• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dispersion of ventricular repolarization: Temporal and spatial

    2020-10-31 05:29:16
    World Journal of Cardiology 2020年9期

    Abstract

    Key Words: Temporal; Spatial; Global and local dispersion of repolarization; Action potential duration; Tpeak-Tend interval; Tpeak-Tend dispersion; T-vector;Arrhythmogenesis

    INTRODUCTION

    Repolarization process is cardinally different from depolarization. During depolarization, the elementary (cellular) electric field generators responsible for QRS complex formation are concentrated in narrow (approximately 0.8-1 mm) regions of space that separates the excited myocardium (cells with peak action potential) from unexcited one (cells with resting potential)[1]. In contrast, during repolarization the elementary electric generators are dispersed in almost the entire volume of the ventricles, with small gradients in membrane potential between the neighbouring cells. All ventricular cells, the repolarization of which is not yet completed, contribute to cardiac electric field generation.

    T-wave is a result of repolarization heterogeneity (RH) – non-simultaneous end-ofrepolarization in different ventricular layers and regions. This heterogeneity arises from: (1) Different activation times; and (2) Different action potential duration (APD)of ventricular cells, due to the heterogeneous distribution of repolarizing currents[2].The global RH in the heart ventricles is defined by the areas of the earliest and the latest repolarization – the difference in end-of-repolarization times in these areas and in their location (temporal and spatial heterogeneity, correspondingly).

    In normal heart, physiological heterogeneities in structure, electrical and mechanical activity are crucial for normal, efficient excitation and pumping[3]. Due to multiple reasons (impaired function of outward K+ currents in cardiac myocytes, which may be caused by genetic defects or result from various acquired pathophysiological conditions, including electrical remodelling in cardiac disease, ion channel modulation by clinically used pharmacological agents, and systemic electrolyte disorders seen in heart failure, such as hypokalaemia), the level of RH could increase[4].

    Exceeding the physiologically reasonable level of RH could lead to the development of life-threatening ventricular arrhythmias[4-6]. In this regard, an accurate and comprehensive evaluation of RH on the basis of electrocardiogram (ECG) is of importance. This review focuses on various aspects of RH (temporal and spatial,global and local) – their electophysiological basis, ECG reflection and clinical significance.

    ELECTROPHYSIOLOGICAL BASIS FOR RH

    The reason for different action potential morphology and different sensitivity of myocardial cells to the action of pharmacological agents, temperature, frequency of stimulation,etc. is the heterogenous distribution of repolarizing ion currents throughout the heart ventricles. There are differences in repolarizing currents across ventricular walls[7,8], between the left and the right ventricles, between the apex and the base of the ventricles, and between anterior and posterior ventricular surface[9,10].

    In transmural plane,in vitrostudies revealed three types of cells: Epicardial (with the shortest APD), endocardial and M-cells with the longest APD, belonging to the deep layers of the myocardium (Figure 1)[7,8]. In interventricular septum, M-cells were less pronounced than in the free walls of the ventricles[11]. In epicardial and M-cells, the morphology of phase 1 is characterized by a prominent transient outward current(Ito)-mediated notch responsible for the ‘spike and dome’ morphology[8]. M cells are distinguished from the other cell types in that they display a smaller slowly activating delayed rectifier current (IKs), but a larger late sodium current (late INa) and sodiumcalcium exchange current (INa-Ca). These ionic distinctions underlie the longer APD and steeper APD-rate relationship of the M-cells, which is more pronounced in the presence of antiarrhythmic agents with class III actions[8].

    Figure1 Transmembrane action potential and pseudo electrocardiogram recordings from a canine arterially perfused ventricular wedge preparation reveal the cellular basis for the T wave.

    In vivoexperiments did not confirm the existence of M-cells and a substantial transmural APD gradient[12-14]. This fact can be explained, firstly, by electrotonic interaction in myocardiumin vivo, which partially eliminates intrinsic differences in the electrophysiological properties of the cells across ventricular wall[15,16]. Secondly, Mcells can be functionally detected at a low frequency of stimulation, while at physiological frequencies, transmural electrophysiological differences between the cells are significantly reduced[17,18]. It should also be noted that APD recordedin vivois always significantly less than those recordedin vitro[14].

    At the same time,in vivoas well asin vitrostudies confirm the existence of apicobasal, anteroposterior and left-to-right differences in repolarizing ion currents[12,19-22]. Apico-basal differences were found in the expression of those channel proteins which are involved in mediation of the transient outward K(+) current and the slow delayed rectifier K(+) current: Expression of Kv1.4, KChIP2, KvLQT1 and MinK was significantly higher in apical than in basal myocardium in both canine and human hearts[19]. Prominent differences in the magnitude of the I(to) 1-mediated action potential notch were found in cells isolated from the right and the left canine ventricular epicardium; the influence of this current, although small, is more important in the left ventricle[20-22].

