• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GTB-PPI:Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting

    2020-09-02 00:04:10BinYuChengChenHongyanZhouBingqiangLiuQinMa
    Genomics,Proteomics & Bioinformatics 2020年5期

    Bin Yu*,Cheng Chen,Hongyan Zhou,Bingqiang Liu,Qin Ma*

    1 School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    2 College of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

    3 Artificial Intelligence and Biomedical Big Data Research Center,Qingdao University of Science and Technology,Qingdao 266061,China

    4 School of Mathematics,Shandong University,Jinan 250100,China

    5 Department of Biomedical Informatics,College of Medicine,The Ohio State University,Columbus,OH 43210,USA

    KEYWORDS Protein-protein interaction;Feature fusion;L1-regularized logistic regression;Gradient tree boosting;Machine learning

    Abstract Protein-protein interactions (PPIs) are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(PseAAC),pseudo position-specific scoring matrix(PsePSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15%and 90.47%on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets forCaenorhabditis elegans, Escherichia coli, Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.

    Introduction

    Knowledge of protein-protein interactions (PPIs) can help to probe the mechanisms underlying various biological processes,such as DNA replication,protein modification,and signal transduction [1,2].The accurate understanding and analysis of PPIs can reveal multiple functions at the molecular and proteome levels,which has become a research hotspot[3,4].However,web-lab identification methods suffer from incomplete and false prediction problems [5].Alternatively,employing reliable bioinformatics methods for PPI prediction could provide candidates for subsequent experimental validation in a cost-effective way.

    Compared with structure-based methods,sequence-based methods are straightforward and do not requirea prioriinformation,which have been widely used.Martin et al.[6] proposed the signature kernel method to extract protein sequence feature information,but they did not use physicochemical property information.Subsequently,Guo et al.[7]employed seven physicochemical properties of amino acids to predict PPIs by combining autocovariance and support vector machine (SVM).

    Different feature extraction methods can complement each other,and prediction accuracy can be improved by effective feature fusion [8,9].For instance,Du et al.[8] constructed a PPI prediction framework called DeepPPI,which employed deep neural networks as the classifier.They fused amino acid composition information-based features and physiochemical property-based sequence features.However,presence of information redundancy,noise,and excessively high dimensionalities after feature fusion would affect the classification accuracy.You et al.[10] used the minimum redundancy maximum relevance (mRMR) to determine important and distinguishable features to predict PPIs based on SVM.

    Ensemble learning systems can achieve higher prediction performance than a single classifier.To our knowledge,Jia et al.[11] combined seven random forest (RF) classifiers according to voting principles.As an ensemble learning method,gradient tree boosting(GTB)has been widely applied in miRNA-disease association [12],drug-target interaction[13],and RNA-binding residue prediction [14].GTB outperforms SVM and RF,showing superior model generalization performance.

    Although a large number of algorithms have been proposed and developed,challenges remain for sequenced-based PPI predictors currently available.First,the sequence-only-based information of PPIs is not fully represented and elucidated,and satisfactory results cannot be obtained by merely adjusting individual parameters.Multi-information fusion is a very useful strategy through fusing multiple descriptors,such as pseudo amino acid composition (PseAAC) and pseudo position-specific scoring matrix (PsePSSM),which have been widely applied in PPI prediction [15],Gram-negative protein localization prediction [16],identification of submitochondrial locations [17],and apoptosis protein localization prediction[18].Secondly,there is a severe data imbalance problem in PPI prediction.The number of non-interacting protein pairs is much higher than that of interacting protein pairs.Currently,machine learning methods cannot deal with such problems well and could result in poor overall performance when dealing with imbalanced data [19].

    To overcome the aforementioned limitation of machine learning methods,this study proposes a new PPI prediction pipeline called GTB-PPI.First,we fuse PseAAC,PsePSSM,reduced sequence and index-vectors (RSIV),and autocorrelation descriptor (AD) to extract amino acid compositionbased information,evolutionary information,and physicochemical information.To retrieve effective details representing PPIs without losing important and reliable characteristic information,L1-regularized logistic regression(L1-RLR)is first utilized for PPI prediction to eliminate redundant features.At the same time,we employ GTB as a classifier to bridge the gap between the extracted PPI features and class label.Our data show that the PPI prediction performance of GTB is better than that of SVM,RF,Na?¨ve Bayes (NB),andKnearest neighbors (KNN) classifiers.The linear combination of decision trees can fit the PPI data well.When applied to the network prediction,GTB-PPI obtains the accuracy values of 93.75% and 95.83% for the one-core PPI network for CD9 and the crossover PPI network for the Wnt-related signaling pathways,respectively.

    Method

    Data source

    TheSaccharomyces cerevisiaePPI dataset was obtained from the Database of Interacting Proteins (DIP) (DIP:20070219)[7].Protein sequences consisting of <50 amino acid residues or showing sequence identity ≥40% via CD-HIT [20] were removed.Thus,5594 interacting protein pairs are considered as positive samples;5594 protein pairs with different subcellular location information are selected as negative samples,and their location information is obtained from Swiss-Prot.TheHelicobacter pyloriPPI dataset was constructed before [6],which contains 2916 samples (1458 PPI pairs and 1458 non-PPI pairs).

    Four independent PPI datasets [21] were also used to test the performance of GTB-PPI.These datasets are obtained fromCaenorhabditis elegans(4013 interacting pairs),Escherichia coli(6954 interacting pairs),Homo sapiens(1412 interacting pairs),andMus musculus(313 interacting pairs).The number of unique proteins in each dataset is shown in Table S1.

