• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GTB-PPI:Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting

    2020-09-02 00:04:10BinYuChengChenHongyanZhouBingqiangLiuQinMa
    Genomics,Proteomics & Bioinformatics 2020年5期

    Bin Yu*,Cheng Chen,Hongyan Zhou,Bingqiang Liu,Qin Ma*

    1 School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    2 College of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

    3 Artificial Intelligence and Biomedical Big Data Research Center,Qingdao University of Science and Technology,Qingdao 266061,China

    4 School of Mathematics,Shandong University,Jinan 250100,China

    5 Department of Biomedical Informatics,College of Medicine,The Ohio State University,Columbus,OH 43210,USA

    KEYWORDS Protein-protein interaction;Feature fusion;L1-regularized logistic regression;Gradient tree boosting;Machine learning

    Abstract Protein-protein interactions (PPIs) are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(PseAAC),pseudo position-specific scoring matrix(PsePSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15%and 90.47%on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets forCaenorhabditis elegans, Escherichia coli, Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.

    Introduction

    Knowledge of protein-protein interactions (PPIs) can help to probe the mechanisms underlying various biological processes,such as DNA replication,protein modification,and signal transduction [1,2].The accurate understanding and analysis of PPIs can reveal multiple functions at the molecular and proteome levels,which has become a research hotspot[3,4].However,web-lab identification methods suffer from incomplete and false prediction problems [5].Alternatively,employing reliable bioinformatics methods for PPI prediction could provide candidates for subsequent experimental validation in a cost-effective way.

    Compared with structure-based methods,sequence-based methods are straightforward and do not requirea prioriinformation,which have been widely used.Martin et al.[6] proposed the signature kernel method to extract protein sequence feature information,but they did not use physicochemical property information.Subsequently,Guo et al.[7]employed seven physicochemical properties of amino acids to predict PPIs by combining autocovariance and support vector machine (SVM).

    Different feature extraction methods can complement each other,and prediction accuracy can be improved by effective feature fusion [8,9].For instance,Du et al.[8] constructed a PPI prediction framework called DeepPPI,which employed deep neural networks as the classifier.They fused amino acid composition information-based features and physiochemical property-based sequence features.However,presence of information redundancy,noise,and excessively high dimensionalities after feature fusion would affect the classification accuracy.You et al.[10] used the minimum redundancy maximum relevance (mRMR) to determine important and distinguishable features to predict PPIs based on SVM.

    Ensemble learning systems can achieve higher prediction performance than a single classifier.To our knowledge,Jia et al.[11] combined seven random forest (RF) classifiers according to voting principles.As an ensemble learning method,gradient tree boosting(GTB)has been widely applied in miRNA-disease association [12],drug-target interaction[13],and RNA-binding residue prediction [14].GTB outperforms SVM and RF,showing superior model generalization performance.

    Although a large number of algorithms have been proposed and developed,challenges remain for sequenced-based PPI predictors currently available.First,the sequence-only-based information of PPIs is not fully represented and elucidated,and satisfactory results cannot be obtained by merely adjusting individual parameters.Multi-information fusion is a very useful strategy through fusing multiple descriptors,such as pseudo amino acid composition (PseAAC) and pseudo position-specific scoring matrix (PsePSSM),which have been widely applied in PPI prediction [15],Gram-negative protein localization prediction [16],identification of submitochondrial locations [17],and apoptosis protein localization prediction[18].Secondly,there is a severe data imbalance problem in PPI prediction.The number of non-interacting protein pairs is much higher than that of interacting protein pairs.Currently,machine learning methods cannot deal with such problems well and could result in poor overall performance when dealing with imbalanced data [19].

    To overcome the aforementioned limitation of machine learning methods,this study proposes a new PPI prediction pipeline called GTB-PPI.First,we fuse PseAAC,PsePSSM,reduced sequence and index-vectors (RSIV),and autocorrelation descriptor (AD) to extract amino acid compositionbased information,evolutionary information,and physicochemical information.To retrieve effective details representing PPIs without losing important and reliable characteristic information,L1-regularized logistic regression(L1-RLR)is first utilized for PPI prediction to eliminate redundant features.At the same time,we employ GTB as a classifier to bridge the gap between the extracted PPI features and class label.Our data show that the PPI prediction performance of GTB is better than that of SVM,RF,Na?¨ve Bayes (NB),andKnearest neighbors (KNN) classifiers.The linear combination of decision trees can fit the PPI data well.When applied to the network prediction,GTB-PPI obtains the accuracy values of 93.75% and 95.83% for the one-core PPI network for CD9 and the crossover PPI network for the Wnt-related signaling pathways,respectively.

    Method

    Data source

    TheSaccharomyces cerevisiaePPI dataset was obtained from the Database of Interacting Proteins (DIP) (DIP:20070219)[7].Protein sequences consisting of <50 amino acid residues or showing sequence identity ≥40% via CD-HIT [20] were removed.Thus,5594 interacting protein pairs are considered as positive samples;5594 protein pairs with different subcellular location information are selected as negative samples,and their location information is obtained from Swiss-Prot.TheHelicobacter pyloriPPI dataset was constructed before [6],which contains 2916 samples (1458 PPI pairs and 1458 non-PPI pairs).

    Four independent PPI datasets [21] were also used to test the performance of GTB-PPI.These datasets are obtained fromCaenorhabditis elegans(4013 interacting pairs),Escherichia coli(6954 interacting pairs),Homo sapiens(1412 interacting pairs),andMus musculus(313 interacting pairs).The number of unique proteins in each dataset is shown in Table S1.

