• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Analysis of the Quality of Daily DEM Generation with Geosynchronous InSAR

    2020-11-05 09:59:46ZefaYangQingjunZhangXiaoliDingWuChen
    Engineering 2020年8期

    Zefa Yang, Qingjun Zhang, Xiaoli Ding*, Wu Chen

    a School of Geosciences and Info-Physics, Central South University, Changsha 410083, China

    b Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hong Kong 999077, China

    c China Aerospace Science and Technology Corporation, Beijing 100048, China

    Keywords:Daily digital elevation model Interferometric synthetic aperture radar Geosynchronous synthetic aperture radar Accuracy analysis

    ABSTRACT Up-to-date digital elevation model (DEM) products are essential in many fields such as hazards mitigation and urban management. Airborne and low-earth-orbit (LEO) space-borne interferometric synthetic aperture radar (InSAR) has been proven to be a valuable tool for DEM generation. However,given the limitations of cost and satellite repeat cycles,it is difficult to generate or update DEMs very frequently (e.g., on a daily basis) for a very large area (e.g., continental scale or greater). Geosynchronous synthetic aperture radar (GEOSAR) satellites fly in geostationary earth orbits, allowing them to observe the same ground area with a very short revisit time (daily or shorter). This offers great potential for the daily DEM generation that is desirable yet thus far impossible with space-borne sensors.In this work,we systematically analyze the quality of daily GEOSAR DEM. The results indicate that the accuracy of a daily GEOSAR DEM is generally much lower than what can be achieved with typical LEO synthetic aperture radar (SAR) sensors; therefore, it is important to develop techniques to mitigate the effects of errors in GEOSAR DEM generation.

    1. Introduction

    Digital elevation models (DEMs) are useful in many practical applications, including civil engineering, hydrology, gravity field modeling, urban planning and management, and emergency response. It is often necessary to rapidly generate and frequently update DEM products to keep them up to date in order to support the various applications. There are many methods for generating DEMs,including traditional geodetic survey approaches(e.g.,using total stations and Global Navigation Satellite System (GNSS)equipment),airborne laser imaging,detetion,and ranging(LiDAR),photogrammetry, and interferometric synthetic aperture radar(InSAR). Photogrammetry and InSAR are remote sensing techniques that provide high spatial resolution products at a low cost,in comparison with traditional geodetic approaches. Nowadays,InSAR is often the preferred remote sensing technique for generating large-scale DEMs, given its advantages of weather independence and day and night functionality [1-3].

    Despite the advantages of InSAR in DEM generation, it is still very difficult to generate or update DEM products frequently(e.g., on a daily basis) over a very large area (e.g., continental or global) with the existing airborne and/or low-earth-orbit (LEO)space-borne synthetic aperture radar(SAR)sensors.First,it is very costly and time-consuming to generate a high-resolution largescale DEM with airborne or space shuttle SAR sensors.For example,the Shuttle Radar Topography Mission (SRTM) acquired a nearly global high-resolution (~30 m) DEM (covering about 80% of the earth’s land mass) over 11 days (i.e., from 16 to 27 September 1999) with a cost of 220 million USD [2,4]. Due to the limited repeat cycles(generally dozens of days)and small spatial coverage,it is also nearly impossible to achieve daily DEM updates with LEO space-borne SAR interferometry. For example, the German Aerospace Center produced a global DEM using TanDEM-X SAR interferometry [5,6] with data over about four years, from 2010 to 2014.

    Geosynchronous SAR (GEOSAR) concepts were originally presented by Tomiyasu and Pacelli [7,8] for observing the earth at a higher frequency. With an altitude of about 36 000 km,GEOSAR sensors can acquire SAR images over a much larger footprint (e.g., 8 × 107km2for ScanSAR mode) and with a high spatial resolution(e.g.,several meters)in a very short repeat cycle(e.g.,24 h or even as low as dozens of minutes with a constellation of satellites) [9,10]. Typically, GEOSAR can retrieve full threedimensional (3D) displacement components with subcentimeter-level accuracy [10], offering 24 h global hazard monitoring with a constellation consisting of multiple GEOSAR satellites. This topic has been extensively discussed recently [11-14].In addition, the potential for atmospheric phase screen estimation with GEOSAR data has been discussed [15-17].

