石具有鈣堿性陸弧巖漿巖的特征,晚古生代主要由富鉀鈣堿性花崗巖組成[13,21-23]。
中天山與伊犁地塊是兩個具有前寒武紀(jì)基底和古生代大陸弧的微陸塊[24]。中奧陶世,伊犁地塊與中天山地塊聯(lián)成統(tǒng)一的地塊[25-26],中—新元古界的斜長角閃巖、大理石、花崗片麻巖、石英巖以及各種片巖組成其古老基底[27],中天山與伊犁地塊內(nèi)廣泛出露古生代長英質(zhì)火山巖和侵入巖,巖漿結(jié)晶年齡主要在500~260 Ma之間[28-30]。
塔里木克拉通是中國最大的前寒武陸塊之一,中部主要為新生代沉積物,東北部、東南部、西南部分別為庫魯克塔格、阿爾金塔格、特克里克,都出露基底巖石。塔里木北緣斷裂是塔里木克拉通與南天山造山帶的界線。塔里木北緣的巖漿巖主要為前寒武紀(jì)巖石,近期發(fā)現(xiàn)塔里木北緣也廣泛發(fā)育晚奧陶世到中泥盆世花崗巖類和火山巖,主要集中在東北部庫魯克塔格地區(qū)[10,31-34]。另外,早二疊世巖漿巖在塔里木北緣廣泛存在,具有雙峰式火山巖系列特征[35]
2 ?樣品采集
渭干河發(fā)源于南天山造山帶南緣,由木扎提河、卡普斯浪河、臺勒維丘克河、喀拉蘇河和克孜爾河5條發(fā)育于天山南緣的支流匯聚而成。整體呈北高南低,流經(jīng)塔里木克拉通北緣,可劃分為山地、平原流域兩大部分,起始海拔落差達(dá)6 km。流域內(nèi)巖漿侵入巖主要以花崗質(zhì)巖體為主,巖體形成時代為古生代,且志留紀(jì)至二疊紀(jì)巖體廣泛出露。經(jīng)過對渭干河流域進(jìn)行野外考察,在下游采集河砂樣品,記作18WGH01(圖2-a)。樣品采集過程中遵循以下原則:為避免岸邊物質(zhì)污染樣品,在離岸有一定位置的心灘或邊灘采樣;為保證具有代表性,樣品由河道不同位置碎屑物質(zhì)的混合樣組成;為避免風(fēng)成沉積物的干擾,采樣時去除表面約2~3 cm厚的表層物;樣品以中細(xì)砂為主。
3 ?樣品分析
鋯石分選在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實驗室完成。河砂樣品經(jīng)重砂分選和磁性分選等過程將鋯石從中分離出來,在雙目鏡下挑選出表面整潔無裂紋、晶型較好、無包裹體的至少300顆鋯石進(jìn)行年代學(xué)測試。將分選出的鋯石顆粒用環(huán)氧樹脂膠結(jié)在玻璃板上,再將其細(xì)磨至中心部位,以便觀察鋯石的內(nèi)部結(jié)構(gòu),然后進(jìn)行拋光、清洗處理制成樣品靶。鋯石陰極發(fā)光圖像在Mono CL3+型的陰極熒光光譜儀上拍攝完成。鋯石U-Pb同位素定年LA-MC-ICP分析在西北大學(xué)大陸動力學(xué)國家重點(diǎn)實驗室完成。鋯石U-Pb定年以鋯石91500為標(biāo)樣進(jìn)行同位素分餾校正,具體實驗條件和分析流程同侯可軍等[47]。數(shù)據(jù)處理采用GLITTER(Version 4.0)完成。鋯石樣品的U-Pb年齡諧和圖繪制和年齡權(quán)重平均計算均采用Isoplot完成。數(shù)據(jù)處理過程中,年齡晚于1.0 Ga的鋯石,采用206Pb /238U年齡數(shù)據(jù);對于早于1.0 Ga的鋯石年齡選取更為可靠的207Pb/206Pb年齡數(shù)據(jù)。
4 ?分析結(jié)果與數(shù)據(jù)