    Feature extraction

    We fuse PseAAC,PsePSSM,RSIV,and AD to extract the PPI feature information,including sequence-based features,evolutionary information features,and physicochemical property features.The detailed descriptions of methods are presented in File S1.

    L1-RLR

    L1-RLR is an embedded feature selection method.Given the sample datasetD={(x1,y1),(x2,y2),···,(xm,ym)},L1-RLR can be transformed into an unconstrained optimization problem.

    where ‖·‖1represents the L1 norm;lis the number of samples;ω represents the weight coefficient;andCrepresents penalty term,which determines the number of selected features.We use the coordinate descent algorithm in LIBLINEAR [22]to solve Equation (1).

    GTB

    GTB can be used to aggregate multiple decision trees [23,24].Different from other ensemble learning algorithms,GTB fits residual of the regression tree at each iteration using negative gradient values of loss.

    GTB can be expressed as the relationship between the labelyand the vector of input variablesx,which are connected via a joint probability distributionp(x,y).The goal of GTB is to obtain the estimated functionthrough minimizingL(y,F(xiàn)(x)):

    Lethm(x)be them-thdecision tree andJmindicates number of its leaves.The tree partitions the input space intoJmdisjoint regionsR1,m,R2,m,···,RJm,mand predicts a numerical valuebjmfor each regionRjm.The output ofhm(x)can be described as:

    GTB can complement the weak learning ability of decision tree,thus improving the ability of representation,optimization,and generalization.GTB can capture higher-order information and is invariant to scaling of sample data.GTB can effectively avoid overfitting condition by weighting combination scheme.GTB-PPI uses the GTB algorithm of Scikit-learn[25].

    Performance evaluation

    In GTB-PPI pipeline,recall,precision,overall prediction accuracy (ACC),and Matthews correlation coefficient (MCC) are used to evaluate the model performance [8].The definitions are as follows:

    TP indicates the number of predicted PPI samples found in PPI dataset;TN indicates the number of non-PPI samples correctly predicted;FP and FN indicate false positive and false negative,respectively.Receiver operating characteristic(ROC) curve [26],precision-recall (PR) curve [27],area under ROC curve (AUROC),and area under PR curve (AUPRC)are also used to evaluate the generalization ability of GTBPPI.

    Results and discussion

    GTB-PPI pipeline

    The pipeline ofGTB-PPIfor predictingPPIsis shown inFigure 1,which can be implemented usingMATLAB2014a and Python 3.6.There are five steps ofGTB-PPIas described below.

    Figure 1 Overall framework of GTB-PPI for PPI prediction

    Figure 2 Prediction results of different parameters λ,ξ,and lag on the S.cerevisiae and H.pylori datasets

    Data input

    The input values of GTB-PPI are PPI samples,non-PPI samples,and the corresponding binary labels.

    Feature extraction

    PseAAC,PsePSSM,RSIV,and AD are fused to transform the protein character signal into numerical signal.1) Amino acid sequence composition and sequence order information are obtained using PseAAC to construct the 20 +λ dimensional vectors.2) PSSM matrix of the protein sequence is obtained and 20 +20×ξ features are extracted based on PsePSSM.3)Feature information is extracted using RSIV according to the six physicochemical properties.Each protein sequence is constructed as 120+77=197 dimensional vectors.4)Protein sequence is transformed into 3×7×lagdimensional vectors by Morean-Broto autocorrelation(MBA),Moran autocorrelation (MA),and Geary autocorrelation (GA).λ,ξ,andlagare the hyperparameters of GTB-PPI,and their detailed meaning can be seen in File S1.

    Dimensionality reduction

    L1-RLR is first employed to remove redundant features by adjusting the penalty parameters in logistic regression.The performance of L1-RLR is then compared with that of semisupervised dimension reduction (SSDR),principal component analysis (PCA),kernel principal component analysis (KPCA),factor analysis (FA),mRMR,and conditional mutual information maximization (CMIM) onS.cerevisiaeandH.pyloridatasets.

    PPI prediction based on GTB

    According to step 2 for feature extraction and step 3 for dimensionality reduction,L1-RLR is used to better capture the sequence representation details.In this way,GTB-PPI model can be constructed using GTB as the classifier.

    PPI prediction on independent test datasets and network datasets

    The optimal feature set representing PPIs can be obtained through feature encoding,fusion,and selection.GTB is employed to predict the binary labels on four independent test datasets and two network datasets.

    Parameter optimization of PseAAC,PsePSSM,and AD

    It is essential to optimize parameters of PseAAC,PsePSSM,and AD for GTB-PPI predictor construction.We implement the hyperparameter optimization through five-fold crossvalidation.