    Feature extraction

    We fuse PseAAC,PsePSSM,RSIV,and AD to extract the PPI feature information,including sequence-based features,evolutionary information features,and physicochemical property features.The detailed descriptions of methods are presented in File S1.

    L1-RLR

    L1-RLR is an embedded feature selection method.Given the sample datasetD={(x1,y1),(x2,y2),···,(xm,ym)},L1-RLR can be transformed into an unconstrained optimization problem.

    where ‖·‖1represents the L1 norm;lis the number of samples;ω represents the weight coefficient;andCrepresents penalty term,which determines the number of selected features.We use the coordinate descent algorithm in LIBLINEAR [22]to solve Equation (1).

    GTB

    GTB can be used to aggregate multiple decision trees [23,24].Different from other ensemble learning algorithms,GTB fits residual of the regression tree at each iteration using negative gradient values of loss.

    GTB can be expressed as the relationship between the labelyand the vector of input variablesx,which are connected via a joint probability distributionp(x,y).The goal of GTB is to obtain the estimated functionthrough minimizingL(y,F(xiàn)(x)):

    Lethm(x)be them-thdecision tree andJmindicates number of its leaves.The tree partitions the input space intoJmdisjoint regionsR1,m,R2,m,···,RJm,mand predicts a numerical valuebjmfor each regionRjm.The output ofhm(x)can be described as:

    GTB can complement the weak learning ability of decision tree,thus improving the ability of representation,optimization,and generalization.GTB can capture higher-order information and is invariant to scaling of sample data.GTB can effectively avoid overfitting condition by weighting combination scheme.GTB-PPI uses the GTB algorithm of Scikit-learn[25].

    Performance evaluation

    In GTB-PPI pipeline,recall,precision,overall prediction accuracy (ACC),and Matthews correlation coefficient (MCC) are used to evaluate the model performance [8].The definitions are as follows:

    TP indicates the number of predicted PPI samples found in PPI dataset;TN indicates the number of non-PPI samples correctly predicted;FP and FN indicate false positive and false negative,respectively.Receiver operating characteristic(ROC) curve [26],precision-recall (PR) curve [27],area under ROC curve (AUROC),and area under PR curve (AUPRC)are also used to evaluate the generalization ability of GTBPPI.

    Results and discussion

    GTB-PPI pipeline

    The pipeline ofGTB-PPIfor predictingPPIsis shown inFigure 1,which can be implemented usingMATLAB2014a and Python 3.6.There are five steps ofGTB-PPIas described below.

    Figure 1 Overall framework of GTB-PPI for PPI prediction

    Figure 2 Prediction results of different parameters λ,ξ,and lag on the S.cerevisiae and H.pylori datasets

    Data input

    The input values of GTB-PPI are PPI samples,non-PPI samples,and the corresponding binary labels.

    Feature extraction

    PseAAC,PsePSSM,RSIV,and AD are fused to transform the protein character signal into numerical signal.1) Amino acid sequence composition and sequence order information are obtained using PseAAC to construct the 20 +λ dimensional vectors.2) PSSM matrix of the protein sequence is obtained and 20 +20×ξ features are extracted based on PsePSSM.3)Feature information is extracted using RSIV according to the six physicochemical properties.Each protein sequence is constructed as 120+77=197 dimensional vectors.4)Protein sequence is transformed into 3×7×lagdimensional vectors by Morean-Broto autocorrelation(MBA),Moran autocorrelation (MA),and Geary autocorrelation (GA).λ,ξ,andlagare the hyperparameters of GTB-PPI,and their detailed meaning can be seen in File S1.

    Dimensionality reduction

    L1-RLR is first employed to remove redundant features by adjusting the penalty parameters in logistic regression.The performance of L1-RLR is then compared with that of semisupervised dimension reduction (SSDR),principal component analysis (PCA),kernel principal component analysis (KPCA),factor analysis (FA),mRMR,and conditional mutual information maximization (CMIM) onS.cerevisiaeandH.pyloridatasets.

    PPI prediction based on GTB

    According to step 2 for feature extraction and step 3 for dimensionality reduction,L1-RLR is used to better capture the sequence representation details.In this way,GTB-PPI model can be constructed using GTB as the classifier.

    PPI prediction on independent test datasets and network datasets

    The optimal feature set representing PPIs can be obtained through feature encoding,fusion,and selection.GTB is employed to predict the binary labels on four independent test datasets and two network datasets.

    Parameter optimization of PseAAC,PsePSSM,and AD

    It is essential to optimize parameters of PseAAC,PsePSSM,and AD for GTB-PPI predictor construction.We implement the hyperparameter optimization through five-fold crossvalidation.

    To extract features from the sequence,the values for λ of PseAAC,ξ of PsePSSM,andlagof AD should be determined.We set the values of λ as 1,3,5,7,9,and 11;similarly,values for ξ andlagare also set as 1,3,5,7,9,and 11 in order.GTB is then used to predict the binary labels(Tables S2-S4).As shown inFigure 2,the prediction performance onS.cerevisiaeandH.pyloridatasets changed with the alteration in the values of the respective parameters.For the parameter λ in PseAAC,the highest prediction performance for these two datasets was obtained at different λ values:the optimal λ value forS.cerevisiaeis 9,while the optimal λ value ofH.pyloriis 11.Considering that PseAAC generates fewer dimensional vectors than the other three feature extraction methods (PsePSSM,RSIV,and AD),we choose the optimal parameter λ=11 to mine more PseAAC information.The parameter selection of ξ andlagcan be found in File S2.In summary,for each protein sequence,PseAAC extracts 20 +11=31 features,PsePSSM obtains 20 +20×9=200 features,the dimension of RSIV is 197,and AD encodes 3×7×11=231 features.We can obtain 659-dimensional vectors by fusing all four coding methods.Then the 1318-dimensional feature vectors are constructed by concatenating two sequences of protein pairs.