    A great potential of GEOSAR is its ability to provide a daily DEM update over a large area (e.g., globally). The daily (or shorter)repeat cycle of GEOSAR can provide daily SAR interferometry for global DEM generation (or updating). Furthermore, the short repeat cycle can effectively limit the temporal decorrelation of GEOSAR interferometry [18]. Therefore, a DEM can even be generated for regions covered by dense forest and vegetation. In addition, the GEOSAR system can generally allow much larger critical baselines (e.g., up to several hundreds of kilometers) than LEO SAR systems (generally several kilometers) [19]. This means that most GEOSAR data can be used for DEM generation.

    In this work, we will systematically analyze the potential of GEOSAR for daily global DEM generation or updating, with a particular focus on the quality of such DEM products.An overview of InSAR-based DEM generation will be presented first. The main error sources and limitations of GEOSAR InSAR and its influences on GEOSAR-based DEM estimation will then be analyzed.

    2. InSAR-based DEM generation

    Height information of the earth’s surface can be estimated from the interferometric phase of InSAR[19].Fig.1 depicts the observational geometry of a repeated InSAR system, in which A1and A2denote the two locations of the SAR antennas with a spatial baseline of B; α is the baseline inclination angle with respect to the horizontal direction; H and θ are the altitude and look angle of the SAR antenna A1; ρ and ρ +Δρ are the ranges between the SAR antennas A1and A2with the same ground target; and Z y( )denotes the surface elevation.It can be found from Fig.1 that[20]

    Fig. 1. 2D observational geometry of InSAR for DEM generation.

    Let φ be the unwrapped phase difference between antennas A1and A2,that is,the slant-range difference Δρ between the antennas and the same ground target:

    3. Analysis of error in GEOSAR DEM generation

    As observed in Eq. (4), the elevation Z(y) is related to several parameters, including the satellite altitude H, slant-range ρ, look angle θ, wavelength λ, spatial baseline B, inclination angle α, and interferometric phase φ. Some parameters (e.g., wavelength λ)can be accurately determined and considered as error-free, while other parameters such as slant-range, spatial baseline, inclination angle, satellite altitude difference, and interferometric phase may contain errors. In this section, we will analyze the effects of these errors on GEOSAR DEM generation based on the system parameters used in Ref. [10] (see Table 1).

    3.1. Slant-range error

    Assuming that the error sources are independent of each other,the effect of the slant-range error δρ on InSAR-based DEM estimates δZcan be expressed according to Eq. (1):

    Fig. 2 shows the uncertainties in GEOSAR DEM generation due to slant-range errors as calculated by Eq. (5). Note that a nominal look angle (i.e., 4.8°) was used in this study for simplicity. It can be seen from the results that the slant-range error is linearly propagated into the DEM estimates. Considering that the slant-range error (which is mainly due to tropospheric and ionospheric delays) may be up to dozens of or even hundreds of meters, its influence on DEM estimates is very significant and should be mitigated as much as possible. This issue will be discussed again in detail in Section 4.3.

    3.2. Spatial baseline error

    According to Eq.(3),the effect of the spatial baseline error δBon GEOSAR DEM generation is

    As seen from Eq. (6), propagation of the spatial baseline error primarily depends on the slant range ρ,look angle θ,baseline inclination angle α, and spatial baseline B. The slant range and lookangle are fixed once the imaging geometry is known. Hence, the propagation of the baseline error primarily depends on the spatial baseline and the inclination angle.

    Table 1 Parameters of the GEOSAR system adopted in the analysis.

    Fig.2. Absolute DEM errors with respect to slant-range errors with a nominal look angle of 4.8°.

    Fig.3 shows the DEM errors due to baseline errors with respect to different spatial baselines (i.e., 0-200 km) and baseline inclination angles (i.e., 0°, ±30°, ±60°, and ±90°). The results indicate that the spatial baselines and baseline inclination angles significantly affect the results.For the same baseline error,the larger the spatial baseline,the smaller the DEM errors will be,and vice versa.On the other hand, for the same baseline error, the larger the inclination angle,the smaller the DEM errors will become,and vice versa.This means that keeping a small inclination angle can improve the accuracy of DEM estimates.The results also suggest that baseline errors are a major error source in GEOSAR DEM generation,especially for small baselines and baselines with large inclination angles.

    3.3. Baseline inclination angle errors

    Based on Eqs. (1) and (2), the effect of the baseline inclination angle error δαon the GEOSAR DEM estimate δZis

    Apparently,the propagation of baseline inclination angle errors depends on the slant range and look angle of the GEOSAR system.Fig. 4 shows DEM errors due to baseline inclination angle errors.The slant range and look angle of the GEOSAR system used are based on those in Table 1. It is seen that the baseline inclination angle error has a great effect on the accuracy of DEM estimates.For example, for a GEOSAR baseline inclination angle error within±0.01° (three times the standard deviation), the maximum DEM error can be up to about 524 m. Even though one standard deviation (about ±0.0033°) of the baseline inclination angle is considered, the maximum DEM error can be up to 173 m. The results indicate that the inclination angle errors are a significant error source in GEOSAR-based DEM generation.