    To extract features from the sequence,the values for λ of PseAAC,ξ of PsePSSM,andlagof AD should be determined.We set the values of λ as 1,3,5,7,9,and 11;similarly,values for ξ andlagare also set as 1,3,5,7,9,and 11 in order.GTB is then used to predict the binary labels(Tables S2-S4).As shown inFigure 2,the prediction performance onS.cerevisiaeandH.pyloridatasets changed with the alteration in the values of the respective parameters.For the parameter λ in PseAAC,the highest prediction performance for these two datasets was obtained at different λ values:the optimal λ value forS.cerevisiaeis 9,while the optimal λ value ofH.pyloriis 11.Considering that PseAAC generates fewer dimensional vectors than the other three feature extraction methods (PsePSSM,RSIV,and AD),we choose the optimal parameter λ=11 to mine more PseAAC information.The parameter selection of ξ andlagcan be found in File S2.In summary,for each protein sequence,PseAAC extracts 20 +11=31 features,PsePSSM obtains 20 +20×9=200 features,the dimension of RSIV is 197,and AD encodes 3×7×11=231 features.We can obtain 659-dimensional vectors by fusing all four coding methods.Then the 1318-dimensional feature vectors are constructed by concatenating two sequences of protein pairs.

    Effect of dimensionality reduction

    L1-RLR can effectively improve prediction performance with higher computational efficiency.The process of parameter selection is described in File S3.To evaluate the performance of L1-RLR (C=1),we compared its prediction performance with SSDR [28],PCA [29] (setting of contribution rate is shown in Table S5),KPCA [30] (adjustment of contribution rate is shown in Table S6),FA [31],mRMR [32],and CMIM[33] (Table S7).ROC and PR curves of different dimensionality reduction methods are shown inFigure 3.The AUROC and AUPRC are shown in Table S8.The numbers of raw features and optimal features can be obtained in Figures S1 and S2.

    As shown in Figure 3A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the L1-RLR has superior model performance.For theS.cerevisiaedataset,the AUROC value of L1-RLR is 0.9875,which is 4.55%,4.83%,6.13%,3.21%,1.07%,and 1.09% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).For theH.pyloridataset,the AUROC value of L1-RLR is 0.9559,which is 3.47%,9.80%,8.59%,8.33%,1.04%,and 9.55% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).As shown in Figure 3C and D,in PR curves,L1-RLR almost obtains the highest precision value at corresponding recall value.The AUPRC values of L1-RLR are 1.22%-6.21% and 0.36%-11.94%higher than the other six dimensionality reduction methods on theS.cerevisiaeandH.pyloridatasets,respectively(Table S8).These results indicate that L1-RLR can effectively remove the redundant features without losing important information.The effective features related to PPIs could be fed into a GTB classifier,generating a reliable GTB-PPI prediction model.

    Selection of classifier algorithms

    GTB is used as a classifier with the number of iterations set to 1000 and loss function set as ‘‘deviance”.The prediction results of other four classifiers are also provided via five-fold cross-validation,including KNN [34] (number of neighbors=3) (Table S9),NB [35],SVM [36] (recursive feature elimination as the kernel function),and RF [37] (number of the base decision trees=1000) (Table S10).The prediction results of KNN,SVM,NB,RF,and GTB on theS.cerevisiaeandH.pyloridatasets are shown in Table S11 and Figures S3 and S4.We also obtain the ROC and PR curves(Figure 4)and AUROC and AUPRC values for different classifiers(Table S12).

    Figure 4 Comparison of GTB with KNN,NB,SVM,and RF classifiers

    As shown in Figure 4A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the GTB classifier outperforms than KNN,NB,SVM,and RF.The AUROC values of GTB are 1.16%-24.65% and 0.53%-22.95% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).As shown in Figure 4C and D,the prediction performance of GTB is superior to KNN,NB,SVM,and RF.The AUPRC values of GTB are 1.42%-24.32% and 0.22%-24.56% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).These results demonstrate that GTB-PPI can accurately indicate whether a pair of proteins interact with each other within theS.cerevisiaeorH.polyridataset.GTB is an ensemble method using boosting algorithm that can achieve superior generalization performance over a single learner.Specially,RF achieves worse performance than GTB,because all the base decision trees of RF are treated equally.If the base classifier’s prediction performance is biased,the final ensemble classifier may get the unreliable and biased predicted results.GTB can utilize steepest descent step algorithm to bridge the gap between the sequence and PPI label information.

    Figure 5 Prediction results of one-core and crossover networks using GTB-PPIA

    Table 1 Performance comparison of GTB-PPI with other state-of-the-art predictors on the S.cerevisiae dataset

    Comparison of GTB-PPI with other PPI prediction methods

    To verify the validity of the GTB-PPI model,we compare GTB-PPI with ACC+SVM [7],DeepPPI [8],and other state-of-the-art methods on theS.cerevisiaeandH.pyloridatasets.

    As shown inTable 1,for theS.cerevisiaedataset,compared with other existing methods,the ACC of GTB-PPI increases by 0.14%-9.00%;the recall of GTB-PPI is 0.15%higher than DeepPPI[8]and 1.54%higher than MCD+SVM[10];the precision of GTB-PPI is 1.32% higher than DeepPPI [8] and 0.81% higher than MIMI+NMBAC+RF [41].

    As shown inTable 2,for theH.pyloridataset,the performance of GTB-PPI is better than other tested predictors.In terms of ACC,GTB-PPI is 2.88%-7.07% higher than other methods (7.07% higher than SVM [6],4.24% higher than DeepPPI [8],and 3.73% higher than DCT+WSRC [45]).At the same time,the recall of GTB-PPI is 1.71%-12.15%higher than other methods (4.72% higher than DCT+WSRC [45]and 7.91% higher than MCD+SVM [10]).The precision of GTB-PPI is 1.76%-5.67% higher than other methods(4.29% higher than SVM [6] and 5.67% higher than DeepPPI[8]).