該樣品中鋯石多數(shù)呈無色透明,以自形-半自形為主。CL圖像下亮度高,粒徑在80~400 μm間,長寬比為1:1~4:1,多為長柱狀,具明顯巖漿振蕩環(huán)帶結(jié)構(gòu)(圖3),另外,U和Th元素含量結(jié)果顯示,約96%的鋯石Th/U比值大于0.2(表1),具典型的巖漿鋯石特征,所測年齡點(diǎn)則代表著鋯石的結(jié)晶年齡。
對渭干河樣品中79顆碎屑鋯石的U-Pb同位素及Th,U等微量元素分析,并排除4個諧和度小于90%的數(shù)據(jù),最終獲得75個諧和年齡(表1,圖4),約占分析鋯石總體的95%。這些碎屑鋯石年齡除1顆年齡為(2 387±29) Ma外,其余的鋯石年齡在(259±3)~(890±11) Ma間變化,年齡主要集中在310~260 Ma和460~400 Ma,部分鋯石年齡集中在660~610 Ma和830~760 Ma(圖4)。310~260 Ma區(qū)間共有34個測點(diǎn),占總有效數(shù)據(jù)的45%,相應(yīng)峰值年齡為286 Ma。460~400 Ma區(qū)間共有18個測點(diǎn),占總有效數(shù)據(jù)的24%,對應(yīng)峰值年齡為425 Ma。660~610 Ma區(qū)間共有8個測點(diǎn),占總有效年齡數(shù)據(jù)的11%。830~780 Ma區(qū)間共有9顆,占總有效年齡數(shù)據(jù)的12%。
5 ?討論
5.1 ?巖漿事件
渭干河流經(jīng)的區(qū)域主要為南天山造山帶南緣及塔里木克拉通北緣,結(jié)合前人研究,收集了該地區(qū)古生代到新生代地層中34個碎屑巖樣品(圖2-a),共計2 834個U-Pb年齡數(shù)據(jù),樣品主要為砂巖和含礫砂巖,分布于南天山造山帶南部地區(qū),其中還包括了渭干河所流經(jīng)的石炭紀(jì)的野云溝組,二疊紀(jì)的小提坎里克組、三疊紀(jì)的黃山街組和俄霍布拉克發(fā)組,侏羅紀(jì)的克拉蘇群。另外,本文還收集了該地區(qū)巖漿鋯石U-Pb有效年齡數(shù)據(jù)。對比年齡頻率直方圖可知,河流河砂樣品中的碎屑鋯石年齡分布與當(dāng)?shù)貛r漿巖、沉積巖中碎屑鋯石的年齡分布幾乎一致(圖5-c,d),表明樣品中的碎屑鋯石主要來自于南天山造山帶南緣。
渭干河樣品中660~610 Ma和830~760 Ma 這兩個年齡組與南天山造山帶南緣新元古代中晚期的670~610 Ma和840~720 Ma 巖漿活動大致相同[6,44](圖5-c)。年齡在460~400 Ma(峰值為425 Ma)碎屑鋯石含量較多,約占有效年齡總數(shù)的24%。該年齡段與南天山造山帶北緣460~390 Ma期間發(fā)生的強(qiáng)烈?guī)r漿活動基本一致[6,44](圖5-a)。這些巖漿巖中大多是花崗巖,其次是長英質(zhì)火山巖和少量閃長巖和凝灰?guī)r,它們均為鈣堿性系列巖石,并具有高場強(qiáng)元素虧損,大離子親石元素富集的地球化學(xué)特征,被認(rèn)為來自于大陸弧環(huán)境[31,32,34]。
樣品中年齡記錄在310~260 Ma(峰期為286 Ma)的碎屑鋯石含量最高,約占總量的45%。晚石炭—早二疊世(約310~270 Ma),南天山造山帶中南部廣泛發(fā)育大量的雙峰式火山巖和“S”型、“A”型和高鉀花崗巖及少量的富鉀正長巖等一系列強(qiáng)烈構(gòu)造活動的代表性巖石[6-7,13,46]。