    Effect of dimensionality reduction

    L1-RLR can effectively improve prediction performance with higher computational efficiency.The process of parameter selection is described in File S3.To evaluate the performance of L1-RLR (C=1),we compared its prediction performance with SSDR [28],PCA [29] (setting of contribution rate is shown in Table S5),KPCA [30] (adjustment of contribution rate is shown in Table S6),FA [31],mRMR [32],and CMIM[33] (Table S7).ROC and PR curves of different dimensionality reduction methods are shown inFigure 3.The AUROC and AUPRC are shown in Table S8.The numbers of raw features and optimal features can be obtained in Figures S1 and S2.

    As shown in Figure 3A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the L1-RLR has superior model performance.For theS.cerevisiaedataset,the AUROC value of L1-RLR is 0.9875,which is 4.55%,4.83%,6.13%,3.21%,1.07%,and 1.09% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).For theH.pyloridataset,the AUROC value of L1-RLR is 0.9559,which is 3.47%,9.80%,8.59%,8.33%,1.04%,and 9.55% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).As shown in Figure 3C and D,in PR curves,L1-RLR almost obtains the highest precision value at corresponding recall value.The AUPRC values of L1-RLR are 1.22%-6.21% and 0.36%-11.94%higher than the other six dimensionality reduction methods on theS.cerevisiaeandH.pyloridatasets,respectively(Table S8).These results indicate that L1-RLR can effectively remove the redundant features without losing important information.The effective features related to PPIs could be fed into a GTB classifier,generating a reliable GTB-PPI prediction model.

    Selection of classifier algorithms

    GTB is used as a classifier with the number of iterations set to 1000 and loss function set as ‘‘deviance”.The prediction results of other four classifiers are also provided via five-fold cross-validation,including KNN [34] (number of neighbors=3) (Table S9),NB [35],SVM [36] (recursive feature elimination as the kernel function),and RF [37] (number of the base decision trees=1000) (Table S10).The prediction results of KNN,SVM,NB,RF,and GTB on theS.cerevisiaeandH.pyloridatasets are shown in Table S11 and Figures S3 and S4.We also obtain the ROC and PR curves(Figure 4)and AUROC and AUPRC values for different classifiers(Table S12).

    Figure 4 Comparison of GTB with KNN,NB,SVM,and RF classifiers

    As shown in Figure 4A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the GTB classifier outperforms than KNN,NB,SVM,and RF.The AUROC values of GTB are 1.16%-24.65% and 0.53%-22.95% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).As shown in Figure 4C and D,the prediction performance of GTB is superior to KNN,NB,SVM,and RF.The AUPRC values of GTB are 1.42%-24.32% and 0.22%-24.56% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).These results demonstrate that GTB-PPI can accurately indicate whether a pair of proteins interact with each other within theS.cerevisiaeorH.polyridataset.GTB is an ensemble method using boosting algorithm that can achieve superior generalization performance over a single learner.Specially,RF achieves worse performance than GTB,because all the base decision trees of RF are treated equally.If the base classifier’s prediction performance is biased,the final ensemble classifier may get the unreliable and biased predicted results.GTB can utilize steepest descent step algorithm to bridge the gap between the sequence and PPI label information.

    Figure 5 Prediction results of one-core and crossover networks using GTB-PPIA

    Table 1 Performance comparison of GTB-PPI with other state-of-the-art predictors on the S.cerevisiae dataset

    Comparison of GTB-PPI with other PPI prediction methods

    To verify the validity of the GTB-PPI model,we compare GTB-PPI with ACC+SVM [7],DeepPPI [8],and other state-of-the-art methods on theS.cerevisiaeandH.pyloridatasets.

    As shown inTable 1,for theS.cerevisiaedataset,compared with other existing methods,the ACC of GTB-PPI increases by 0.14%-9.00%;the recall of GTB-PPI is 0.15%higher than DeepPPI[8]and 1.54%higher than MCD+SVM[10];the precision of GTB-PPI is 1.32% higher than DeepPPI [8] and 0.81% higher than MIMI+NMBAC+RF [41].

    As shown inTable 2,for theH.pyloridataset,the performance of GTB-PPI is better than other tested predictors.In terms of ACC,GTB-PPI is 2.88%-7.07% higher than other methods (7.07% higher than SVM [6],4.24% higher than DeepPPI [8],and 3.73% higher than DCT+WSRC [45]).At the same time,the recall of GTB-PPI is 1.71%-12.15%higher than other methods (4.72% higher than DCT+WSRC [45]and 7.91% higher than MCD+SVM [10]).The precision of GTB-PPI is 1.76%-5.67% higher than other methods(4.29% higher than SVM [6] and 5.67% higher than DeepPPI[8]).