    PPI prediction on independent test datasets

    The performance of GTB-PPI can also be evaluated using cross-species datasets.After the feature extraction,fusion,and selection,theS.cerevisiaedataset is used as a training set to predict PPIs of four independent test datasets.

    As shown inTable 3,for theC.elegansdataset,the ACC of GTB-PPI is 0.26% higher than MIMI+NMBAC+RF[41],4.71% higher than MLD+RF [39],and 11.23% higher than DCT+WSRC [45],but 2.42% lower than DeepPPI [8].For theE.colidataset,the ACC of GTB-PPI (94.06%) is 1.26%-27.98% higher than DeepPPI (92.19%) [8],MIMI+NMBAC+RF (92.80%) [41],MLD+RF (89.30%) [39],and DCT+WSRC (66.08%) [45].For theH.sapiensdataset,the ACC of GTB-PPI (97.38%) is 3.05%-15.16% higher than DeepPPI (93.77%) [8],MIMI+NMBAC+RF(94.33%) [41],MLD+RF (94.19%) [39],and DCT+WSRC(82.22%) [45].For theM.musculusdataset,the ACC of GTB-PPI (98.08%) is 2.23%-18.21% higher than DeepPPI(91.37%) [8],MIMI+NMBAC+RF (95.85%) [41],MLD+RF (91.96%) [39],and DCT+WSRC (79.87%) [45].The findings indicate that the hypothesis of mapping PPIs from one species to another species is reasonable.We can conclude that PPIs in one organism might have ‘‘co-evolve”with other organisms [41].

    Table 2 Performance comparison of GTB-PPI with other state-of-the-art predictors on the H.pylori dataset

    Table 3 Performance comparison of GTB-PPI with other state-of-the-art predictors on independent datasets

    PPI network prediction

    The graph visualization of the PPI network can provide a broad and informative idea to understand the proteome and analyze the protein functions.We employ GTB-PPI to predict the simple one-core PPI network for CD9 [46] and crossover PPI network for the Wnt-related signaling pathways[47]using theS.cerevisiaedataset as a training set.

    As shown inFigure 5A,only the interaction between CD9 and Collagen-binding protein 2 is not predicted successfully based on GTB-PPI,which was not predited by Shen et al.[48] either.Compared with Shen et al.[48] and Ding et al.[41],GTB-PPI achieves the superior prediction performance.The ACC is 93.75%,which is 12.50% higher than Shen et al.(81.25%) [48] and 6.25% higher than Ding et al.(87.50%) [41].As shown in Figure 5B,92 of the 96 PPI pairs are identified based on GTB-PPI.The ACC is 95.83%,which is 19.79% higher than Shen et al.(76.04%) [48] and 1.04%higher than Ding et al.(94.79%) [41].

    The palmitoylation of CD9 could support CD9 to interact with CD53 [49].In the one-core network for CD9,we can see that the interaction between CD9 and CD53 is predicted successfully based on GTB-PPI.In the crossover PPI network for the Wnt-related signaling pathways,ANP32A,CRMP1,and KIAA1377 are linked to the Wnt signaling pathway via PPIs.The ANP32A has been demonstrated as a potential tumor suppressor[50],and GTB-PPI could predict its interactions with the corresponding proteins.However,the interaction between ROCK1 and CRMP1 is not predicted.It is likely because we use theS.cerevisiaedataset as a training set,and ROCK1 and CRMP1 are different organism genes fromS.cerevisiae.At the same time,ROCK1 is part of the noncanonical Wnt signaling pathway [47],GTB-PPI may not be very effective in this case.A previous study has reported that AXIN1 could interact with multiple proteins [51].Here,we find that GTB-PPI can predict the interactions between AXIN1 and its satellite proteins,which provides new insights to elucidate the biological mechanism of PPI network.

    Conclusion

    The knowledge and analysis of PPIs can help us to reveal the structure and function of protein at the molecular level,including growth,development,metabolism,signal transduction,differentiation,and apoptosis.In this study,a new PPI prediction pipeline called GTB-PPI is presented.First,PseAAC,PsePSSM,RSIV,and AD are concatenated as the initial feature information for predicting PPIs.PseAAC obtains not only the amino acid composition information but also the sequence order information.PsePSSM can mine the evolutionary information and local order information.RSIV can obtain the frequency feature information using the reduced sequence.AD reflects the physicochemical property features on global amino acid sequence.Second,L1-RLR can obtain effective information features related to PPIs without losing accuracy and generalization.Simultaneously,the performance of L1-RLR is superior to SSDR,PCA,KPCA,FA,mRMR,and CMIMs (Figure 3).Finally,the PPIs are predicted based on GTB whose base classifier is a decision tree,which can bridge the gap between amino acid sequence information features and class label.Experimental results show that the PPI prediction performance of GTB is better than that of SVM,RF,NB,and KNN.Especially,in the field of binary PPI prediction,the L1-RLR is used for dimensionality reduction for the first time.The GTB is also first employed as a classifier.In a word,GTB-PPI shows good performance,representation ability,and generalization ability.

    Availability

    All datasets and code of GTB-PPI can be obtained on https://github.com/QUST-AIBBDRC/GTB-PPI/.

    CRediT author statement

    Bin Yu:Conceptualization,Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Writing -review & editing.Cheng Chen:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Visualization.Hongyan Zhou:Formal analysis,Investigation,Methodology,Validation,Visualization.Bingqiang Liu:Formal analysis,Investigation,Methodology,Writing -original draft.Qin Ma:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Writing-review& editing.All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.61863010),the Key Research and Development Program of Shandong Province of China(Grant No.2019GGX101001),and the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MC007).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2021.01.001.