    APD GRADIENTS IN THE HEART VENTRICLES

    Transmural gradient

    Transmural APD gradient is mostly pronounced in isolated myocardial cells and wedge preparations extracted from different ventricular regions – left ventricle[23-25],right ventricle[26], interventricular septum[27,28]; it is resulted from APD differences between epi- and M-cells (in vitro), and between epi- and endo cells (in vivo). The magnitude of transmural APD gradient recordedin vitroreached 100 ms and more[24],and it depended on the wall thickness (the largest transmural APD gradient was recorded in the interventricular septum, the smallest one - in the right ventricle[28,29])and location (transmural APD gradient was different at the apex and at the base of the ventricles[23]).

    The transmural APD gradient is even attributed a key role in T-wave formation and it is assumed as “the symbol of repolarization dispersion"[30,31]. Although, this is true only for a ventricular wedge preparation (Figure 1), but in the whole heart dispersion of repolarization (DOR) and T-wave are resulted from several gradients[32-34].In vivoexperiments did not reveal a substantial transmural APD gradient in the heart ventricles[12-14].

    Apicobasal gradient

    Apicobasal gradient was detected in almost all animal and humans studies. However,its direction was found to be different in various species and sometimes controversial.APD recorded at the apex were longer than those recorded at the base of the ventricles in human[35-37], rabbit[38,39], dog[12,13], and pig[40]. In other studies, the apical APD were shorter than the basal ones in rabbit[41], pig[42], guinea pig[43], rats[44,45], and chicken[46]. The controversial direction of apicobasal APD gradient in the same species can be explained by the high sensitivity of repolarization to temperature conditions, which could vary in different studies. In some cases, apicobasal gradient was dominating and responsible for cardiac electric field formation[47,48].

    Left-to-right gradient

    Along with the transmural and apicobasal gradients, the left-to-right gradient was revealed in human and several animal species. APD in the right ventricle were longer than in the left ventricle in human[49], rabbit[50], pig[40]and guinea pig[51]. The opposite interventricular gradient was recorded in dog[52,53]and rat[44,45].

    Anterior-posterior gradient

    APD measured on the anterior surface of the heart ventricles were shorter than posterior APD in human[37], dog[54,55], and rabbit[56].

    EFFECT OF ACTIVATION SEQUENCE ON REPOLARIZATION

    Activation sequence affects RH in two ways. First, it contributes to repolarization sequence, because end of repolarization time of myocardial cell is a sum of activation time and APD, and repolarization gradients are combinations of activation and APD gradients. Second, activation sequence can directly effect on APD magnitude,especially at heart stimulation. APD were longer in the center of stimulation, and decreased towards the periphery[57]. The transfer of stimulus from endo- to epicardium prolonged epicardial APD and shortened endocardial APD, and, correspondingly,changed the transmural repolarization gradient[16,58,59]. The reversed activation sequence mostly affected APD of M cells[58]. Thus, earlier activation was associated with longer APD. Nevertheless, the relationship between early activation and longer APD is ambiguous: In rabbit hearts, repolarization sequence in general corresponded to those of depolarization,i.e., the shorter APD were associated with the earlier activation times[60].

    REPOLARIZATION GRADIENTS IN THE HEART VENTRICLES

    Repolarization gradients in the heart ventricles responsible for T-wave genesis are formed as a result of superimposed gradients of activation times and APD.Nevertheless, the magnitudes of APD gradients usually exceed the magnitudes of activation gradients, therefore APD gradients determine the sequence of repolarization to a greater extent, and changes in repolarization occur almost always because of APD changes.

    The analysis of contribution of different parts of the canine heart ventricles to dispersion in repolarization times showed that transmural gradient contributed only 13% to the total DOR, while apicobasal, interventricular, and anterior-posterior gradients contributed the remaining 87%[54]. Simulation studies support that transmural, apicobasal, interventricular and anteroposterior repolarization gradients are all essential to T-wave genesis[32-34].

    FACTORS MODULATING RH

    Repolarization is rather sensitive than depolarization to the changes in external and internal conditions such as fluctuations in temperature, concentration of various ions,heart rate, electrical remodeling associated with various pathologies. Inhomogeneous changes in action potentials’ morphology modify and amplify the temporal and/or spatial heterogeneity of repolarization. Exceeding the physiologically based level of RH can lead to the development of life-threatening ventricular arrhythmias[5,6]. In this regard, the analysis of both temporal and spatial RH parameters is of importance.

    In experimental diabetes mellitus, there were substantial changes in spatial but not in temporal repolarization gradients. In mice, there were increased apicobasal and leftto-right gradients[61]; in rabbit, apicobasal gradient was decreased but a large anteroposteral gradient arised[62-64].

    At electrical heart stimulation, the location of stimulus effected on APD and,correspondingly, on repolarization gradients: APD were longer in the center of stimulation, and decreased towards the periphery[57,59,65].