5.2 ?構(gòu)造意義
南天山造山帶是由前寒武紀(jì)形成的南天山洋盆在古生代期間俯沖、消減和閉合的過程中,兩側(cè)陸塊及中間的增生雜體等逐漸拼貼碰撞形成的碰撞造山帶[6]。除渭干河樣品數(shù)據(jù)外,本文還結(jié)合南天山造山帶北緣的特克斯河及支流樣品數(shù)據(jù)(圖1-b)共同探討南天山造山帶及相鄰地塊的構(gòu)造演化歷史。研究表明,渭干河碎屑鋯石記錄的巖漿活動主要集中在460~400 Ma和310~260 Ma,與特克斯河及其支流樣品數(shù)據(jù)相比,在380~320 Ma末形成年齡峰值。從統(tǒng)計學(xué)角度來看,收集的樣本數(shù)據(jù)足以指示該時期處于構(gòu)造-巖漿活動的間歇期。對比分析結(jié)果顯示,南天山造山帶內(nèi)具多期構(gòu)造-巖漿活動特征,表明南天山洋在古生代期間俯沖消減作用具長期性和多階段性。
5.2.1 ?830~610 Ma(新元古代中期)碎屑鋯石
近年來,塔里木克拉通與羅迪尼亞(Rodinia)超大陸的聯(lián)系是一個討論的熱點(diǎn)話題[50-52]。隨著對塔里木克拉通北緣基性巖墻深入研究及多種地球化學(xué)數(shù)據(jù)的發(fā)表,并對比研究全球板塊同期構(gòu)造-巖漿事件,較為認(rèn)同的是:新元古代,塔里木北緣存在著多期巖漿活動830~800 Ma、790~740 Ma、650~630 Ma,塔里木克拉通歷經(jīng)了長達(dá)0.2 Ga的裂解過程,為Rodinia超大陸長期持續(xù)裂解的科學(xué)命題提供了證據(jù)[53-56]。樣品的碎屑鋯石年齡介于新元古代的占28%,其中年齡集中在830~760 Ma的約占18%,660~610 Ma的約占10%,且形成小的年齡峰值(圖5-b)。這些年齡基本對應(yīng)了塔里木北緣巖漿活動事件,可認(rèn)為該時期對應(yīng)著南天山洋盆的打開、伸展構(gòu)造體制為主的巖漿活動,約束了南天山洋的打開時限[31]。
5.2.2 ?460~400 Ma(晚奧陶—早泥盆世)碎屑鋯石
如前所述,460~400 Ma年齡段碎屑鋯石主要來源于南天山南緣460~390 Ma的大陸弧巖漿巖。這一系列近EW向分布的弧巖漿巖的形成均與洋殼俯沖作用有關(guān),表明在晚奧陶—早泥盆世,南天山洋向南俯沖到塔里木克拉通之下,塔里木克拉通北緣屬于活動大陸邊緣。另外,塔里木克拉通北緣志留—石炭紀(jì)砂巖的碎屑鋯石中包含大量的46~400 Ma的自形-半自形巖漿鋯石,被認(rèn)為來自于大陸弧環(huán)境[4,10],極有可能與古生代南天山洋俯沖有關(guān)。該時期塔里木克拉通北緣還出現(xiàn)高壓、超高壓藍(lán)片巖相、榴輝巖相高級變質(zhì)巖,巖石伴有強(qiáng)烈的塑性變形,指示了該區(qū)俯沖-碰撞構(gòu)造活動的發(fā)生[31,57]。此外,南天山造山帶北緣的現(xiàn)代河流在460~400 Ma碎屑鋯石年齡記錄也很豐富,與廣泛出露于伊犁-中天山南緣的460~390 Ma期間的弧巖漿巖一致[13,29,58]。因此,晚奧陶—早泥盆世南天山洋盆南北雙向俯沖,塔里木克拉通北緣和伊犁-中天山地塊南緣均屬于活動大陸邊緣。
5.2.3 ?380~320 Ma(晚泥盆—早石炭世)碎屑鋯石