    ORCID

    0000-0002-2453-7852 (Bin Yu)

    0000-0002-4354-5508 (Cheng Chen)

    0000-0003-4093-2585 (Hongyan Zhou)

    0000-0002-5734-1135 (Bingqiang Liu)

    0000-0002-3264-8392 (Qin Ma)

    午夜老司机福利剧场| 亚洲国产精品成人久久小说| 亚洲综合精品二区| 丝瓜视频免费看黄片| 午夜免费男女啪啪视频观看| 高清黄色对白视频在线免费看| 成人国产麻豆网| 视频中文字幕在线观看| 亚洲av综合色区一区| 精品视频人人做人人爽| 男的添女的下面高潮视频| 日韩大片免费观看网站| 久久午夜福利片| 水蜜桃什么品种好| 麻豆精品久久久久久蜜桃| 老熟女久久久| 亚洲国产精品999| 国产综合精华液| 日日撸夜夜添| 亚洲国产精品一区三区| 好男人视频免费观看在线| 久久精品国产亚洲网站| 亚洲不卡免费看| 少妇人妻精品综合一区二区| 天天操日日干夜夜撸| 黑丝袜美女国产一区| 精品国产一区二区三区久久久樱花| 免费大片黄手机在线观看| 久久亚洲国产成人精品v| av在线老鸭窝| 99久久精品一区二区三区| a级片在线免费高清观看视频| 国产精品.久久久| 国产 一区精品| 久久影院123| 久久久久国产精品人妻一区二区| 亚洲精华国产精华液的使用体验| 一区在线观看完整版| 免费大片18禁| 精品99又大又爽又粗少妇毛片| 久久久久久久久久成人| 日本色播在线视频| 国产成人免费无遮挡视频| 中文字幕制服av| 亚洲国产日韩一区二区| 九九久久精品国产亚洲av麻豆| 卡戴珊不雅视频在线播放| 特大巨黑吊av在线直播| www.av在线官网国产| 日本午夜av视频| 校园人妻丝袜中文字幕| 精品亚洲乱码少妇综合久久| 精品熟女少妇av免费看| 夫妻午夜视频| 亚洲精品成人av观看孕妇| 赤兔流量卡办理| 久久久午夜欧美精品| a级毛片免费高清观看在线播放| 欧美精品亚洲一区二区| 日韩成人伦理影院| 国产一区二区在线观看日韩| av国产久精品久网站免费入址| 老熟女久久久| 成人毛片60女人毛片免费| 一级片'在线观看视频| 春色校园在线视频观看| 久久精品熟女亚洲av麻豆精品| 国产高清不卡午夜福利| 亚洲综合色网址| 亚洲国产最新在线播放| 久久久久精品性色| 久久久久久久大尺度免费视频| 18禁观看日本| 十八禁高潮呻吟视频| 日韩精品免费视频一区二区三区 | 又粗又硬又长又爽又黄的视频| 中文字幕最新亚洲高清| 99久久综合免费| 99热全是精品| 国产在线免费精品| 精品久久蜜臀av无| 久久人人爽人人片av| 欧美老熟妇乱子伦牲交| 99热国产这里只有精品6| 美女福利国产在线| 国产精品麻豆人妻色哟哟久久| 亚洲第一区二区三区不卡| 高清av免费在线| 黄色视频在线播放观看不卡| 高清视频免费观看一区二区| 亚洲国产av新网站| 亚洲国产色片| 国产精品不卡视频一区二区| av网站免费在线观看视频| 视频在线观看一区二区三区| 亚洲欧美一区二区三区国产| 最近的中文字幕免费完整| 久热久热在线精品观看| 在线观看人妻少妇| 亚洲无线观看免费| 你懂的网址亚洲精品在线观看| 这个男人来自地球电影免费观看 | 精品久久久噜噜| 免费黄色在线免费观看| 国产又色又爽无遮挡免| 国产极品粉嫩免费观看在线 | 伦精品一区二区三区| 国产午夜精品久久久久久一区二区三区| 欧美日韩视频高清一区二区三区二| 免费看av在线观看网站| 成人亚洲欧美一区二区av| 亚洲一级一片aⅴ在线观看| 一本大道久久a久久精品| 国产高清三级在线| 汤姆久久久久久久影院中文字幕| 国产综合精华液| 成年av动漫网址| 99精国产麻豆久久婷婷| 国产亚洲最大av| 少妇人妻精品综合一区二区| 看免费成人av毛片| 中文精品一卡2卡3卡4更新| 精品人妻熟女av久视频| 免费大片黄手机在线观看| 美女国产视频在线观看| 水蜜桃什么品种好| 国产精品99久久久久久久久| 女人精品久久久久毛片| 亚洲欧美日韩另类电影网站| 性高湖久久久久久久久免费观看| 成人国语在线视频| 日韩一区二区三区影片| 人人妻人人澡人人爽人人夜夜| 中国三级夫妇交换| 亚洲人与动物交配视频| 欧美+日韩+精品| 亚洲欧美成人综合另类久久久| 一本久久精品| 久久亚洲国产成人精品v| 99热国产这里只有精品6| 国语对白做爰xxxⅹ性视频网站| 夜夜爽夜夜爽视频| 成人黄色视频免费在线看| 