    Fig. 3. Absolute DEM errors due to baseline errors with respect to different spatial baselines and baseline inclination angles (i.e., 0°, ±30°, ±60°, and ±90° for (a)-(d)). A nominal look angle of 4.8° is used.

    Fig.4. Absolute DEM errors due to baseline angle inclination errors.A nominal look angle of 4.8° is used.

    3.4. Satellite altitude errors

    From Eq.(1),the DEM error δZdue to the errors in satellite altitude δHcan be expressed as follows:

    Considering that the accuracy level of satellite altitude determination is generally at the centimeter to meter level, the effect of GEOSAR altitude errors is insignificant compared with the other error sources.

    3.5. Interferometric phase errors

    According to Eq.(4),the effect of the interferometric phase error δφ on the DEM error δZcan be described as follows:

    Fig. 5 plots the DEM errors due to interferometric phase errors.Phase errors can significantly affect the accuracy of GEOSAR DEM,especially in the case of small spatial baselines. For example, a phase error of 2π gives results with about 36 m DEM error for a baseline of 5 km, while the DEM error is reduced to about 4 m when the baseline increases to 45 km (see Fig. 5).

    4. Quality of daily GEOSAR global DEM

    As stated earlier,a GEOSAR system has the potential to generate a daily global DEM, due to the very short satellite revisit time and very large spatial coverage. However, the quality of such a DEM may be limited by intrinsic error sources such as ①those analyzed above, ②dense interferometric phase fringes, and ③spatialtemporal variation of the atmospheric conditions.

    4.1. Influence of intrinsic error sources

    As analyzed in Section 3, five major intrinsic error sources (i.e.,slant-range errors, satellite altitude errors, spatial baseline errors,baseline inclination angle errors, and phase errors) can affect the accuracy of GEOSAR DEM generation. These errors affect DEM generation with either GEOSAR or LEO SAR sensors. However, due to the much higher altitude of GEOSAR satellites (about 36000 km),the impacts of these errors often become much more significant(up to around 50 times greater than those in SAR DEM generation with LEO sensors).As a result,the accuracy of GEOSAR DEM can be much lower than the DEM generated from LEO SAR sensors, if the errors cannot be mitigated properly.

    Fig. 5. Absolute DEM errors due to interferometric phase errors with respect to different spatial baselines (i.e., 5, 45, 85, 125, and 165 km) with θ =4:8° (nominal)and α =0°.

    Various methods have been developed for improving the accuracy of InSAR-derived DEM, such as the use of ground control points(corner reflectors)for reducing systematic errors(e.g.,baseline and inclination angle errors [21]), multi-baseline InSAR DEM reconstruction for mitigating slant-range errors[3],and maximum a posteriori estimation for noise reduction[22].These methods can potentially be applied to improve the accuracy of GEOSAR DEM,although further research is still required to test these methods and develop new approaches.

    4.2. Dense interferometric phase fringes

    As discussed in Section 3, the effects of some error sources(i.e., spatial baseline errors and phase errors) on GEOSAR DEM are inversely proportional to the spatial baselines.This means that it is feasible to reduce the effects of these error sources by increasing the spatial baselines.However,longer spatial baselines lead to denser interferometric fringes, as the height ambiguity(Zamb) decreases with the baseline [1]:

    Dense interferometric fringes may give rise to difficulties in phase unwrapping [23]. If the topographic phase cannot be accurately recovered in phase unwrapping, the height of the ground surface cannot be reliably estimated.

    To illustrate this issue, simulated interferometric fringes with respect to different spatial baselines are presented in Fig. 6 based on a real DEM (shown in Fig. 6(a)). The elevation varies from 225 to 2160 m. For a spatial baseline of 10 km, the interferometric phase fringes (wrapped) due to surface terrain (see Fig. 6(c)) are acceptable for phase unwrapping. However, when the spatial baseline increases to 50 or 100 km (see Figs. 6(c) and (d)), the topographic phase fringes are too dense to be unwrapped.

    There are approaches to overcome this difficulty. For example,an external DEM (e.g., SRTM DEM) may be applied to simulate and remove the main topographic patterns,and phase unwrapping can then be carried out based on the residual topographic phase[24]. Such strategies may need further investigation when used for GEOSAR DEM generation.