    In Tako-Tsubo cardiomyopathy, the ischemic-like Wellens’ ECG pattern coincides and quantitatively correlates with apicobasal gradient of myocardial edema as evidenced by using cardiovascular magnetic resonance imaging[66]; dynamic negative T-waves and QTc prolongation are likely to reflect the edema-induced transient inhomogeneity and an increased RH between apical and basal left ventricular regions.An increase in apicobasal repolarization gradient on endo- and epicardium was also found in patients with cardiomyopathy and ventricular arrhythmia vulnerability[67]. In Brugada syndrome, APD shortening in the right ventricle strengthens the left-to-right repolarization gradient and spatial RH[68].

    In hypertrophic cardiomyopathy, ECG analysis allowed to reveal the mechanism of cardiomyopathy: Ionic remodelling and action potential prolongation in hypertrophied apical and septal areas (T-wave inversion with normal QRS complex),or abnormal Purkinje-myocardial coupling causing abnormal QRS morphology in leads V4-V6[69].

    In hypothermia, which is used for protection of myocardium from hypoxic injury,APD of all myocardial cells, including conducting system and pacemakers, prolong nonuniformly as a result of an increase in repolarizing currents[70,71]; the nonuniform APD prolongation leads to the increase in both temporal and spatial RH[5,72,73].Epicardial APD prolong to the larger extent than endocardial ones, resulting in the inversion of transmural repolarization gradient at hypothermia[30]. Apicobasal, left-toright and anteroposteral repolarization gradients were inversed at hypothermia,too[73]. Earlier, T-wave inversion at hypothermia was associated with the inversion of transmural[30]or apicobasal[73]repolarization gradients. The recentin silicostudies demonstrated that transmural repolarization gradient do not play a crucial role in the cardiac electric field inversion under hypothermia, and the inversion of epicardial repolarization gradients (apicobasal, anterior-posterior and interventricular) causes Twave inversion regardless of transmural gradient direction[74].

    In hypoxia/ischemia, APD shortening is associated with electrolyte imbalance in conditions of oxygen supply termination/limitation[75], and increase in extracellular potassium concentration[76]. Hyperkalemia leads to sodium channels’ inactivation and slower conduction velocity[77], as well as to shorter repolarization, since it enhances potassium currents[77,78]. In addition, APD shortening at hypoxia may be associated with the release of catecholamines, which enhance the calcium-dependent chlorine current ICl (Ca) and activate the cAMP-dependent chlorine current ICl (cAMP)[79].In vitrostudies showed that subepicardial layers were more sensible to ischemia than subebdocardial ones[80,81], althoughin vivothere were no transmural differences in response to ischemia[82]. At ischemia, a significant increase in left-to-right repolarization gradient was observed[83]. In general, ischemia enhanced both temporal and spatial RH[84].

    DOR: TEMPORAL AND SPATIAL, ITS ECG-REFLECTION AND CLINICAL SIGNIFICANCE

    Temporal aspect

    The quantitative temporal measure of RH is DOR – the time difference between the earliest and the latest end of repolarization in the heart ventricles. A number of experimental studies demonstrated that an increased DOR promotes arrhythmogenic substrate formation[4-6]. Table 1 summarizing ECG-indices with their ability to evaluate the degree and the nature of ventricular RH and the degree of arrhythmic risk.

    The most “traditional”, but perhaps the least accurate index of DOR is QT interval dispersion. Because of the low reproducibility of clinical data, almost two decades ago it was concluded that QT dispersion gives a poor assessment of DOR[85,86]. Fromtheoretical viewpoint, QT dispersion reflects local differences in the latest (T-wave end), but not the earliest repolarization; thus, it reflects DOR only partially.

    Table1 Physiological meaning and cut-off values of electrocardiogram -indices of ventricular repolarization

    The more accurate index of DOR is Tpeak-Tend interval - a useful arrhythmic risk stratification tool in a wide variety of pathologies[87-89]. It was proven both experimentally and in silico that Tpeak-Tend directly reflects DOR magnitude[56,90-92].Although, a serious problem in using Tpeak-Tend for diagnostics is the discrepancy between the cut-off values resulting from different T-end determining method(baseline or tangent) as well as different number of ECG leads involved in calculations.In some studies, Tpeak-Tend was not a predictor of arrhythmia[93,94]; however, this does not decease its clinical significance, but suggests that mechanisms of triggering arrhythmias are not necessarily associated with increased DOR, and the search for new arrhythmogenic indices should be continued. The alternative relative assessments of DOR magnitude are T-wave amplitude, width, area and symmetry[95-99](Table 1).

    Spatial aspect

    Traditionally, the term DOR is associated with temporal RH. However, since the regions of early and late repolarization differ both in time and location, DOR is a vectorial parameter, directed from point A (the region of the earliest end of repolarization) to point B (the region of the latest end of repolarization) (Figure 2). The spatial characteristic of RH is T-vector of vectorcardiogram – a three-dimensional total electric vector of ventricular repolarization, which can be calculated on the basis of standard ECG set[100].

    Figure2 Realistic activation sequence, action potential duration distribution and end-of-repolarization sequence in the rabbit heart ventricles’ model, simulated from intramural and epicardial measurements[56].