亚洲精品av麻豆狂野| 日日啪夜夜爽| 亚洲精品久久久久久婷婷小说| 校园人妻丝袜中文字幕| 欧美一级a爱片免费观看看| 日韩av不卡免费在线播放| 综合色丁香网| 成人综合一区亚洲| 欧美人与性动交α欧美精品济南到 | 黄色欧美视频在线观看| 亚洲色图 男人天堂 中文字幕 | 国产精品一区www在线观看| 欧美老熟妇乱子伦牲交| 我的女老师完整版在线观看| 国产精品一二三区在线看| 岛国毛片在线播放| 男女边吃奶边做爰视频| 蜜桃久久精品国产亚洲av| 天堂中文最新版在线下载| 男女国产视频网站| 国产亚洲av片在线观看秒播厂| 亚洲av欧美aⅴ国产| 青青草视频在线视频观看| 成年av动漫网址| 满18在线观看网站| av在线播放精品| 亚洲av成人精品一区久久| 蜜臀久久99精品久久宅男| av卡一久久| 亚洲三级黄色毛片| 3wmmmm亚洲av在线观看| 国产黄色视频一区二区在线观看| 国产精品一区二区在线观看99| xxx大片免费视频| 人妻系列 视频| 久久久国产精品麻豆| 在线观看三级黄色| 亚洲精品国产av蜜桃| 午夜福利在线观看免费完整高清在| av一本久久久久| 亚洲av不卡在线观看| 天堂中文最新版在线下载| 成人18禁高潮啪啪吃奶动态图 | 欧美精品一区二区免费开放| 国产老妇伦熟女老妇高清| 久久久久久久久久成人| 啦啦啦在线观看免费高清www| 国产亚洲一区二区精品| 纵有疾风起免费观看全集完整版| 黄色怎么调成土黄色| 丁香六月天网| 欧美日韩视频精品一区| 人妻少妇偷人精品九色| 国产高清不卡午夜福利| 日本爱情动作片www.在线观看| 国产一区有黄有色的免费视频| 成人手机av| 夜夜骑夜夜射夜夜干| 亚洲无线观看免费| 国产男人的电影天堂91| 亚洲精品国产av蜜桃| 午夜福利在线观看免费完整高清在| 欧美精品国产亚洲| 成人18禁高潮啪啪吃奶动态图 | 日本wwww免费看| 日本爱情动作片www.在线观看| 国产亚洲一区二区精品| 亚洲国产精品999| 免费人妻精品一区二区三区视频| 久久久久人妻精品一区果冻| 亚洲欧美一区二区三区国产| 午夜免费男女啪啪视频观看| 国产精品偷伦视频观看了| 成人影院久久| 国产日韩欧美视频二区| 欧美老熟妇乱子伦牲交| 久久99蜜桃精品久久| 国产成人av激情在线播放 | 大香蕉久久网| 少妇丰满av| 丝袜美足系列| 亚洲不卡免费看| 99国产综合亚洲精品| 亚州av有码| 人妻人人澡人人爽人人| 飞空精品影院首页| 18禁在线无遮挡免费观看视频| 精品一区二区三区视频在线| 极品少妇高潮喷水抽搐| 国产成人freesex在线| 美女主播在线视频| 少妇猛男粗大的猛烈进出视频| 亚洲图色成人| 国产高清不卡午夜福利| 黑人高潮一二区| 日韩 亚洲 欧美在线| 国产不卡av网站在线观看| 婷婷色麻豆天堂久久| 欧美少妇被猛烈插入视频| 午夜激情福利司机影院| 国产不卡av网站在线观看| 日本与韩国留学比较| 丰满乱子伦码专区| 简卡轻食公司| h视频一区二区三区| 草草在线视频免费看| 九色亚洲精品在线播放| 久久人妻熟女aⅴ| 日日爽夜夜爽网站| 国产成人一区二区在线| 欧美国产精品一级二级三级| 精品一区二区三卡| av免费在线看不卡| 欧美成人午夜免费资源| 国产熟女午夜一区二区三区 | 欧美日韩一区二区视频在线观看视频在线| 一二三四中文在线观看免费高清| 亚洲国产精品999| 久久人人爽人人爽人人片va| 丝袜喷水一区| 精品久久久久久电影网| 999精品在线视频| 天天操日日干夜夜撸| av国产久精品久网站免费入址| 高清视频免费观看一区二区| 久久影院123| 美女中出高潮动态图| 搡女人真爽免费视频火全软件| 日本黄色片子视频| 视频在线观看一区二区三区| 黄色视频在线播放观看不卡| 人成视频在线观看免费观看| 色婷婷久久久亚洲欧美| 欧美三级亚洲精品| 婷婷色综合www| 成人免费观看视频高清| 黄色怎么调成土黄色| 亚洲人成网站在线观看播放| 九色成人免费人妻av| 精品亚洲成a人片在线观看| 69精品国产乱码久久久| 少妇 在线观看| 高清黄色对白视频在线免费看| av国产久精品久网站免费入址| 久久精品国产亚洲av涩爱| 亚洲精品国产色婷婷电影| 精品人妻一区二区三区麻豆| 少妇人妻 视频| 天堂俺去俺来也www色官网| 人妻夜夜爽99麻豆av| 精品卡一卡二卡四卡免费| 久久精品国产亚洲av涩爱| 91久久精品国产一区二区三区| 国产高清三级在线| 各种免费的搞黄视频| 久久久久久人妻| 国产精品无大码| 亚洲欧美日韩另类电影网站| 