渭干河中碎屑鋯石年齡在380~320 Ma的碎屑鋯石僅2顆,約占樣品總數(shù)的1%。截至目前,南天山造山帶南緣尚未發(fā)現(xiàn)侵位年齡為晚泥盆—早石炭世的巖漿巖(圖5-c),該區(qū)古生代—新生代地層碎屑巖樣品中僅存在極少部分年齡點(diǎn),未形成明顯峰值(圖5-d),此外,在被動陸緣環(huán)境下形成的晚泥盆到早石炭世的淺海相地層在塔里木克拉通北緣廣泛存在,并與志留系呈不整合接觸[18,33],這些證據(jù)暗示著早古生代與南天山洋向南俯沖的巖漿事件持續(xù)到約380 Ma時已終止,塔里木北緣由活動大陸邊緣轉(zhuǎn)變?yōu)楸粍哟箨戇吘墶D咸焐奖本墸ㄒ晾?中天山南緣)的河流樣品年齡記錄在380~320 Ma的碎屑鋯石非常豐富,且這些碎屑鋯石極可能來自于伊犁-中天山地塊南部地區(qū)的弧巖漿巖,當(dāng)然也不排除少部分來自于南天山造山帶,表明伊犁-中天山地塊南緣在晚泥盆—早石炭世期間巖漿活動依然頻繁,南天山洋在這一時期為單一的北向俯沖到伊犁-中天山地塊之下[17, 59]。
5.2.4 ?310~260 Ma(晚石炭—早二疊世)碎屑鋯石
渭干河樣品中碎屑鋯石年齡以古生代為主,未出現(xiàn)年齡小于260 Ma的鋯石顆粒,這與之前南天山北緣的特克斯河與其支流的碎屑鋯石研究結(jié)果相一致[17,59]。暗示著塔里木克拉通北緣與伊犁-中天山地塊南緣的巖漿事件主要發(fā)生在古生代,晚二疊世之后幾乎沒有發(fā)生巖漿活動,表明南天山造山帶可能在晚二疊世之前就已形成。另外,在南天山造山帶中,早二疊世火山巖不整合覆蓋在石炭紀(jì)早期和晚期地層之上[39],伊犁-中天山南緣的阿特巴希和阿克牙孜高壓、超高壓變質(zhì)巖中,榴輝巖相變質(zhì)年齡主要集中在325~310 Ma[60-61],藍(lán)片巖和榴輝巖的Rb-Sr和40Ar/39Ar測年顯示變質(zhì)年齡主要集中320~310 Ma[60, 62]。通過對這些地層特征與超高壓變質(zhì)巖的研究表明,南天山洋閉合,塔里木克拉通與伊犁-中天山碰撞很可能發(fā)生在晚石炭世。
晚石炭世南天山洋閉合,塔里木克拉通與伊犁-中天山地塊碰撞,南天山造山帶和伊犁-中天山地塊南緣早二疊世沉積受正斷層控制并伴有雙峰式火山巖噴發(fā) ,表明為后碰撞伸展環(huán)境。此外,分布在境外吉爾吉斯斯坦南天山的300~280 Ma和中國南天山的290~270 Ma的“A”型花崗巖同樣證明在早二疊世為后碰撞伸展環(huán)境。
6 ?結(jié)論
(1) 渭干河樣品中碎屑鋯石年齡主要集中在460~400 Ma及310~260 Ma,部分集中在660~610 Ma和830~780 Ma,與南天山洋北緣碎屑鋯石年齡峰值略有不同。
(2) 根據(jù)本文并結(jié)合南天山北緣的現(xiàn)代河流樣品中的U-Pb年齡數(shù)據(jù),表明南天山洋古生代期間俯沖消減作用具有長期性和多階段性。
(3) 南天山洋構(gòu)造演化歷史大致可劃分為:830~610 Ma(新元古代中期)南天山洋打開的時限;460~400 Ma(晚奧陶—中泥盆世)可能存在南北雙向俯沖,同時發(fā)生大陸弧巖漿作用;380~320 Ma(晚泥盆—早石炭世)可能為單一的北向俯沖;310~260 Ma(晚石炭—早二疊世)南天山洋最終閉合并伴隨發(fā)生了后碰撞巖漿構(gòu)造活動。
參考文獻(xiàn)
[1] ? ?李錦軼,王克卓,李亞萍,等.天山山脈地貌特征、地殼組成與地質(zhì)演化[J].地質(zhì)通報,2006,25(8):895-909.