    T-vector amplitude is not directly equal to DOR: The first is calculated in mV, and the second in ms. However, from physical viewpoint, T-vector amplitude must be proportional to DOR magnitude, and the relationship between T-vector components(Tx, Ty and Tz) must reflect the proportion between ventricular repolarization gradients in corresponding directions.

    T-vector direction reflects the general sequence of repolarization, but in the opposite way: T-vector is oriented from the regions of late repolarization towards the regions of early repolarization (Figure 2). Substantial changes in T-vector direction, even if DOR magnitude is within normal range (e.g., experimental Diabetes Mellitus[61-64]), indicate a large-scale electrical heart remodeling.

    T-vector provides important information in addition to “scalar” DOR value[101]: The amplitudes of cardiac potentials’ peaks and the time of their occurrence on ECG depend on lead location, while vectorcardiogram provides objective, “weighted”values; Ventricular gradient (three-dimensional QRS-T integral) reflects the distribution of the action potentials’ morphology in the heart ventricles[102]; ST-vector reflects the presence and peculiarities of ischemia; A distorted, twisted T-loop (the trajectory of T-vector projections on anatomical planes during ventricular repolarization) indicates pathological repolarization, while normal T-loop has a correct smoothed shape[103-105].

    Besides T-vector direction itself, the angle between T-vector and QRS-vector (QRS-T angle) is highly informative regarding spatial RH[106,107]. In healthy people,repolarization is practically opposite to depolarization, and QRS-T angle is relatively small (≤ 105°)[101,108]. An increased QRS-T angle (≥ 135°) indicates the changes in repolarization sequence, and, correspondingly, the changes in repolarization gradients resulted from electrophysiological disturbances in ventricular myocardium – the altered distribution if ion channels and action potentials’ durations[105,109]. An increased QRS-T angle was shown to be the most reliable predictor of the risk of life-threatening arrhythmias and death from heart disease compared with other ECG parameters[105,109-111].

    LOCAL DOR VS GLOBAL DOR

    DOR magnitude along with T-vector reflects the total (global) temporal and spatial repolarization pattern in the heart ventricles, but do not reflect the local electrophysiological heterogeneities. At the same time, increase in local RH may be more relevant for arrhythmia development than increase in global DOR: The regions with the greatest local repolarization time differences often serve as sources for ectopic beats and Torsade de pointes[111-113].

    The same condition (e.g., myocardial ischemia) can lead to the increase in both local and global DOR, and in such a case the global and local repolarization changes are hardly distinguishable, and specific novel markers for local DOR magnitude are need.Dispersion of Tpeak-Tend interval (the difference between the earliest Tpeak and the latest Tend among 12 standard leads) was proposed as a possible specific marker for the local DOR[114,115]. Besides, mathematical simulations showed that local increase in DOR can be expressed in increased lead-toa€‘lead differences in Tpeak and Tend instants between adjacent anatomically ordered standard leads [aVL, I, aVR(-), II, aVF,III, and V1-V6], even if global DOR, Tpeak-Tend interval and Tpeak-Tend dispersion are within a normal range[116].

    OTHER REPOLARIZATION PARAMETERS

    In some cases, indices characterizing duration and morphology of action potentials(QT, JTpeak and JTend intervals)[117-120], as well as electrical instability of ventricular myocardium at cellular level (macrovolt and microvolt T-wave alternans, beat-to-beat T-vector variability)[121,122]may be of clinical importance (Table 1).

    CONCLUSION

    Both temporal (the time difference between the earliest and the latest end of repolarization in the whole ventricles, and the local differences in end of repolarization times) and spatial (the general direction of ventricular repolarization sequence and the relative magnitudes of repolarization gradients) heterogeneity of ventricular repolarization are of clinical importance. The complex use of different ECG indices(Tpeak-Tend interval and its dispersion, T-vector and T-loop parameters, QRS-T angle,etc.) provides information about temporal and spatial, global and local characteristics of ventricular repolarization for better heart state assessment.