    Fig. 6. (a) A DEM; (b)-(d) wrapped interferometric topographic phase for spatial baselines of 10, 50, and 100 km, respectively.

    4.3. Effect of temporal-spatial variation of the atmosphere

    GEOSAR signals propagate through the full atmosphere(including the troposphere and ionosphere), rather than through only a part of the ionosphere, as is the case for a LEO SAR sensor. Moreover,a GEOSAR has a much longer integration time(from hundreds to thousands of seconds)than a LEO SAR(from several to dozens of seconds) [25]. The atmospheric conditions vary both in time and space, and may cause significant errors in InSAR products[26,27].Therefore,methods should be developed to better mitigate atmospheric effects(e.g.,Refs.[28-30])to improve the accuracy of GEOSAR daily DEM products.

    5. Conclusions

    GEOSAR satellites offer the potential for daily DEM generation due to the very short satellite revisit time and the very large footprint of GEOSAR. We have analyzed the potential quality of such DEMs and found that, due to the very high altitude of GEOSAR satellites,the accuracy level of a GEOSAR DEM may be much lower than that from typical LEO SAR sensors. Therefore, strategies should be developed to better mitigate the error sources of a GEOSAR DEM.

    Acknowledgements

    This work was partly supported by the Research Grants Council(RGC) of Hong Kong Special Administrative Region (PolyU 152232/17E and PolyU 152164/18E), Research Institute for Sustainable Urban Development of the Hong Kong Polytechnic University (1-BBWB).

    Compliance with ethics guidelines

    Zefa Yang, Qingjun Zhang, Xiaoli Ding, and Wu Chen declare that they have no conflict of interest or financial conflicts to disclose.