[2] ? ?Xiao W J,Huang B C,Han C M,et al.A review of the western part of the Altaids:A key to understanding the architecture of accretionary orogens[J].Gondwana Research,2010,18(2-3):253-273
[3] ? ?舒良樹,盧華復(fù),印棟豪,等.中—南天山古生代增生-碰撞事件和變形運(yùn)動學(xué)研究[J].南京大學(xué)學(xué)報(自然科學(xué)版),2003,39(1):17-30.
[4] ? ?Han Y G, Zhao, G C, Sun, et al.Paleozoic accretionary orogenesis in the Paleo-Asian Ocean: Insights from detrital zircons from Silurian to Carboniferous strata at the northwestern margin of the Tarim Craton[J].Tectonics,2015( 34):334-351.
[5] ? ?Han Y G, Zhao G C, Sun M, et al. Detrital zircon provenance constraints on the initial uplift anddenudation of the Chinese western Tianshan after the assembly of the southwestern Central Asian Orogenic Belt[J].Sedimentary Geology, 2016a:1-12.
[6] ? Huang H,Zhang Z C,Santosh M, et al.Crustal evolution in the South Tianshan Terrane:Constraintsfrom detrital zircon geochronology and implications for continental growth in the Central Asian Orogenic Belt[J].Geological Journal.2018:1-22.
[7] ? ?Gao J, Long L L, Klemd R,et al,Tectonic Evolution of the South Tianshan Orogen and Adjacent Regions, NW China: Geochemical and Age Constraints of Granitoid Rocks[J].International Journal of Earth Sciences,2009,98(6):1221-1238.
[8] ? ?李繼磊,高俊,王信水.西南天山洋殼高壓-超高壓變質(zhì)巖石的俯沖隧道折返機(jī)制[J].中國科學(xué):地球科學(xué),2017(01).
[9] ? ?Wang B, Chen Y,Zhan S, et al.Primary Carboniferous and Permian paleomagnetic results from the Yili Block(NW China) and their implications on the geodynamic evolution of Chinese Tianshan Belt[J].Earth and Planetary Science Letters,2007, 263:288-308.
[10] ?Huang H, Zhang Z C, Santosh,et al.Early Paleozoic tectonic evolution of the South Tianshan collisional belt:Evidence from geochemistry and zircon U-Pb geochronology of the Tie'reke Monzonite Pluton,Northwest China[J].The Journal of Geology, 2013,121:401-424.
[11] ?陶再禮,尹繼元,陳文,等.南天山早二疊世Ⅰ型花崗巖Sr-Nd-Hf同位素特征:巖石成因和大陸地殼增長的意義[J].地球科學(xué),2019(1).
[12] ?Xiao W J,Han C M,Yuan C, et al.Middle Cambrian to Permian subductionrelated Accretionary Orogenesis of Northern Xinjiang,NW China:Implications for the Tectonic Evolution of Central Asia[J].Journal of Asian Earth Sciences,2008,32(2-4):102-117.
[13] ?Long L, Gao J,Klemd R,et al.Geochemical and Geochronological Studies of Granitoid Rocks from the Western Tianshan Orogen:Implications for Continental Growth in the southwestern Central Asian Orogenic Belt[J].Lithos,2011,126(3-4):321-340.
[14] ?Sang M, Xiao W J,Orozbaev R,et al,Structural Styles and Zircon Ages of the South Tianshan Accretionary Complex Atbashi Ridge Kyrgyzstan:Insights for the Anatomy of Ocean Plate Stratigraphy and Accretionary Processes[J].2018,Journal of Asian Earth Sciences,153:9-41.
[15] ?郭春濤,高劍,李忠,等.塔里木盆地西北緣四石廠地區(qū)下二疊統(tǒng)沉積與物源記錄及其反映的構(gòu)造演化[J].地球科學(xué).2018,43(11):4149-4168.
[16] ?Zhong L L,Wang B,Zhai Y Z,et al.Deformed continental arc sequences in the South Tianshan:New constraints on the Early Paleozoic accretionary tectonics of the Central Asian Orogenic Belt[J].Tectonophysics,2019,768:1-24.