    国产精品女同一区二区软件| 嫩草影院入口| 久久精品国产亚洲网站| 秋霞伦理黄片| 全区人妻精品视频| 日韩中字成人| 最近中文字幕高清免费大全6| 国产片特级美女逼逼视频| 午夜精品国产一区二区电影| 国产成人一区二区在线| 日韩人妻高清精品专区| 国产视频首页在线观看| 日韩 亚洲 欧美在线| 99热这里只有是精品50| 人妻 亚洲 视频| 色5月婷婷丁香| 大陆偷拍与自拍| 男人舔奶头视频| 极品人妻少妇av视频| 视频中文字幕在线观看| 免费看日本二区| 国产在线男女| 国产免费一级a男人的天堂| 色婷婷av一区二区三区视频| 亚洲欧美清纯卡通| 午夜影院在线不卡| 男的添女的下面高潮视频| 丰满人妻一区二区三区视频av| 国产精品福利在线免费观看| 精品一区二区免费观看| 国产欧美日韩综合在线一区二区 | 亚洲精品久久久久久婷婷小说| 亚洲真实伦在线观看| 男女啪啪激烈高潮av片| 婷婷色麻豆天堂久久| 免费人妻精品一区二区三区视频| 日韩不卡一区二区三区视频在线| 26uuu在线亚洲综合色| 亚洲精品乱久久久久久| 一级片'在线观看视频| 国国产精品蜜臀av免费| 狂野欧美激情性xxxx在线观看| 日本av手机在线免费观看| 亚洲av综合色区一区| 亚洲第一av免费看| 亚洲欧美精品自产自拍| 日本av免费视频播放| 欧美精品国产亚洲| 综合色丁香网| 人妻少妇偷人精品九色| 欧美日韩亚洲高清精品| 自线自在国产av| 精品一区二区三卡| 伦精品一区二区三区| 波野结衣二区三区在线| 2022亚洲国产成人精品| 一区二区av电影网| 多毛熟女@视频| 久久97久久精品| 欧美日韩国产mv在线观看视频| 水蜜桃什么品种好| 内地一区二区视频在线| 午夜免费观看性视频| 成人亚洲精品一区在线观看| 永久免费av网站大全| 观看av在线不卡| 亚洲欧洲日产国产| 麻豆成人午夜福利视频| 人人妻人人看人人澡| 日日啪夜夜撸| 免费观看性生交大片5| 婷婷色av中文字幕| 久久久久久久久久人人人人人人| 十分钟在线观看高清视频www | 少妇 在线观看| 特大巨黑吊av在线直播| a级一级毛片免费在线观看| 亚洲精品一二三| 亚洲av二区三区四区| 国产精品福利在线免费观看| 亚洲自偷自拍三级| 日韩成人av中文字幕在线观看| 能在线免费看毛片的网站| 麻豆乱淫一区二区| 97在线人人人人妻| a级片在线免费高清观看视频| 久久女婷五月综合色啪小说| 亚洲精品自拍成人| 3wmmmm亚洲av在线观看| 国产男人的电影天堂91| 天美传媒精品一区二区| 日本欧美国产在线视频| 另类精品久久| av在线老鸭窝| 日韩熟女老妇一区二区性免费视频| 男的添女的下面高潮视频| av免费在线看不卡| 黄色毛片三级朝国网站 | 亚洲国产欧美在线一区| 国产日韩欧美视频二区| 久久av网站| 免费人妻精品一区二区三区视频| av在线播放精品| 国产欧美日韩一区二区三区在线 | 日韩精品有码人妻一区| 免费观看av网站的网址| 91aial.com中文字幕在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久久久久人妻| 免费av不卡在线播放| 日日撸夜夜添| 熟女人妻精品中文字幕| 亚洲在久久综合| 免费播放大片免费观看视频在线观看| 国产精品久久久久久av不卡| 丝袜喷水一区| 一级,二级,三级黄色视频| 狂野欧美激情性xxxx在线观看| 妹子高潮喷水视频| 国产男女超爽视频在线观看| 亚洲欧洲日产国产| 中文字幕亚洲精品专区| 成年美女黄网站色视频大全免费 | a 毛片基地| 久热这里只有精品99| 久久久亚洲精品成人影院| 99九九线精品视频在线观看视频| 另类精品久久| 中文字幕人妻丝袜制服| 9色porny在线观看| av线在线观看网站| 国产成人精品无人区| 亚洲欧洲日产国产| 蜜桃久久精品国产亚洲av| 亚洲电影在线观看av| 亚洲综合色惰| 国精品久久久久久国模美| 麻豆成人午夜福利视频| 久久久久久久国产电影| 欧美一级a爱片免费观看看| 大香蕉久久网| 这个男人来自地球电影免费观看 | 高清黄色对白视频在线免费看 | 国产深夜福利视频在线观看| 国产精品不卡视频一区二区| 免费观看在线日韩| 欧美日韩在线观看h| 国产精品三级大全| 精品少妇内射三级| 成年av动漫网址| 精品少妇黑人巨大在线播放| 久久影院123| 成年人午夜在线观看视频| 丁香六月天网| 