    高清午夜精品一区二区三区| 麻豆av噜噜一区二区三区| 天天躁夜夜躁狠狠久久av| 亚洲国产精品合色在线| 亚洲欧美成人精品一区二区| 一级毛片aaaaaa免费看小| 欧美成人精品欧美一级黄| 欧美xxxx性猛交bbbb| 91精品伊人久久大香线蕉| 免费观看性生交大片5| 亚洲内射少妇av| 高清日韩中文字幕在线| 亚洲乱码一区二区免费版| a级一级毛片免费在线观看| 中文乱码字字幕精品一区二区三区 | 一本一本综合久久| 午夜福利高清视频| 日本一本二区三区精品| av国产久精品久网站免费入址| 国产色爽女视频免费观看| 欧美性猛交╳xxx乱大交人| 亚洲乱码一区二区免费版| 在线观看av片永久免费下载| 久久精品人妻少妇| 又粗又爽又猛毛片免费看| 国产高潮美女av| ponron亚洲| 日本免费一区二区三区高清不卡| 成人毛片a级毛片在线播放| 久久精品人妻少妇| 久久久午夜欧美精品| 精品人妻视频免费看| 亚洲真实伦在线观看| 91aial.com中文字幕在线观看| 国产亚洲5aaaaa淫片| 亚洲精品日韩av片在线观看| 欧美又色又爽又黄视频| .国产精品久久| 三级国产精品欧美在线观看| 欧美精品一区二区大全| 2021天堂中文幕一二区在线观| 日韩中字成人| 国产精品,欧美在线| a级毛片免费高清观看在线播放| 青青草视频在线视频观看| 美女内射精品一级片tv| 好男人在线观看高清免费视频| 天天躁夜夜躁狠狠久久av| 国产真实伦视频高清在线观看| 国产精品国产三级国产av玫瑰| 色综合站精品国产| 亚洲最大成人av| 亚洲国产精品成人综合色| 欧美成人一区二区免费高清观看| 欧美色视频一区免费| 国产精品一区www在线观看| 三级毛片av免费| 欧美丝袜亚洲另类| 女人被狂操c到高潮| 中文字幕亚洲精品专区| 老女人水多毛片| 国产激情偷乱视频一区二区| 久久久久久久久中文| 精品久久久久久久人妻蜜臀av| 少妇的逼水好多| 久久精品国产亚洲av涩爱| 内射极品少妇av片p| 成年版毛片免费区| 亚洲av日韩在线播放| 久久久亚洲精品成人影院| 国产三级在线视频| eeuss影院久久| 免费av毛片视频| 国产男人的电影天堂91| 长腿黑丝高跟| 欧美性感艳星| 亚洲五月天丁香| 亚洲欧美中文字幕日韩二区| 又爽又黄无遮挡网站| 色尼玛亚洲综合影院| 成人美女网站在线观看视频| 亚洲欧美成人精品一区二区| 国产白丝娇喘喷水9色精品| 日本黄大片高清| av在线观看视频网站免费| 国产精品av视频在线免费观看| 婷婷六月久久综合丁香| 亚洲国产欧美在线一区| 青春草亚洲视频在线观看| 卡戴珊不雅视频在线播放| 春色校园在线视频观看| 99热这里只有是精品在线观看| 日本三级黄在线观看| 99热精品在线国产| 少妇高潮的动态图| 日本免费一区二区三区高清不卡| 男女下面进入的视频免费午夜| 国产高清视频在线观看网站| 国产高清视频在线观看网站| 超碰av人人做人人爽久久| 美女内射精品一级片tv| 亚洲成人久久爱视频| 高清毛片免费看| 精品久久久久久久人妻蜜臀av| 亚洲成色77777| 国产精品一区二区性色av| 国产精品福利在线免费观看| 99久久精品热视频| 欧美一区二区国产精品久久精品| 91精品伊人久久大香线蕉| 日韩亚洲欧美综合| 超碰97精品在线观看| 亚洲在线自拍视频| 麻豆成人av视频| 老司机影院毛片| 国产av在哪里看| 精品午夜福利在线看| 在线观看美女被高潮喷水网站| 观看美女的网站| 精品久久久久久久末码| 一区二区三区免费毛片| 一级二级三级毛片免费看| 在现免费观看毛片| 又爽又黄无遮挡网站| 国产精品麻豆人妻色哟哟久久 | 午夜久久久久精精品| 久久久久久久久中文| 欧美区成人在线视频| 久久久亚洲精品成人影院| 亚洲成人精品中文字幕电影| 搡女人真爽免费视频火全软件| 狂野欧美激情性xxxx在线观看| 久久韩国三级中文字幕| av女优亚洲男人天堂| 国产一级毛片在线| 天堂网av新在线| 九草在线视频观看| 日韩欧美 国产精品| 深夜a级毛片| 少妇的逼好多水| 亚洲欧美清纯卡通| 一卡2卡三卡四卡精品乱码亚洲| 麻豆一二三区av精品| 色网站视频免费| 亚洲真实伦在线观看| 五月玫瑰六月丁香| 日本av手机在线免费观看| 免费观看的影片在线观看| 精品久久久久久成人av| 日韩欧美在线乱码| 免费无遮挡裸体视频| 免费看a级黄色片| 精品久久久久久电影网 | 一级爰片在线观看| 国产伦精品一区二区三区四那| 欧美成人精品欧美一级黄| 婷婷色av中文字幕| 成人美女网站在线观看视频| 亚洲成色77777| 91av网一区二区| 舔av片在线| 午夜精品在线福利| 亚洲国产精品久久男人天堂| 国产在线男女| 成年女人看的毛片在线观看| 久久久久精品久久久久真实原创| 91久久精品国产一区二区三区| 亚洲四区av| 如何舔出高潮| 欧美高清成人免费视频www| 国产精品一区二区在线观看99 | 国产又色又爽无遮挡免| 成人亚洲欧美一区二区av| 日韩欧美精品v在线| 九九热线精品视视频播放| 亚洲精品国产av成人精品| 亚洲国产成人一精品久久久| 午夜视频国产福利| 你懂的网址亚洲精品在线观看 | 麻豆av噜噜一区二区三区| 观看免费一级毛片| 亚洲色图av天堂| 91av网一区二区| 免费大片18禁| 亚洲欧美中文字幕日韩二区| 久久久久久久亚洲中文字幕| 看十八女毛片水多多多| 亚洲精品成人久久久久久| 日韩强制内射视频| 久久久色成人| 日本一本二区三区精品| 成年版毛片免费区| 五月伊人婷婷丁香| 观看美女的网站| 啦啦啦啦在线视频资源| 欧美日本视频| 2022亚洲国产成人精品| 成人特级av手机在线观看| 国产人妻一区二区三区在| 国产 一区 欧美 日韩| 色网站视频免费| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 黄色欧美视频在线观看| 日本-黄色视频高清免费观看| 国产精品国产三级国产av玫瑰| 国产精华一区二区三区| 少妇人妻精品综合一区二区| 成人特级av手机在线观看| 国产真实乱freesex| 国产在线男女| 九九在线视频观看精品| 村上凉子中文字幕在线| 日日干狠狠操夜夜爽| 99久久人妻综合| 美女脱内裤让男人舔精品视频| 三级国产精品欧美在线观看| 亚洲av男天堂| 国产真实乱freesex| 国产成人一区二区在线| 色噜噜av男人的天堂激情| 18禁在线无遮挡免费观看视频| 亚洲精品乱码久久久v下载方式| 国产成人一区二区在线| 国产不卡一卡二| 九九热线精品视视频播放| 国产精品日韩av在线免费观看| 一个人看的www免费观看视频| 亚洲av中文av极速乱| 高清av免费在线| 最近的中文字幕免费完整| 秋霞伦理黄片| 波多野结衣高清无吗| 97在线视频观看| 99在线视频只有这里精品首页| 国产av一区在线观看免费| 亚洲av二区三区四区| 国产精品久久久久久久电影| 亚洲欧美日韩无卡精品| 深爱激情五月婷婷| 麻豆乱淫一区二区| 国产精品久久久久久久久免| av专区在线播放| 国产亚洲精品av在线| 国产午夜福利久久久久久| 日韩欧美三级三区| 禁无遮挡网站| 日本一本二区三区精品| 国产成人精品久久久久久| 亚洲伊人久久精品综合 | 99在线视频只有这里精品首页| 精品久久久噜噜| 麻豆久久精品国产亚洲av| 国产av不卡久久| 成人性生交大片免费视频hd| 国产高清三级在线| 国产免费福利视频在线观看| 高清av免费在线| 日韩亚洲欧美综合| 少妇的逼水好多| 日韩一本色道免费dvd| 久久久精品94久久精品| 秋霞在线观看毛片| 秋霞伦理黄片| av福利片在线观看| 国产不卡一卡二| 18禁裸乳无遮挡免费网站照片| 国产一区有黄有色的免费视频 | 中文资源天堂在线| 中文字幕制服av| 亚洲欧美精品专区久久| 久久久久久大精品| 国产精品美女特级片免费视频播放器| 联通29元200g的流量卡| 91久久精品电影网| 有码 亚洲区| 水蜜桃什么品种好| 少妇的逼水好多| av在线观看视频网站免费| 欧美一区二区亚洲| 久热久热在线精品观看| 免费看光身美女| 搡女人真爽免费视频火全软件| 亚洲婷婷狠狠爱综合网| 级片在线观看| 日本黄大片高清| 有码 亚洲区| 一级黄片播放器| 少妇熟女aⅴ在线视频| 男女下面进入的视频免费午夜| 久久午夜福利片| 中文在线观看免费www的网站| 国产精品一区二区性色av| 国产一区二区在线av高清观看| 日韩一区二区三区影片| 国产免费男女视频| 亚洲综合色惰| 国产老妇伦熟女老妇高清| 中文资源天堂在线| av国产免费在线观看| av卡一久久| 国产高清三级在线| 只有这里有精品99| 久久6这里有精品| 欧美极品一区二区三区四区| 精品不卡国产一区二区三区| 爱豆传媒免费全集在线观看| 久99久视频精品免费| 伦精品一区二区三区| 