[17] ?Ren R,Guan S W,Han B F,et al.Chronological constraints on the tectonic evolution of the Chinese Tianshan Orogen throughdetrital zircons from modern and palaeo-river sands[J].International Geology Review,2017,59:1657-1676.
[18] ?Han B F,He G,WangX,et al.Late carboniferous collision between the Tarim and Kazakhstan-Yili terranes in the western segment of the South Tian Shan Orogen,Central Asia,and implications for the Northern Xinjiang,western China[J].Earth-Science Reviews,2011,109:74-93.
[19] ?Xiao W J, Windley B F, Allen M B, et al,Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage[J].Gondwana Research,2013,23:1316-1341.
[20] ?朱志新,李錦軼,董蓮慧,等.新疆南天山構(gòu)造格架及構(gòu)造演化[J].地質(zhì)通報,2009(12):1863-1870.
[21] ?Huang H, Zhang Z C, Santosh M,et al.Petrogenesis of the Early Permian volcanic rocks in the Chinese South Tianshan:implications for crustal growth in the Central Asian Orogenic Belt[J].Lithos,2015,228-229:23-42.
[22] ?Konopelko D,Biske G, Seltmann R,et al.Hercynian Post-collisional A-type Granites of the Kokshaal Range,Southern Tien Shan, Kyrgyzstan[J].Lithos,2007,97(1-2):140-160.
[23] ?Huang H, Zhang Z C,Santosh M,et al.Geochronology geochemistry and metallogenic implications of the Boziguo'er rare metal-bearing peralkaline granitic intrusion in South Tianshan,NW China[J].Ore Geol.Rev,2014,61:157-174.
[24] ?Huang Z Y, Long X P,Wang X C,et al.Precambrian evolution of the Chinese Central Tianshan Block:Constraints on its tectonic affinity to the Tarim Craton and responses to supercontinental cycles[J].Precambrian Research,2017,295:24-37.
[25] ?韓寶福,何國琦,吳泰然,等.天山早古生代花崗巖鋯石U-Pb定年、巖石地球化學(xué)特征及其大地構(gòu)造意義[J].新疆地質(zhì),2004,22(1):4-11.
[26] ?高俊,錢青,龍靈利,等.西天山的增生造山過程[J].地質(zhì)通報,2009,28(12):1804-1816.
[27] ?Wang B, Liu H S, Shu L S,et al.Early Neoproterozoic crustal evolution in northern Yili Block:Insights from migmatite,orthogneiss and leucogranite of the Wenquan metamorphic complex in the NW Chinese Tianshan[J].Precambrian Research,2014,242:58-81.
[28] ?Wang B,Cluzel D,Shu L S,et al.Evolution of calc-alkaline to alkalinemagmatismthrough Carboniferous convergence to Permian transcurrent tectonics,western Chinese Tianshan[J].International Journal of Earth Sciences,2009,98:1275-1298.
[29] ?Ma X X, Shu L S, Meert J G,et al.The Paleozoic evolution of Central Tianshan: geochemical and geochronological evidence[J].Gondwana Research,2014,25:797-819.
[30] ?Ma,X X,Shu L S,Meert J G. Early Permian slab breakoff in the Chinese Tianshan belt inferred from the post-collisional granitoids[J].Gondwana Research,2015,27:228-243.
[31] ?Ge R F,Zhu WB,Wilde S A,et al. Neoproterozoic to paleozoic long-lived accretionary orogeny in the northern Tarim Craton:Tectonics[J].v. 2014,33:302-329.
[32] ?Zhao Z Y, Zhang Z C,Santosh M, et al.Early Paleozoic magmatic record from the northern margin of the Tarim Craton: Further insights on the evolution of the Central Asian Orogenic Belt[J].Gondwana Research,2015,28(1):328-347.
[33] ?Qin Qie,He Huang,Tao Wang,et al.Relationship of the Tarim Craton to the Central Asian Orogenic Belt:insights from Devonian intrusions in the northern margin of Tarim Craton,China[J].INTERNATIONAL GEOLOGY REVIEW,2016,58(16):2007-2028.