    PPI prediction on independent test datasets

    The performance of GTB-PPI can also be evaluated using cross-species datasets.After the feature extraction,fusion,and selection,theS.cerevisiaedataset is used as a training set to predict PPIs of four independent test datasets.

    As shown inTable 3,for theC.elegansdataset,the ACC of GTB-PPI is 0.26% higher than MIMI+NMBAC+RF[41],4.71% higher than MLD+RF [39],and 11.23% higher than DCT+WSRC [45],but 2.42% lower than DeepPPI [8].For theE.colidataset,the ACC of GTB-PPI (94.06%) is 1.26%-27.98% higher than DeepPPI (92.19%) [8],MIMI+NMBAC+RF (92.80%) [41],MLD+RF (89.30%) [39],and DCT+WSRC (66.08%) [45].For theH.sapiensdataset,the ACC of GTB-PPI (97.38%) is 3.05%-15.16% higher than DeepPPI (93.77%) [8],MIMI+NMBAC+RF(94.33%) [41],MLD+RF (94.19%) [39],and DCT+WSRC(82.22%) [45].For theM.musculusdataset,the ACC of GTB-PPI (98.08%) is 2.23%-18.21% higher than DeepPPI(91.37%) [8],MIMI+NMBAC+RF (95.85%) [41],MLD+RF (91.96%) [39],and DCT+WSRC (79.87%) [45].The findings indicate that the hypothesis of mapping PPIs from one species to another species is reasonable.We can conclude that PPIs in one organism might have ‘‘co-evolve”with other organisms [41].

    Table 2 Performance comparison of GTB-PPI with other state-of-the-art predictors on the H.pylori dataset

    Table 3 Performance comparison of GTB-PPI with other state-of-the-art predictors on independent datasets

    PPI network prediction

    The graph visualization of the PPI network can provide a broad and informative idea to understand the proteome and analyze the protein functions.We employ GTB-PPI to predict the simple one-core PPI network for CD9 [46] and crossover PPI network for the Wnt-related signaling pathways[47]using theS.cerevisiaedataset as a training set.

    As shown inFigure 5A,only the interaction between CD9 and Collagen-binding protein 2 is not predicted successfully based on GTB-PPI,which was not predited by Shen et al.[48] either.Compared with Shen et al.[48] and Ding et al.[41],GTB-PPI achieves the superior prediction performance.The ACC is 93.75%,which is 12.50% higher than Shen et al.(81.25%) [48] and 6.25% higher than Ding et al.(87.50%) [41].As shown in Figure 5B,92 of the 96 PPI pairs are identified based on GTB-PPI.The ACC is 95.83%,which is 19.79% higher than Shen et al.(76.04%) [48] and 1.04%higher than Ding et al.(94.79%) [41].

    The palmitoylation of CD9 could support CD9 to interact with CD53 [49].In the one-core network for CD9,we can see that the interaction between CD9 and CD53 is predicted successfully based on GTB-PPI.In the crossover PPI network for the Wnt-related signaling pathways,ANP32A,CRMP1,and KIAA1377 are linked to the Wnt signaling pathway via PPIs.The ANP32A has been demonstrated as a potential tumor suppressor[50],and GTB-PPI could predict its interactions with the corresponding proteins.However,the interaction between ROCK1 and CRMP1 is not predicted.It is likely because we use theS.cerevisiaedataset as a training set,and ROCK1 and CRMP1 are different organism genes fromS.cerevisiae.At the same time,ROCK1 is part of the noncanonical Wnt signaling pathway [47],GTB-PPI may not be very effective in this case.A previous study has reported that AXIN1 could interact with multiple proteins [51].Here,we find that GTB-PPI can predict the interactions between AXIN1 and its satellite proteins,which provides new insights to elucidate the biological mechanism of PPI network.

    Conclusion

    The knowledge and analysis of PPIs can help us to reveal the structure and function of protein at the molecular level,including growth,development,metabolism,signal transduction,differentiation,and apoptosis.In this study,a new PPI prediction pipeline called GTB-PPI is presented.First,PseAAC,PsePSSM,RSIV,and AD are concatenated as the initial feature information for predicting PPIs.PseAAC obtains not only the amino acid composition information but also the sequence order information.PsePSSM can mine the evolutionary information and local order information.RSIV can obtain the frequency feature information using the reduced sequence.AD reflects the physicochemical property features on global amino acid sequence.Second,L1-RLR can obtain effective information features related to PPIs without losing accuracy and generalization.Simultaneously,the performance of L1-RLR is superior to SSDR,PCA,KPCA,FA,mRMR,and CMIMs (Figure 3).Finally,the PPIs are predicted based on GTB whose base classifier is a decision tree,which can bridge the gap between amino acid sequence information features and class label.Experimental results show that the PPI prediction performance of GTB is better than that of SVM,RF,NB,and KNN.Especially,in the field of binary PPI prediction,the L1-RLR is used for dimensionality reduction for the first time.The GTB is also first employed as a classifier.In a word,GTB-PPI shows good performance,representation ability,and generalization ability.

    Availability

    All datasets and code of GTB-PPI can be obtained on https://github.com/QUST-AIBBDRC/GTB-PPI/.

    CRediT author statement

    Bin Yu:Conceptualization,Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Writing -review & editing.Cheng Chen:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Visualization.Hongyan Zhou:Formal analysis,Investigation,Methodology,Validation,Visualization.Bingqiang Liu:Formal analysis,Investigation,Methodology,Writing -original draft.Qin Ma:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Writing-review& editing.All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.61863010),the Key Research and Development Program of Shandong Province of China(Grant No.2019GGX101001),and the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MC007).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2021.01.001.