精品国产露脸久久av麻豆| 久久久久久伊人网av| 国产高清有码在线观看视频| 观看美女的网站| 51国产日韩欧美| 成人综合一区亚洲| 人妻夜夜爽99麻豆av| 男女边吃奶边做爰视频| 国产精品久久久久久精品古装| 尾随美女入室| 亚洲综合色惰| 麻豆乱淫一区二区| 你懂的网址亚洲精品在线观看| 男女边吃奶边做爰视频| 亚洲av在线观看美女高潮| 久久99一区二区三区| 国产高清国产精品国产三级| 欧美日韩亚洲高清精品| 日韩人妻高清精品专区| 卡戴珊不雅视频在线播放| 91成人精品电影| 美女脱内裤让男人舔精品视频| 国产成人精品婷婷| 成人二区视频| 欧美日韩综合久久久久久| 国产男人的电影天堂91| 亚洲精品456在线播放app| 国产白丝娇喘喷水9色精品| 亚洲精品色激情综合| 少妇人妻精品综合一区二区| 亚洲成人av在线免费| 成人特级av手机在线观看| 丝袜在线中文字幕| 欧美精品一区二区大全| 卡戴珊不雅视频在线播放| 成人综合一区亚洲| 草草在线视频免费看| 日韩 亚洲 欧美在线| av有码第一页| 伦理电影免费视频| videos熟女内射| 婷婷色麻豆天堂久久| 精品少妇内射三级| 人人妻人人爽人人添夜夜欢视频 | 欧美成人精品欧美一级黄| 久久人妻熟女aⅴ| 精品一区在线观看国产| 国产在线一区二区三区精| 一级,二级,三级黄色视频| 国产成人a∨麻豆精品| 黄色欧美视频在线观看| 亚洲怡红院男人天堂| av女优亚洲男人天堂| 亚洲国产日韩一区二区| 97在线视频观看| 特大巨黑吊av在线直播| 午夜日本视频在线| 午夜福利视频精品| 亚洲精品一二三| 色婷婷av一区二区三区视频| 国产无遮挡羞羞视频在线观看| 国产av码专区亚洲av| 亚洲精品国产色婷婷电影| 老熟女久久久| 哪个播放器可以免费观看大片| 婷婷色综合www| 欧美人与善性xxx| 99久久中文字幕三级久久日本| 亚洲精品第二区| 大陆偷拍与自拍| 亚洲国产精品一区三区| av在线老鸭窝| 99久久精品热视频| 妹子高潮喷水视频| 亚洲av日韩在线播放| 一区二区三区四区激情视频| 日日摸夜夜添夜夜添av毛片| 大片电影免费在线观看免费| 国产乱人偷精品视频| 亚洲精品自拍成人| 午夜91福利影院| 色5月婷婷丁香| 在线观看三级黄色| 日日啪夜夜爽| 国产熟女午夜一区二区三区 | 黄色欧美视频在线观看| 久久精品久久久久久噜噜老黄| 亚洲国产色片| 国产男女超爽视频在线观看| 国精品久久久久久国模美| av专区在线播放| 极品人妻少妇av视频| 99热这里只有是精品在线观看| av.在线天堂| 久久青草综合色| 青春草视频在线免费观看| 69精品国产乱码久久久| 熟女人妻精品中文字幕| 国产成人精品久久久久久| 中文字幕av电影在线播放| 日韩欧美一区视频在线观看 | 成年女人在线观看亚洲视频| 黑人高潮一二区| 中文字幕亚洲精品专区| 亚洲欧美精品专区久久| 亚洲欧美日韩另类电影网站| 人妻夜夜爽99麻豆av| 热re99久久国产66热| 久久久欧美国产精品| 十分钟在线观看高清视频www | 午夜日本视频在线| 人妻人人澡人人爽人人| .国产精品久久| 青青草视频在线视频观看| 亚洲三级黄色毛片| 久久久久视频综合| 亚洲av不卡在线观看| 久久久久久久久久久久大奶| 欧美 亚洲 国产 日韩一| 成年人免费黄色播放视频 | 国产亚洲av片在线观看秒播厂| 久久国产乱子免费精品| 国产视频内射| 国产精品一区二区性色av| 美女内射精品一级片tv| 五月开心婷婷网| 亚洲欧洲精品一区二区精品久久久 | 午夜91福利影院| 精品久久久噜噜| 五月开心婷婷网| 亚洲av.av天堂| 日韩亚洲欧美综合| 另类亚洲欧美激情| 亚洲精品视频女| 国精品久久久久久国模美| 精品亚洲成国产av| 国产成人精品久久久久久| 男女国产视频网站| 欧美3d第一页| www.av在线官网国产| 欧美日韩精品成人综合77777| 王馨瑶露胸无遮挡在线观看| 日本91视频免费播放| 国产永久视频网站| 精品亚洲成a人片在线观看| 亚洲成色77777| 一级片'在线观看视频| 欧美丝袜亚洲另类| av.