[34] ?梁文博,郭瑞清,劉桂萍,等.新疆庫魯克塔格西段橄欖輝長巖脈LA-ICP-MS鋯石U-Pb年齡、地球化學(xué)特征及其構(gòu)造意義[J].地質(zhì)科技情報,2019,38(01):64-73.
[35] ?Xu Y G, Wei X,Luo,Z Y, et al.The Early Permian Tarim Large Igneous Province:main characteristics and a plume incubation model[J].Lithos,2014,204:20-35.
[36] ?Wilhem C, Windley B F, Stampfli G M. The Altaids of Central Asia: a tectonic and evolutionary innovative review[J]. Earth-Science Reviews,2012,113:303-341.
[37] ?Xie W,Song X Y,Deng Y F,et al.Geochemistry and petrogenetic implications of a Late Devonian mafic-ultramafic intrusion at the southern margin of the Central Asian Orogenic Belt[J].Lithos,2012,144-145:209-230.
[38] ?Wang H L, Xu X Y, He S P,et al.Geological map of the Chinese Tianshan Mountain and its adjacent area[J].Beijing Geological Publishing House.2007b.
[39] ?Liu D D,Jolivet M,Yang W,et al.Latest Palaeozoic-Early Mesozoic basinrange interactions in South Tian Shan (Northwest China) and their tectonic significance:Constraints from detrital zircon U-Pb ages[J].Tectonophysics,2013,599:197-213.
[40] ?Peng S T, Li Z, Xu C W.Provenance of EarlyCretaceous deposites in Kuqa subbasin,the southernmargin of Tianshan:Implication from detrital zircon LA-ICP-MS age data[J].Acta Sedimentologica Sinica,2009,27:956-966.
[41] ?Li Z, Peng S T.Detrital zircon geochronology and its provenance implications:Responses to Jurassic through Neogene basin-range interactions along northern margin of the Tarim Basin[J].Northwest China:Basin Research,2010,22:126-138.
[42] ?Carroll A R,Dumitru T A,Graham S A, et al.An 800 million-year detrital zircon record of continental amalgamation:Tarim Basin, NW China[J].InternationalGeology Review,2013,55:818-829.
[43] ?Wang M,Zhang J J,Liu K.Continuous denudation and pediplanation of the Chinese Western Tianshan orogen during Triassic to Middle Jurassic: Integrated evidence from detrital zircon age and heavy mineral chemical data[J].Journal of Asian Earth Sciences,2015,113:310-324.
[44] ?Han Y G,Zhao G C, Sun M,et al.Late Paleozoic subduction and collision processes during the amalgamation of the Central Asian Orogenic Belt along the South Tianshan suture zone[J].Lithos,2016b,246-247:1-12.
[45] ?Li N B,Niu H C,Shan Q,et al.Two episodes of late Paleozoic A-type magmatism in the Qunjisayi area, western Tianshan:Petrogenesis and tectonic implications[J].Journal of Asian Earth Sciences,2015,113:238-253,
[46] ?Huang Hu, Peter A, Cawood,et al.Provenance of late Paleozoic strata in the Yili Basin:Implications for tectonic evolution of the South Tianshan orogenic belt[J].Geological Society of America Bulletin,2017,130( 5/6):952-974.
[47] ? 侯可軍,李延河,田有榮.LA-MC-ICP-MS 鋯石微區(qū)原位U-Pb定年技術(shù)[J].礦床地質(zhì),2009,28(4):481-492.
[48] ?Andersen T.Correction of common lead in U-Pb analyses that do not report Pb-204[J].Chemical Geology,2002.192,59-79.
[49] ?Ludwig K R,ISOPLOT 3.0,a geochronological toolkit for Microsoft Excel.Berkeley Geochronological[J]Centre Special.Publication,2003.4:71.
[50] ?Lund K,Aleinikoff J N,Evans K V,et al.SHRIMP U-Pb geochronology of Neoproterozoic Windermere Supergroup,central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits[J].Geological Society of America Bulletin,2003,115(3):349-372.
[51] ?Li X H,Li Z X,Wingate M T D,et al.Geochemistry of the 755 Ma Mundine Well dyke swarm, northwestern Australia: Part of a Neoproterozoic mantle superplume beneath Rodinia?[J].precambrian research,2006,146(1-2):0-15.