亚洲精品日韩在线中文字幕| 九色亚洲精品在线播放| 日韩一本色道免费dvd| 色婷婷久久久亚洲欧美| 男女免费视频国产| 久久国内精品自在自线图片| 国产av码专区亚洲av| 亚洲精品av麻豆狂野| 伦精品一区二区三区| 狂野欧美激情性xxxx在线观看| 国产免费又黄又爽又色| 日韩中文字幕视频在线看片| 日本欧美视频一区| 又粗又硬又长又爽又黄的视频| 在线观看人妻少妇| 中国三级夫妇交换| 亚洲国产毛片av蜜桃av| xxx大片免费视频| 在线观看人妻少妇| 日日撸夜夜添| 国产色爽女视频免费观看| 亚洲国产av影院在线观看| 欧美日韩亚洲高清精品| 国产熟女午夜一区二区三区 | 久久久久久伊人网av| 成年av动漫网址| 五月伊人婷婷丁香| 久久久精品区二区三区| 午夜日本视频在线| 久久人人爽人人片av| a级毛片在线看网站| a级毛片黄视频| 亚洲av日韩在线播放| 久久国内精品自在自线图片| 亚洲国产精品一区二区三区在线| 热99国产精品久久久久久7| 高清午夜精品一区二区三区| 夜夜骑夜夜射夜夜干| 最近中文字幕2019免费版| 国产精品久久久久久av不卡| 亚洲av二区三区四区| 最近中文字幕高清免费大全6| 欧美人与善性xxx| 亚洲情色 制服丝袜| 久久亚洲国产成人精品v| 国产视频首页在线观看| 人妻一区二区av| 久久综合国产亚洲精品| 国产成人一区二区在线| 久久青草综合色| 亚洲无线观看免费| xxxhd国产人妻xxx| 人妻制服诱惑在线中文字幕| 国产成人a∨麻豆精品| 国产精品.久久久| 国产成人免费无遮挡视频| 岛国毛片在线播放| 好男人视频免费观看在线| 看十八女毛片水多多多| 王馨瑶露胸无遮挡在线观看| 黑丝袜美女国产一区| videossex国产| 亚洲av二区三区四区| 丝袜美足系列| 国产精品久久久久久久电影| 一本一本综合久久| 国产欧美亚洲国产| 日韩三级伦理在线观看| 99九九线精品视频在线观看视频| 亚洲色图综合在线观看| 日本91视频免费播放| 日本与韩国留学比较| 人妻人人澡人人爽人人| 久久亚洲国产成人精品v| 极品人妻少妇av视频| 欧美精品亚洲一区二区| 国产高清不卡午夜福利| 国产综合精华液| 中文字幕久久专区| 欧美bdsm另类| 少妇人妻精品综合一区二区| 色网站视频免费| 日本av手机在线免费观看| 一级毛片aaaaaa免费看小| 少妇人妻 视频| 韩国高清视频一区二区三区| 精品熟女少妇av免费看| 最近中文字幕高清免费大全6| 成年女人在线观看亚洲视频| 草草在线视频免费看| 热re99久久精品国产66热6| 国产女主播在线喷水免费视频网站| 国产免费视频播放在线视频| 五月开心婷婷网| 91精品国产国语对白视频| 性高湖久久久久久久久免费观看| 一本久久精品| 成人毛片a级毛片在线播放| 狂野欧美白嫩少妇大欣赏| 日韩av在线免费看完整版不卡| 麻豆乱淫一区二区| 国产精品无大码| 久久久久久久大尺度免费视频| 成人国产麻豆网| 精品人妻一区二区三区麻豆| 啦啦啦在线观看免费高清www| 99久久精品一区二区三区| 日韩强制内射视频| 看免费成人av毛片| 精品久久久精品久久久| h视频一区二区三区| 国产欧美另类精品又又久久亚洲欧美| 青春草视频在线免费观看| a级毛片黄视频| 成人毛片a级毛片在线播放| 在线免费观看不下载黄p国产| 亚洲精品,欧美精品| 国产一级毛片在线| 亚洲怡红院男人天堂| 日日啪夜夜爽| 2018国产大陆天天弄谢| 午夜福利,免费看| 国精品久久久久久国模美| 夫妻性生交免费视频一级片| 免费观看的影片在线观看| 中文天堂在线官网| 亚洲成人一二三区av| 欧美日韩精品成人综合77777| 99久久人妻综合| 国产欧美另类精品又又久久亚洲欧美| 考比视频在线观看| 久久99热这里只频精品6学生| 国产欧美亚洲国产| 亚洲欧美清纯卡通| 美女大奶头黄色视频| a级毛色黄片| 久久精品国产自在天天线| 精品人妻一区二区三区麻豆| 亚洲欧洲日产国产| 人妻一区二区av| 91精品国产国语对白视频| 高清午夜精品一区二区三区| 狂野欧美激情性bbbbbb| 午夜av观看不卡| 国产爽快片一区二区三区| 桃花免费在线播放| 午夜视频国产福利| av国产精品久久久久影院| 大陆偷拍与自拍| 曰老女人黄片| av播播在线观看一区| 蜜桃久久精品国产亚洲av| 黑人高潮一二区| 赤兔流量卡办理| 日本爱情动作片www.