在线天堂| 校园人妻丝袜中文字幕| 少妇精品久久久久久久| 国产黄色免费在线视频| 亚洲高清免费不卡视频| 成人美女网站在线观看视频| 亚洲真实伦在线观看| 能在线免费看毛片的网站| 亚洲人成网站在线观看播放| 五月伊人婷婷丁香| 中文乱码字字幕精品一区二区三区| 亚洲在久久综合| 中文精品一卡2卡3卡4更新| 国产精品蜜桃在线观看| 国产有黄有色有爽视频| 国国产精品蜜臀av免费| 国产乱人偷精品视频| 一区二区三区精品91| 欧美国产精品一级二级三级 | 亚洲精品日本国产第一区| 99re6热这里在线精品视频| 日韩制服骚丝袜av| 亚洲精品第二区| 国产熟女欧美一区二区| 美女xxoo啪啪120秒动态图| 高清毛片免费看| 亚洲精品自拍成人| 性色avwww在线观看| 欧美高清成人免费视频www| 亚洲av成人精品一二三区| 亚洲精品第二区| 一级毛片黄色毛片免费观看视频| 噜噜噜噜噜久久久久久91| 亚洲人成网站在线播| 久久99精品国语久久久| 色婷婷久久久亚洲欧美| 久久国产精品大桥未久av | 麻豆成人av视频| 国产一区亚洲一区在线观看| 色视频www国产| 在线天堂最新版资源| 嫩草影院新地址| 在线观看一区二区三区激情| 久久国产乱子免费精品| 五月天丁香电影| 欧美激情极品国产一区二区三区 | 夫妻性生交免费视频一级片| 国产高清国产精品国产三级| 午夜影院在线不卡| av福利片在线| 少妇裸体淫交视频免费看高清| 极品教师在线视频| 男女无遮挡免费网站观看| 中文欧美无线码| 卡戴珊不雅视频在线播放| 亚洲av成人精品一区久久| 色94色欧美一区二区| av免费在线看不卡| 国产乱来视频区| 欧美日韩一区二区视频在线观看视频在线| 国产亚洲91精品色在线| 香蕉精品网在线| 亚洲av欧美aⅴ国产| 精品卡一卡二卡四卡免费| 日韩,欧美,国产一区二区三区| 国产亚洲91精品色在线| 97在线人人人人妻| 国产真实伦视频高清在线观看| 久久久久精品性色| 国产男女超爽视频在线观看| 天美传媒精品一区二区| 午夜视频国产福利| 免费不卡的大黄色大毛片视频在线观看| 免费看av在线观看网站| 婷婷色麻豆天堂久久| 五月天丁香电影| 美女中出高潮动态图| 精品久久久久久久久亚洲| 男人和女人高潮做爰伦理| 久久久国产精品麻豆| 国产亚洲午夜精品一区二区久久| 亚洲精品一区蜜桃| 国产精品成人在线| 一区二区三区免费毛片| 久热这里只有精品99| 男的添女的下面高潮视频| 精品少妇久久久久久888优播| 免费人成在线观看视频色| 七月丁香在线播放| 国产视频内射| 久久人妻熟女aⅴ| 人人妻人人添人人爽欧美一区卜| 午夜视频国产福利| 又粗又硬又长又爽又黄的视频| 纯流量卡能插随身wifi吗| 汤姆久久久久久久影院中文字幕| 国语对白做爰xxxⅹ性视频网站| 蜜桃在线观看..| 国内揄拍国产精品人妻在线| 国产乱来视频区| 国产免费一级a男人的天堂| 最后的刺客免费高清国语| 人人妻人人爽人人添夜夜欢视频 | 一级毛片我不卡| 高清视频免费观看一区二区| 亚洲内射少妇av| 精品亚洲乱码少妇综合久久| 亚洲精品,欧美精品| 一本久久精品| av有码第一页| 伦理电影免费视频| 国产成人精品一,二区| 在线观看免费日韩欧美大片 | 久久国产亚洲av麻豆专区| 人妻 亚洲 视频| 精品一区二区免费观看| 亚洲精品第二区| 中文字幕人妻丝袜制服| 久久97久久精品| 蜜桃在线观看..| 日韩大片免费观看网站| 极品教师在线视频| 这个男人来自地球电影免费观看 | 高清黄色对白视频在线免费看 | 久久人人爽人人爽人人片va| 高清av免费在线| 精品99又大又爽又粗少妇毛片| 国产在线视频一区二区| 色婷婷av一区二区三区视频| 麻豆精品久久久久久蜜桃| 大话2 男鬼变身卡| 久久青草综合色| av视频免费观看在线观看| 各种免费的搞黄视频| 免费黄网站久久成人精品| 成人亚洲欧美一区二区av| 亚洲精品国产色婷婷电影| 日本91视频免费播放| 日韩伦理黄色片| 99热这里只有是精品在线观看| 久久女婷五月综合色啪小说| 色哟哟·www| 黑人巨大精品欧美一区二区蜜桃 | 日本wwww免费看| 国语对白做爰xxxⅹ性视频网站| 日韩视频在线欧美| 久久久欧美国产精品| 九色成人免费人妻av| 又黄又爽又刺激的免费视频.