    ORCID

    0000-0002-2453-7852 (Bin Yu)

    0000-0002-4354-5508 (Cheng Chen)

    0000-0003-4093-2585 (Hongyan Zhou)

    0000-0002-5734-1135 (Bingqiang Liu)

    0000-0002-3264-8392 (Qin Ma)

    国产亚洲5aaaaa淫片| 女人久久www免费人成看片| 插逼视频在线观看| 国产精品国产三级专区第一集| 777米奇影视久久| 国产高清有码在线观看视频| 欧美日韩亚洲高清精品| 国产伦理片在线播放av一区| freevideosex欧美| 国产av不卡久久| 日日摸夜夜添夜夜爱| 青春草国产在线视频| 成人综合一区亚洲| 边亲边吃奶的免费视频| 一级片'在线观看视频| 日本爱情动作片www.在线观看| 最近手机中文字幕大全| 最近的中文字幕免费完整| 欧美3d第一页| 九九爱精品视频在线观看| 男女那种视频在线观看| 身体一侧抽搐| 久久精品综合一区二区三区| 久久久久网色| 80岁老熟妇乱子伦牲交| 国产亚洲5aaaaa淫片| 亚洲精品国产色婷婷电影| 国产 精品1| 在线观看一区二区三区激情| 中文天堂在线官网| 国产精品爽爽va在线观看网站| 国产精品久久久久久精品电影小说 | 免费观看a级毛片全部| 国产一区二区亚洲精品在线观看| 久久久久国产精品人妻一区二区| 亚洲精华国产精华液的使用体验| 天天躁夜夜躁狠狠久久av| 大片电影免费在线观看免费| 在线 av 中文字幕| 久久这里有精品视频免费| 边亲边吃奶的免费视频| 激情 狠狠 欧美| 久久久色成人| 丝袜喷水一区| 人妻夜夜爽99麻豆av| 18禁裸乳无遮挡动漫免费视频 | 成人毛片a级毛片在线播放| 国产欧美另类精品又又久久亚洲欧美| 好男人在线观看高清免费视频| 亚洲在线观看片| 人体艺术视频欧美日本| 菩萨蛮人人尽说江南好唐韦庄| 日韩成人av中文字幕在线观看| 人妻系列 视频| 99久久人妻综合| 国产精品蜜桃在线观看| 久久精品夜色国产| 精品人妻熟女av久视频| 欧美3d第一页| 国产爽快片一区二区三区| 干丝袜人妻中文字幕| 亚洲成人一二三区av| 亚洲精品一区蜜桃| 日韩视频在线欧美| 国产淫语在线视频| 青春草视频在线免费观看| 欧美变态另类bdsm刘玥| 亚洲欧美成人精品一区二区| 人人妻人人澡人人爽人人夜夜| 国产免费福利视频在线观看| 日本色播在线视频| 69av精品久久久久久| 女的被弄到高潮叫床怎么办| 久久久久久久久久人人人人人人| 亚洲伊人久久精品综合| 男人和女人高潮做爰伦理| 亚洲人成网站高清观看| 日韩人妻高清精品专区| 久久ye,这里只有精品| 97精品久久久久久久久久精品| 午夜免费观看性视频| 男人舔奶头视频| 成人特级av手机在线观看| 99热6这里只有精品| 国产精品国产av在线观看| 在线观看av片永久免费下载| 久久久久久国产a免费观看| 亚洲成人久久爱视频| 美女被艹到高潮喷水动态| 国产女主播在线喷水免费视频网站| 中文精品一卡2卡3卡4更新| 日韩亚洲欧美综合| 青春草视频在线免费观看| 国产永久视频网站| 亚洲av一区综合| 久热久热在线精品观看| 女人久久www免费人成看片| 少妇人妻久久综合中文| 国产老妇伦熟女老妇高清| 精品视频人人做人人爽| 中文欧美无线码| 日韩成人av中文字幕在线观看| 18禁动态无遮挡网站| 欧美激情久久久久久爽电影| 免费av毛片视频| 亚洲va在线va天堂va国产| 久久久a久久爽久久v久久| 欧美三级亚洲精品| 中国国产av一级| 久久精品久久久久久久性| 伦精品一区二区三区| 日韩中字成人| 久久久久九九精品影院| 成人午夜精彩视频在线观看| 日本色播在线视频| 天天躁日日操中文字幕| 青春草视频在线免费观看| 纵有疾风起免费观看全集完整版| 国产av码专区亚洲av| 777米奇影视久久| 国产精品一区www在线观看| 成人欧美大片| 亚洲精品日韩av片在线观看| 亚洲欧美清纯卡通| 国产午夜精品一二区理论片| 精华霜和精华液先用哪个| 观看美女的网站| 日韩一区二区三区影片| 国产白丝娇喘喷水9色精品| 99久久精品热视频| 国产片特级美女逼逼视频| 午夜视频国产福利| 国产一区二区在线观看日韩| 亚洲最大成人手机在线| 人妻一区二区av| 婷婷色综合大香蕉| 婷婷色综合www| 国产色婷婷99| 亚洲一区二区三区欧美精品 | 成人亚洲精品一区在线观看 | 草草在线视频免费看| 国产免费视频播放在线视频| 亚洲美女搞黄在线观看| 