在线观看| 国产男女超爽视频在线观看| 国产 精品1| 日本av免费视频播放| 久久精品国产亚洲av天美| 亚洲av福利一区| 国产午夜精品一二区理论片| videossex国产| 女人久久www免费人成看片| 春色校园在线视频观看| 最新的欧美精品一区二区| 在线亚洲精品国产二区图片欧美 | 丝瓜视频免费看黄片| 国产欧美另类精品又又久久亚洲欧美| 国产不卡av网站在线观看| 国产av国产精品国产| 夜夜看夜夜爽夜夜摸| 国产精品一区www在线观看| 欧美精品一区二区免费开放| 国产日韩欧美亚洲二区| 一级毛片电影观看| 成人免费观看视频高清| av女优亚洲男人天堂| 免费人妻精品一区二区三区视频| 国产在线一区二区三区精| 国产男人的电影天堂91| 欧美人与善性xxx| 亚洲国产最新在线播放| 亚洲精品自拍成人| 自线自在国产av| 久久久国产一区二区| 人人妻人人爽人人添夜夜欢视频| 大片免费播放器 马上看| 人成视频在线观看免费观看| 如何舔出高潮| 777米奇影视久久| 高清视频免费观看一区二区| 国语对白做爰xxxⅹ性视频网站| 日韩av不卡免费在线播放| 中文字幕亚洲精品专区| 久久人人爽人人爽人人片va| 国产在线视频一区二区| 国内精品宾馆在线| 国产午夜精品久久久久久一区二区三区| 国产在线一区二区三区精| 夫妻午夜视频| videosex国产| 欧美精品亚洲一区二区| 免费播放大片免费观看视频在线观看| 夜夜爽夜夜爽视频| 久久青草综合色| 国产成人精品久久久久久| 啦啦啦啦在线视频资源| 免费不卡的大黄色大毛片视频在线观看| 人妻 亚洲 视频| 在线观看美女被高潮喷水网站| 在线天堂最新版资源| a级毛色黄片| 久久久久久久久大av| 人妻 亚洲 视频| 91久久精品国产一区二区成人| 成人毛片60女人毛片免费| 91精品国产九色| 777米奇影视久久| 精品少妇黑人巨大在线播放| 老司机亚洲免费影院| 91aial.com中文字幕在线观看| 91成人精品电影| 精品一区在线观看国产| 久久久久久久久久人人人人人人| 国产成人aa在线观看| 少妇人妻 视频| 考比视频在线观看| 一区二区三区免费毛片| 美女大奶头黄色视频| 精品99又大又爽又粗少妇毛片| 一边亲一边摸免费视频| 精品酒店卫生间| 熟女人妻精品中文字幕| 草草在线视频免费看| 少妇被粗大的猛进出69影院 | 国产精品一区www在线观看| 精品国产乱码久久久久久小说| 成年女人在线观看亚洲视频| 午夜福利视频精品| 视频在线观看一区二区三区| 亚洲少妇的诱惑av| 国产精品一区二区在线不卡| 高清午夜精品一区二区三区| 另类精品久久| 亚洲综合色网址| 岛国毛片在线播放| 日韩 亚洲 欧美在线| 国产伦精品一区二区三区视频9| 黄色欧美视频在线观看| 黄色毛片三级朝国网站| 一级,二级,三级黄色视频| 久久精品国产a三级三级三级| 久久ye,这里只有精品| 国产av码专区亚洲av| 啦啦啦啦在线视频资源| 亚洲av福利一区| 黄色一级大片看看| 最近的中文字幕免费完整| 搡女人真爽免费视频火全软件| 久久久欧美国产精品| 成人无遮挡网站| 欧美亚洲 丝袜 人妻 在线| 丝袜喷水一区| 啦啦啦中文免费视频观看日本| 人妻夜夜爽99麻豆av| 18禁观看日本| 日韩强制内射视频| 狠狠婷婷综合久久久久久88av| 欧美3d第一页| 大片电影免费在线观看免费| 国产精品.久久久| 99热全是精品| 日韩中文字幕视频在线看片| 九草在线视频观看| 少妇 在线观看| 一级毛片 在线播放| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 人人妻人人澡人人看| 蜜桃在线观看..| 亚洲精品国产av成人精品| 亚洲精品日韩av片在线观看| 99久久精品一区二区三区| 午夜91福利影院| 亚洲美女黄色视频免费看| 国产色婷婷99| 丝袜美足系列| 黄片无遮挡物在线观看| 久久精品熟女亚洲av麻豆精品| 18禁在线无遮挡免费观看视频| 91国产中文字幕| 大又大粗又爽又黄少妇毛片口| 少妇猛男粗大的猛烈进出视频| 亚洲精品久久久久久婷婷小说| 国产日韩欧美在线精品| 日日爽夜夜爽网站| 18在线观看网站| 天天影视国产精品| 久久 成人 亚洲| 国产极品天堂在线| 日韩视频在线欧美| 亚洲婷婷狠狠爱综合网| 国产一区二区三区av在线| 午夜免费观看性视频| 一区二区三区乱码不卡18| 欧美日韩视频精品一区| 精品人妻在线不人妻| 美女cb高潮喷水在线观看| 观看av在线不卡| 亚洲精华国产精华液的使用体验| 在现免费观看毛片| 国产一区二区在线观看av| 久久久久久久久久成人| 日韩 亚洲 欧美在线| 久久久久视频综合|