| 26uuu在线亚洲综合色| 热99国产精品久久久久久7| kizo精华| 亚洲内射少妇av| 国产乱人偷精品视频| 午夜福利在线观看免费完整高清在| 少妇猛男粗大的猛烈进出视频| 日韩在线高清观看一区二区三区| 色哟哟·www| 亚洲av在线观看美女高潮| 日韩,欧美,国产一区二区三区| 99久久中文字幕三级久久日本| 老女人水多毛片| 精品午夜福利在线看| 99热这里只有精品一区| 国产精品久久久久久精品古装| 国产一区二区三区综合在线观看 | 十八禁高潮呻吟视频 | 性色av一级| 久久久午夜欧美精品| 亚洲欧美中文字幕日韩二区| 亚洲第一区二区三区不卡| 国语对白做爰xxxⅹ性视频网站| 亚洲av二区三区四区| 啦啦啦视频在线资源免费观看| 国产伦在线观看视频一区| av一本久久久久| 高清视频免费观看一区二区| 午夜91福利影院| 伊人亚洲综合成人网| 免费看av在线观看网站| 桃花免费在线播放| 欧美97在线视频| 国产高清国产精品国产三级| 三级经典国产精品| 亚洲av免费高清在线观看| 亚洲一区二区三区欧美精品| 晚上一个人看的免费电影| 一本—道久久a久久精品蜜桃钙片| av视频免费观看在线观看| 一区二区三区四区激情视频| 亚洲欧美一区二区三区黑人 | 国产亚洲5aaaaa淫片| 妹子高潮喷水视频| 日本av免费视频播放| 视频中文字幕在线观看| 在线观看www视频免费| 天天躁夜夜躁狠狠久久av| av女优亚洲男人天堂| 亚洲欧美一区二区三区黑人 | 2021少妇久久久久久久久久久| 亚洲av二区三区四区| 精品少妇内射三级| 夫妻性生交免费视频一级片| 插阴视频在线观看视频| 免费av不卡在线播放| 一区二区三区乱码不卡18| 一个人看视频在线观看www免费| 高清av免费在线| 国产乱人偷精品视频| 国产欧美日韩综合在线一区二区 | 午夜影院在线不卡| 最黄视频免费看| 亚洲不卡免费看| 色婷婷av一区二区三区视频| 国产日韩欧美亚洲二区| 亚洲自偷自拍三级| 免费人成在线观看视频色| 久久久国产一区二区| 少妇的逼水好多| 91久久精品国产一区二区三区| 亚洲欧美成人精品一区二区| 欧美另类一区| 日韩在线高清观看一区二区三区| 狂野欧美激情性xxxx在线观看| 久久久精品免费免费高清| 国产亚洲午夜精品一区二区久久| 97超碰精品成人国产| 精品少妇久久久久久888优播| 人妻制服诱惑在线中文字幕| av卡一久久| 性高湖久久久久久久久免费观看| 免费观看性生交大片5| 免费看不卡的av| 丰满人妻一区二区三区视频av| 国产精品伦人一区二区| 夜夜看夜夜爽夜夜摸| 久久精品久久精品一区二区三区| 午夜免费男女啪啪视频观看| 中文精品一卡2卡3卡4更新| 久热这里只有精品99| 美女xxoo啪啪120秒动态图| 一个人看视频在线观看www免费| 免费观看性生交大片5| 97超碰精品成人国产| 一级毛片 在线播放| 韩国高清视频一区二区三区| 一级毛片黄色毛片免费观看视频| 免费av中文字幕在线| 女的被弄到高潮叫床怎么办| 国产成人精品久久久久久| 亚洲精品久久午夜乱码| 精品久久久噜噜| 日本午夜av视频| 国产精品久久久久久精品电影小说| 精品人妻熟女毛片av久久网站| 色婷婷av一区二区三区视频| 麻豆精品久久久久久蜜桃| 黑丝袜美女国产一区| 国产亚洲最大av| 涩涩av久久男人的天堂| 免费高清在线观看视频在线观看| av国产久精品久网站免费入址| 国产精品国产av在线观看| 日本vs欧美在线观看视频 | 夫妻性生交免费视频一级片| 欧美少妇被猛烈插入视频| 高清在线视频一区二区三区| av在线观看视频网站免费| 我要看黄色一级片免费的| 亚洲在久久综合| 国产亚洲欧美精品永久| 欧美成人午夜免费资源| 男女啪啪激烈高潮av片| 国模一区二区三区四区视频| 色5月婷婷丁香| 大片电影免费在线观看免费| 在线亚洲精品国产二区图片欧美 | 亚洲精品一二三| 极品人妻少妇av视频| 日韩一区二区三区影片| 寂寞人妻少妇视频99o| 午夜免费鲁丝| 日本欧美视频一区| 日产精品乱码卡一卡2卡三| 高清不卡的av网站| 久久这里有精品视频免费| 国产精品国产三级专区第一集| videossex国产| 麻豆成人av视频| 97超视频在线观看视频| 国产无遮挡羞羞视频在线观看| 午夜视频国产福利| 亚洲天堂av无毛| 日韩亚洲欧美综合| 内射极品少妇av片p| 国产男人的电影天堂91| 女的被弄到高潮叫床怎么办| 91久久精品电影网| av国产精品久久久久影院| 亚洲第一av免费看| 99热国产这里只有精品6| 国产 精品1| 日韩电影二区| 久久99精品国语久久久| 热re99久久国产66热| 老熟女久久久| 男的添女的下面高潮视频| 18禁在线无遮挡免费观看视频| 少妇的逼水好多| 爱豆传媒免费全集在线观看| 久久久久久久大尺度免费视频| 久久免费观看电影| 性色avwww在线观看|