日本免费在线观看一区| 精品久久久久久久久av| 欧美丝袜亚洲另类| 高清视频免费观看一区二区| 久久久久精品久久久久真实原创| 婷婷色综合www| 日本一本二区三区精品| 国产永久视频网站| 免费观看性生交大片5| 欧美日韩亚洲高清精品| 全区人妻精品视频| 久久精品综合一区二区三区| 久热久热在线精品观看| 三级男女做爰猛烈吃奶摸视频| 亚洲综合色惰| 精品一区二区三区视频在线| 亚洲精华国产精华液的使用体验| 亚洲成人中文字幕在线播放| 国模一区二区三区四区视频| av专区在线播放| 亚洲精品aⅴ在线观看| 一级毛片 在线播放| 亚洲欧美清纯卡通| 久久亚洲国产成人精品v| 亚洲欧美精品专区久久| 免费观看无遮挡的男女| 涩涩av久久男人的天堂| 亚洲av欧美aⅴ国产| 亚洲欧洲日产国产| 午夜福利视频1000在线观看| 亚洲久久久久久中文字幕| 精品酒店卫生间| 1000部很黄的大片| 亚洲最大成人av| 欧美xxxx性猛交bbbb| 欧美老熟妇乱子伦牲交| 五月伊人婷婷丁香| 丰满少妇做爰视频| 国产伦精品一区二区三区四那| 天天躁夜夜躁狠狠久久av| 青春草亚洲视频在线观看| 性色av一级| 日韩国内少妇激情av| 国产精品av视频在线免费观看| 精品久久国产蜜桃| 欧美激情在线99| 久久午夜福利片| 丝袜脚勾引网站| 久久精品国产亚洲网站| 久久久久国产网址| 日韩av免费高清视频| 国产精品久久久久久精品古装| 亚洲经典国产精华液单| 国产精品人妻久久久影院| a级毛色黄片| 老司机影院毛片| 亚洲国产欧美人成| 久久精品国产亚洲av天美| 大话2 男鬼变身卡| 国产精品久久久久久av不卡| 国产精品人妻久久久久久| 久久精品久久久久久噜噜老黄| 在线免费十八禁| 欧美激情国产日韩精品一区| 免费不卡的大黄色大毛片视频在线观看| 久久久久国产精品人妻一区二区| 熟女电影av网| 青青草视频在线视频观看| 在线观看人妻少妇| 亚洲天堂av无毛| 亚洲最大成人手机在线| 女人久久www免费人成看片| 少妇丰满av| 免费观看无遮挡的男女| 久热久热在线精品观看| 一个人看视频在线观看www免费| 久久精品久久久久久噜噜老黄| 能在线免费看毛片的网站| 极品少妇高潮喷水抽搐| 国产午夜福利久久久久久| www.色视频.com| 乱系列少妇在线播放| 亚洲av成人精品一区久久| 夫妻性生交免费视频一级片| 精华霜和精华液先用哪个| 欧美激情在线99| 欧美成人午夜免费资源| 大香蕉久久网| 亚洲熟女精品中文字幕| 日本爱情动作片www.在线观看| 欧美 日韩 精品 国产| 国产精品一区二区在线观看99| 99久久中文字幕三级久久日本| 一区二区三区乱码不卡18| 亚洲图色成人| 美女脱内裤让男人舔精品视频| 各种免费的搞黄视频| 综合色丁香网| 婷婷色麻豆天堂久久| 噜噜噜噜噜久久久久久91| 国产免费视频播放在线视频| 国产亚洲一区二区精品| 内射极品少妇av片p| 大话2 男鬼变身卡| 在线观看三级黄色| 久久国内精品自在自线图片| 国产成人精品婷婷| 亚洲成人一二三区av| 国内精品美女久久久久久| 久久韩国三级中文字幕| 中国美白少妇内射xxxbb| 免费电影在线观看免费观看| 女的被弄到高潮叫床怎么办| 天天躁夜夜躁狠狠久久av| 亚洲国产最新在线播放| 亚洲最大成人中文| 国产高清国产精品国产三级 | av在线老鸭窝| 亚洲欧美成人综合另类久久久| 人妻系列 视频| 午夜福利在线观看免费完整高清在| 黄色怎么调成土黄色| 成人美女网站在线观看视频| 99热网站在线观看| 欧美高清性xxxxhd video| 亚洲激情五月婷婷啪啪| 麻豆成人午夜福利视频| 黄色日韩在线| 欧美性感艳星| 人人妻人人看人人澡| 国产成年人精品一区二区| 国产v大片淫在线免费观看| 亚洲av日韩在线播放| 女人十人毛片免费观看3o分钟| 日韩电影二区| 国产精品人妻久久久影院| 国产欧美日韩一区二区三区在线 | 国产精品伦人一区二区| 成人毛片a级毛片在线播放| 美女内射精品一级片tv| 久久精品国产亚洲av涩爱| 有码 亚洲区| 别揉我奶头 嗯啊视频| 神马国产精品三级电影在线观看| 男人爽女人下面视频在线观看| 女人久久www免费人成看片| 搡老乐熟女国产| 老女人水多毛片| 日韩伦理黄色片| 成年免费大片在线观看| 久久精品人妻少妇| 成年人午夜在线观看视频| 少妇被粗大猛烈的视频| 久久99热这里只频精品6学生| 国产午夜精品一二区理论片| 一级毛片 在线播放| 亚洲国产成人一精品久久久| 日本色播在线视频| 亚洲成人一二三区av| 午夜福利高清视频| 一本久久精品| 