国产精品av视频在线免费观看| 国产精品久久视频播放| 久久人妻av系列| 久久热精品热| av在线天堂中文字幕| 精品久久久久久成人av| 黄色日韩在线| 日韩三级伦理在线观看| 狂野欧美白嫩少妇大欣赏| 国产午夜精品论理片| 免费播放大片免费观看视频在线观看 | 国产真实伦视频高清在线观看| 久久6这里有精品| 丝袜喷水一区| 我的老师免费观看完整版| 激情 狠狠 欧美| 国产精品久久电影中文字幕| 1000部很黄的大片| 青青草视频在线视频观看| 尤物成人国产欧美一区二区三区| 国产精品综合久久久久久久免费| 久久久久久大精品| 欧美极品一区二区三区四区| 亚洲第一区二区三区不卡| 97在线视频观看| 又爽又黄无遮挡网站| 在线观看66精品国产| 九九热线精品视视频播放| 内地一区二区视频在线| 日本黄大片高清| 18禁在线播放成人免费| 午夜精品国产一区二区电影 | 午夜亚洲福利在线播放| 国产av一区在线观看免费| 日韩av不卡免费在线播放| 国产国拍精品亚洲av在线观看| 国产精品嫩草影院av在线观看| 联通29元200g的流量卡| 精品人妻视频免费看| 国产精品嫩草影院av在线观看| 91狼人影院| 国产精品久久久久久精品电影| 狂野欧美白嫩少妇大欣赏| 女人久久www免费人成看片 | 国产日韩欧美在线精品| 神马国产精品三级电影在线观看| 视频中文字幕在线观看| 精品久久久久久久久久久久久| 国产精品综合久久久久久久免费| 久久精品91蜜桃| 3wmmmm亚洲av在线观看| 久久久久网色| av在线亚洲专区| 99久久中文字幕三级久久日本| 国产麻豆成人av免费视频| h日本视频在线播放| 国产成人精品婷婷| 三级毛片av免费| 欧美激情久久久久久爽电影| 国产成人福利小说| 九九爱精品视频在线观看| 国产午夜福利久久久久久| 国产精品精品国产色婷婷| 久久久久久久久久久丰满| 国产精品综合久久久久久久免费| 偷拍熟女少妇极品色| 观看免费一级毛片| 神马国产精品三级电影在线观看| 亚洲国产精品成人综合色| 国产又黄又爽又无遮挡在线| 2022亚洲国产成人精品| 亚洲五月天丁香| 国产成人精品一,二区| av在线观看视频网站免费| 久久午夜福利片| 久久这里有精品视频免费| 黄片wwwwww| 热99re8久久精品国产| 精品国产一区二区三区久久久樱花 | 国产免费男女视频| 日日撸夜夜添| 美女高潮的动态| 国产高潮美女av| 国产高清有码在线观看视频| 亚洲人成网站高清观看| av国产免费在线观看| 精品人妻熟女av久视频| 国产精品一区二区在线观看99 | 亚洲真实伦在线观看| 天堂√8在线中文| 少妇熟女欧美另类| av天堂中文字幕网| 一级毛片电影观看 | 国产黄片美女视频| 长腿黑丝高跟| 欧美另类亚洲清纯唯美| 男人舔奶头视频| 性色avwww在线观看| 精品少妇黑人巨大在线播放 | 国产又黄又爽又无遮挡在线| 久久99蜜桃精品久久| 免费观看的影片在线观看| 欧美激情国产日韩精品一区| 国产成年人精品一区二区| 又爽又黄无遮挡网站| 三级国产精品欧美在线观看| 国产黄片视频在线免费观看| 欧美潮喷喷水| 高清日韩中文字幕在线| 蜜桃亚洲精品一区二区三区| 91久久精品电影网| av国产久精品久网站免费入址| 天堂av国产一区二区熟女人妻| 成人国产麻豆网| 在线免费观看不下载黄p国产| 波野结衣二区三区在线| 一级毛片电影观看 | 国产精品久久久久久久电影| 成人漫画全彩无遮挡| 亚洲在线自拍视频| av免费观看日本| 一本一本综合久久| 真实男女啪啪啪动态图| 国产成人一区二区在线| 精品熟女少妇av免费看| 熟女电影av网| 亚洲在久久综合| 亚洲在线自拍视频| 久久久久性生活片| 午夜精品在线福利| 亚洲精品一区蜜桃| 国产亚洲5aaaaa淫片| 一个人观看的视频www高清免费观看| 国产成人精品一,二区| 97人妻精品一区二区三区麻豆| 中文字幕精品亚洲无线码一区| 国产精品1区2区在线观看.| 校园人妻丝袜中文字幕| 赤兔流量卡办理| www.