[52] ?Zhang C L,Zou H B,Wang H Y,et al.Multiple phases of the Neoproterozoic igneous activity in Quruqtagh of the northeastern Tarim Block,NW China:Interaction between plate subduction and mantle plume?[J].Precambrian Research,2012:222-223.
[53] ?Zhu W,Zheng B,Shu L,et al.Neoproterozoic tectonic evolution of the Precambrian Aksu blueschist terrane,northwestern Tarim,China:Insights from LA-ICP-MS zircon U-Pb ages and geochemical data[J].precambrian research,2011,185(3-4):0-230.
[54] ?Zheng B,Zhu W,Jahn B M,et al.Subducted Precambrian oceanic crust:geochemical and Sr-Nd isotopic evidence from metabasalts of the Aksu blueschist,NW China[J].Journal of the Geological Society,2010,167(6):1161-1170.
[55] ?Ordovician eclogites from the Chinese Beishan:implications for the tectonic evolution of the southern Altaids[J].Journal of Metamorphic Geology,2011,29(8):803-820.
[56] ? Li Z X,Evans D A D,Halverson G P.Neoproterozoic glaciations in a revised global palaeogeography from the breakup of Rodinia to the assembly of Gondwanaland[J].Sedimentary geology,2013,294:219-232.
[57] ?Wang B,F(xiàn)aure M,Shu L,et al.Structural and Geochronological Study of High-Pressure Metamorphic Rocks in the Kekesu Section(Northwestern China):Implications for the Late Paleozoic Tectonics of the Southern Tianshan[J].The Journal of Geology,2010,118(1):59-77.
[58] ? Yin J Y,Chen W, Xiao W,et al.Geochronology,petrogenesis, and tectonic significance of the latest Devonian-early Carboniferous I-type granites in the Central Tianshan, NW China[J].Gondwana Research, 2017.
[59] ? Ren R,Han B F,Ji J Q,et al.U-Pb age of detrital zircons from the Tekes River,Xinjiang,China,and implications for tectonomagmatic evolution of the South Tian Shan orogeny[J].Gondwana Research,2011,19:460-470.
[60] ? Hegner E,Klemd R,Kr?ner A,et al.Mineral ages and P-T conditions of Late Paleozoic highpressure eclogite and provenance of mélange sediments from Atbashi in the south Tianshan orogen of Kyrgyzstan[J].American Journal of Science,2010,310:916-950.
[61] ? Klemd R,Gao J, Li J L,et al.Metamorphic evolution of (ultra)-high-pressure subduction-related transient crust in the South Tianshan Orogen (Central Asian Orogenic Belt):geodynamic implica ? ?tions[J].Gondwana Research,2015,28:1-25.
[62] ? Xia B,Zhang L F,Bader T, et al.Late Palaeozoic 40Ar/39Ar ages of the HP-LT metamorphic rocks from the Kekesu Valley,Chinese southwestern Tianshan:New constraints on exhumation tectonics[J].International Geology Review,2016,58:389-404.
Abstract:Intend to understand the evolutionary history of the South tianshan ocean,in this paper,through U-Pb isotope of detrital zircons from Weigan river in the southern slope of South Tianshan orogenic belt shows two prominent age populations at 460~400 Ma and 310~260 Ma,and subordinate Precambrian ages 660~610 Ma and 830~760 Ma,but no Mesozoic and Cenozoic grains were detected.These results,combined with age data from modern rivers in northern slope of South Tianshan orogenic belt,comparisons shows: at the middle Neoproterozoic(830~610Ma),super continent breakup,and the south tianshan ocean opened;the 460~400 Ma(Late Ordovician to Middle Devonian) age population substantiate the existence of Early Palaeozoic continental arc magmatism due to double-sided subduction of the South Tianshan Ocean;while the 380~320 Ma(Late Devonian to Middle Carboniferous)events were related the northward subduction of the South tianshan ocean;the 310~260 ?Ma (Late Carboniferous to Early Permian)magmatic event is thought to the closure of the South and concomitant post-collision magmatic tectonic activity.
Key words:Detrital zircon;South Tianshan Orogenic Belt;Age spectra;Paleozoic magmatism;Evolution history