国产黄片美女视频| 国产黄片视频在线免费观看| 赤兔流量卡办理| 亚洲av免费在线观看| 在线亚洲精品国产二区图片欧美 | 亚洲图色成人| 国产精品秋霞免费鲁丝片| 日韩一区二区三区影片| 男女啪啪激烈高潮av片| 好男人在线观看高清免费视频| 免费av不卡在线播放| 日韩成人av中文字幕在线观看| 成人午夜精彩视频在线观看| 日本猛色少妇xxxxx猛交久久| 极品少妇高潮喷水抽搐| 日韩制服骚丝袜av| 国产精品久久久久久久久免| 国产精品成人在线| 久久精品夜色国产| 亚洲精品久久久久久婷婷小说| 国产精品嫩草影院av在线观看| 伦理电影大哥的女人| 一级毛片电影观看| 最近最新中文字幕大全电影3| 91午夜精品亚洲一区二区三区| a级毛片免费高清观看在线播放| 亚洲欧美一区二区三区国产| 免费少妇av软件| 精品人妻偷拍中文字幕| 精品一区在线观看国产| 秋霞在线观看毛片| 人妻一区二区av| 国产极品天堂在线| 超碰av人人做人人爽久久| 国产亚洲一区二区精品| 伊人久久精品亚洲午夜| 国产一区二区在线观看日韩| 国产免费视频播放在线视频| 国产乱人偷精品视频| 亚洲欧美精品自产自拍| 各种免费的搞黄视频| 最近的中文字幕免费完整| 秋霞伦理黄片| 国产午夜精品久久久久久一区二区三区| 日本爱情动作片www.在线观看| 涩涩av久久男人的天堂| 日韩欧美 国产精品| 亚洲精品国产av成人精品| 老司机影院毛片| 毛片一级片免费看久久久久| 三级经典国产精品| 精品久久久精品久久久| 夜夜看夜夜爽夜夜摸| 久久午夜福利片| av福利片在线观看| 嫩草影院入口| 国产男女超爽视频在线观看| 亚洲高清免费不卡视频| 欧美日韩综合久久久久久| 18禁在线无遮挡免费观看视频| 久久久久久久久久久免费av| 免费观看无遮挡的男女| .国产精品久久| 一二三四中文在线观看免费高清| 亚洲国产日韩一区二区| 91精品伊人久久大香线蕉| 久久鲁丝午夜福利片| 免费观看性生交大片5| 精品少妇黑人巨大在线播放| 国产黄片视频在线免费观看| 成年版毛片免费区| 亚洲国产最新在线播放| 欧美日韩一区二区视频在线观看视频在线 | 51国产日韩欧美| 国产女主播在线喷水免费视频网站| 男人和女人高潮做爰伦理| 精品熟女少妇av免费看| 国产亚洲av嫩草精品影院| 最近中文字幕2019免费版| 亚洲国产最新在线播放| 亚洲电影在线观看av| 性色avwww在线观看| .国产精品久久| 18禁在线无遮挡免费观看视频| 网址你懂的国产日韩在线| 国产免费视频播放在线视频| 欧美日韩综合久久久久久| 欧美成人一区二区免费高清观看| 国产精品久久久久久久电影| 国产精品嫩草影院av在线观看| 寂寞人妻少妇视频99o| 久久国内精品自在自线图片| 纵有疾风起免费观看全集完整版| 欧美xxxx性猛交bbbb| 91午夜精品亚洲一区二区三区| 最近2019中文字幕mv第一页| 亚洲精品久久久久久婷婷小说| 久久99热6这里只有精品| 深夜a级毛片| 超碰97精品在线观看| av国产免费在线观看| 国产v大片淫在线免费观看| 亚洲天堂av无毛| 欧美 日韩 精品 国产| 3wmmmm亚洲av在线观看| 国产在线一区二区三区精| 国产成人91sexporn| 国产大屁股一区二区在线视频| 黑人高潮一二区| 成人美女网站在线观看视频| 欧美少妇被猛烈插入视频| 精品久久久久久久人妻蜜臀av| 午夜精品一区二区三区免费看| 一本色道久久久久久精品综合| 欧美97在线视频| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 超碰av人人做人人爽久久| 久久久久国产网址| 精品久久久久久久末码| 日本免费在线观看一区| 水蜜桃什么品种好| 国产一区二区三区av在线| 在线亚洲精品国产二区图片欧美 | 国产在线男女| 欧美一区二区亚洲| 看十八女毛片水多多多| 久久久久九九精品影院| 边亲边吃奶的免费视频| 韩国av在线不卡| 亚洲自拍偷在线| 成人二区视频| 日韩制服骚丝袜av| 天堂网av新在线| 男女边吃奶边做爰视频| 免费av观看视频| 欧美性感艳星| 99久久九九国产精品国产免费| 欧美成人一区二区免费高清观看| 天堂中文最新版在线下载 | 国产精品.