色视频.com| 99久国产av精品| 男女啪啪激烈高潮av片| 一级毛片我不卡| 日本熟妇午夜| 最近视频中文字幕2019在线8| 成人美女网站在线观看视频| 热99在线观看视频| 免费看日本二区| 亚洲av中文av极速乱| 美女内射精品一级片tv| 91狼人影院| 国产一区二区在线av高清观看| 高清午夜精品一区二区三区| 天堂中文最新版在线下载 | 亚洲欧美日韩无卡精品| 最近中文字幕高清免费大全6| 亚洲图色成人| 你懂的网址亚洲精品在线观看 | 91精品国产九色| 人人妻人人澡人人爽人人夜夜 | 日韩欧美在线乱码| 精品午夜福利在线看| 亚洲天堂国产精品一区在线| 亚洲综合色惰| 国产91av在线免费观看| 国产一区二区在线观看日韩| 国产亚洲一区二区精品| 天天躁夜夜躁狠狠久久av| 一区二区三区免费毛片| 看免费成人av毛片| 噜噜噜噜噜久久久久久91| 大又大粗又爽又黄少妇毛片口| 久久久久精品久久久久真实原创| 久久久久性生活片| 22中文网久久字幕| 亚洲精品国产av成人精品| 夫妻性生交免费视频一级片| 两个人视频免费观看高清| 亚洲精华国产精华液的使用体验| 亚洲18禁久久av| 级片在线观看| 男女下面进入的视频免费午夜| 国产精品一二三区在线看| 亚洲精品亚洲一区二区| 男插女下体视频免费在线播放| www.av在线官网国产| 综合色丁香网| 看片在线看免费视频| 国产高清视频在线观看网站| 欧美成人午夜免费资源| 日韩欧美精品v在线| a级毛色黄片| 午夜福利高清视频| 欧美色视频一区免费| 全区人妻精品视频| 欧美xxxx黑人xx丫x性爽| 国产精品1区2区在线观看.| 亚洲av熟女| 免费看光身美女| 日本免费a在线| 成人午夜精彩视频在线观看| 免费av毛片视频| 中文字幕免费在线视频6| 国产一区二区三区av在线| 麻豆乱淫一区二区| 亚洲精品日韩在线中文字幕| 好男人在线观看高清免费视频| 在线观看66精品国产| 日日摸夜夜添夜夜爱| 久久鲁丝午夜福利片| 99久久无色码亚洲精品果冻| 亚洲av二区三区四区| 欧美成人a在线观看| 国产高清不卡午夜福利| 亚洲婷婷狠狠爱综合网| 看十八女毛片水多多多| 少妇猛男粗大的猛烈进出视频 | 大香蕉97超碰在线| 中文亚洲av片在线观看爽| 一边摸一边抽搐一进一小说| 精品国产一区二区三区久久久樱花 | 神马国产精品三级电影在线观看| 日韩 亚洲 欧美在线| 精品人妻偷拍中文字幕| 能在线免费观看的黄片| 国产精品综合久久久久久久免费| 亚洲国产色片| 一区二区三区高清视频在线| 国产人妻一区二区三区在| 我的老师免费观看完整版| 成人av在线播放网站| 人妻夜夜爽99麻豆av| 简卡轻食公司| 两个人的视频大全免费| 亚洲国产色片| 亚洲激情五月婷婷啪啪| 国产中年淑女户外野战色| 婷婷色麻豆天堂久久 | 欧美又色又爽又黄视频| 热99re8久久精品国产| 国产精品国产三级专区第一集| 久久精品国产亚洲网站| 国产精品福利在线免费观看| 嘟嘟电影网在线观看| 最新中文字幕久久久久| 特大巨黑吊av在线直播| 亚洲成人中文字幕在线播放| 亚洲国产成人一精品久久久| 看非洲黑人一级黄片| 欧美成人午夜免费资源| 美女国产视频在线观看| 国产一区有黄有色的免费视频 | 久久精品人妻少妇| 亚洲人与动物交配视频| 午夜福利在线在线| 桃色一区二区三区在线观看| 亚洲成人中文字幕在线播放| 久久久久久久国产电影| 美女国产视频在线观看| 亚洲av成人精品一区久久| 国产一区二区在线av高清观看| 亚洲人成网站在线观看播放| 久久久精品94久久精品| 日韩视频在线欧美| 精品一区二区免费观看| 婷婷色av中文字幕| 国产乱人视频| 亚洲四区av| 九草在线视频观看| 欧美性感艳星| 啦啦啦观看免费观看视频高清| 午夜a级毛片| 久久人人爽人人片av| 国内精品美女久久久久久| 美女内射精品一级片tv| 搞女人的毛片| 综合色av麻豆| 成人一区二区视频在线观看| 亚洲综合色惰| 99热这里只有精品一区| 日本五十路高清| 简卡轻食公司| 欧美日韩一区二区视频在线观看视频在线 | 在线天堂最新版资源| 91在线精品国自产拍蜜月| 国产伦一二天堂av在线观看| 欧美一区二区国产精品久久精品| 啦啦啦观看免费观看视频高清| 日韩欧美三级三区| av在线老鸭窝| 国产精品日韩av在线免费观看| 搞女人的毛片| 欧美xxxx黑人xx丫x性爽| 国内精品美女久久久久久| 麻豆乱淫一区二区| 男女下面进入的视频免费午夜| 丝袜喷水一区| 日韩强制内射视频| 国产免费男女视频| 久久午夜福利片| 边亲边吃奶的免费视频| 国产精品一二三区在线看| 久久婷婷人人爽人人干人人爱| 国产探花在线观看一区二区| 亚洲av一区综合| 99视频精品全部免费 在线| 最近的中文字幕免费完整|