久久久| 久久韩国三级中文字幕| 日本免费在线观看一区| 99久久精品国产国产毛片| 久久女婷五月综合色啪小说 | 内射极品少妇av片p| 99久久精品热视频| 欧美丝袜亚洲另类| 女人久久www免费人成看片| 色播亚洲综合网| 熟女人妻精品中文字幕| h日本视频在线播放| 97在线视频观看| 在线观看一区二区三区激情| 亚洲国产日韩一区二区| 久久影院123| 国产一区有黄有色的免费视频| 自拍偷自拍亚洲精品老妇| 男人和女人高潮做爰伦理| 最近中文字幕2019免费版| 国产精品精品国产色婷婷| 国产亚洲av片在线观看秒播厂| 国产精品偷伦视频观看了| 亚洲精品日本国产第一区| 波野结衣二区三区在线| 亚洲av一区综合| 欧美变态另类bdsm刘玥| 国产精品国产三级国产av玫瑰| 久久久久久久国产电影| 久久99蜜桃精品久久| 精品一区二区三区视频在线| 精品国产一区二区三区久久久樱花 | 80岁老熟妇乱子伦牲交| 黑人高潮一二区| 久久精品国产a三级三级三级| 亚洲熟女精品中文字幕| 亚洲精品成人av观看孕妇| 国产精品一区二区性色av| 美女内射精品一级片tv| 1000部很黄的大片| 麻豆精品久久久久久蜜桃| av免费观看日本| 国产日韩欧美亚洲二区| 五月玫瑰六月丁香| 国产又色又爽无遮挡免| 久久久久久伊人网av| 人妻少妇偷人精品九色| 国产午夜精品一二区理论片| 在线观看一区二区三区激情| 日产精品乱码卡一卡2卡三| 亚洲国产色片| av福利片在线观看| 一个人观看的视频www高清免费观看| 亚洲精华国产精华液的使用体验| 青青草视频在线视频观看| 亚洲成色77777| 2021少妇久久久久久久久久久| 在线观看av片永久免费下载| 免费看日本二区| av免费在线看不卡| 国产成人午夜福利电影在线观看| 69av精品久久久久久| 夜夜看夜夜爽夜夜摸| 在线免费观看不下载黄p国产| 美女主播在线视频| 乱码一卡2卡4卡精品| 2018国产大陆天天弄谢| 久久鲁丝午夜福利片| 2021少妇久久久久久久久久久| 免费看a级黄色片| 伊人久久国产一区二区| 综合色av麻豆| av天堂中文字幕网| 亚洲精品成人av观看孕妇| 久久99热这里只有精品18| 久热这里只有精品99| 国产黄片视频在线免费观看| 国产成人精品久久久久久| 国产精品国产三级国产专区5o| 国产精品久久久久久精品电影| 波多野结衣巨乳人妻| 国产av国产精品国产| 高清午夜精品一区二区三区| 免费在线观看成人毛片| 国内揄拍国产精品人妻在线| 国产探花在线观看一区二区| 18禁在线播放成人免费| 夫妻性生交免费视频一级片| 最近的中文字幕免费完整| 99热国产这里只有精品6| 中文字幕久久专区| 免费观看性生交大片5| 天堂中文最新版在线下载 | 欧美激情国产日韩精品一区| 婷婷色综合www| 只有这里有精品99| 精品人妻一区二区三区麻豆| 国产视频首页在线观看| 人人妻人人澡人人爽人人夜夜| 亚洲欧美一区二区三区国产| 久久精品国产自在天天线| 久久精品熟女亚洲av麻豆精品| 校园人妻丝袜中文字幕| 免费观看在线日韩| 女人被狂操c到高潮| 99久久中文字幕三级久久日本| 免费av观看视频| 国模一区二区三区四区视频| 日日啪夜夜撸| 伊人久久国产一区二区| 久久久精品欧美日韩精品| 一个人看的www免费观看视频| 黄色视频在线播放观看不卡| 久久精品国产自在天天线| 中文字幕久久专区| 国精品久久久久久国模美| 永久免费av网站大全| 女人被狂操c到高潮| 亚洲精品色激情综合| 国产精品不卡视频一区二区| 久久午夜福利片| 日日啪夜夜撸| 乱码一卡2卡4卡精品| 18禁在线播放成人免费| 亚洲电影在线观看av| 超碰97精品在线观看| 大码成人一级视频| 天天一区二区日本电影三级| 热99国产精品久久久久久7| 街头女战士在线观看网站| 久久久久久久亚洲中文字幕| 舔av片在线| 国产男女超爽视频在线观看| 三级国产精品片| 我的女老师完整版在线观看| 国产成人午夜福利电影在线观看| 日韩欧美精品免费久久| 国产精品无大码| 精品一区二区三卡| 国产免费视频播放在线视频| 午夜日本视频在线| 亚洲av成人精品一区久久| 国产av国产精品国产| 午夜日本视频在线| 国产色爽女视频免费观看| 欧美性感艳星| 国产免费一级a男人的天堂| 熟妇人妻不卡中文字幕| 国产精品爽爽va在线观看网站| 免费观看在线日韩| 久久久久久久国产电影| 国产视频首页在线观看| 免费观看av网站的网址| 欧美成人精品欧美一级黄| 久久久久久久午夜电影| 国产有黄有色有爽视频| 91精品国产九色| 久久精品综合一区二区三区| 熟女电影av网| 成人亚洲精品av一区二区| 日韩强制内射视频| 午夜福利在线观看免费完整高清在| 在线亚洲精品国产二区图片欧美 | 十八禁网站网址无遮挡 | 九九爱精品视频在线观看| 99九九线精品视频在线观看视频| 1000部很黄的大片| 又爽又黄a免费视频| 午夜免费鲁丝| 亚洲精品亚洲一区二区| 观看免费一级毛片|