• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Dynamic function allocation of agricultural robot vehicle controlled by man-machine cooperation*

    2020-10-20 06:57:00TingtingMaoShuxianDongJinlinXue

    Tingting Mao, Shuxian Dong, Jinlin Xue

    (College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China)

    Abstract: It is necessary to distribute functions reasonably between a human operator and an automation system in a teleoperated agricultural robotic tractor to accomplish a task cooperatively. This paper proposes a strategy of dynamic function allocation on the basis of a BP neural network, genetic algorithm and adaptive genetic algorithm. Here, the operator’s state, workload, and task demand are chosen as trigger mechanism of dynamic function allocation. Then, a traditional BP neural network, genetic algorithm based BP neural network, and adaptive genetic algorithm based BP neural network are established by taking the operator’s state, workload, and task demand as inputs of the network and automation level as output. The three network are compared to obtain more effective dynamic function allocation. Simulation tests show that the adaptive genetic algorithm based BP neural network has minimum training time and has highest prediction accuracy.

    Keywords: teleoperation; agricultural robot; function allocation; man-machine cooperation; genetic algorithm; adaptive genetic algorithm; BP neural network

    0 Introduction

    At present, teleoperation technology is mostly used in aerospace, deep sea exploration, and medicine industry and other related fields with robot operation, replacing human to complete tasks under dangerous and harsh environments[1-5]. The combination of robot system and network teleoperation technology, that is, the fusion of human intelligence and the intelligence of robot system refers to the situation when human intelligence is used to compensated the lack of autonomy of robot system, thus to improve practicability of the robot system in complex environments[8].

    The combination of teleoperation technology and agricultural robot vehicle is the integration of human intelligence and machine intelligence through “human-in-the-loop” to bring about man-machine cooperation control, which means that operators need to understand and cooperate with automation system to complete the work task together. It can not only fully involve the operator but also greatly improve the work efficiency and intelligent level of the automation system[6-7]. The relationship between human and machine is cooperative in teleoperated agricultural robot vehicles. Therefore, the functions should be assigned between human and machine depending on the situation.

    In 1951, Fitts put forward the concept of function allocation for the first time, which refers to the process of reasonably assigning functions/tasks in the system to human and machines. Function allocation is known as “one of the most important issues in the design process of man-machine intelligent system”[9]. The traditional method of function allocation is static allocation, that is, in the system design stage, the function/task is reasonably assigned to human or machine by comparing the advantages of abilities of human and machine, and does not change in the process of system operation. But in the whole process, the function state of the operator cannot be unchangeable. What’s more, if more tasks are assigned to the operator, the workload may exceed his/her capacity, resulting in the decrease of work efficiency, misoperation, and even accidents. On the other hand, if the machine always maintains high control authority and the operator is in the position of supervision for a long time, it will lead to the lack of human situation awareness and the absence of “human-in-the-loop”[10]. Therefore, it is necessary to allocate functions dynamically, that is, to allocate functions again according to the real-time environment, so that operator’s awareness of the situation can be maintained at a high level, and thus complex tasks can be completed efficiently[11]. In this way, we can not only give full play to the advantages of human judgment and decision-making but also ensure that the automation system has the ability of independent decision-making.

    Scholars over the world have explored the function allocation methods of man-machine system in their respective research fields. Fits put forward a man-machine capability comparison method, which is widely used in the field of industrial automation[9]. Dearden et al. developed a scenario-based allocation method for naval ship system, which was later successfully applied to the functional allocation design of single-seat airplane[12]. Zhou’s team expounded the characteristics of man machine system, summarized the principles and methods of human machine function allocation in manned spaceflight system, and constructed a multi-objective fuzzy decision allocation model[13-14]. From the perspective of the overall effectiveness of the system, Zhang et al. explored the dynamic allocation of man-machine functions in UAV combat supervision and control system, and proposed the principles and methods of man-machine function allocation[15]. Based on the idea that a single operator controls multiple UAVs, Wang et al. designed a function allocation method according to the operator’s workload. The simulation results show that dynamic function allocation can improve the performance of the system[16]. Zhang et al. completed the allocation of fault detection function of civil aviation cockpit using uncertainty language multi-attribute decision-making, determined the automation level range using uncertainty extended weighted average operator, and combined it with uncertainty language mixed aggregation operator and finally determined the automation level[17]. Yang established a dynamic model that can predict the operator’s functional state and changed the current operator’s level of processing tasks according to the operator’s functional state and the level of processing tasks at the last moment[18]. In general, there are many researches and applications on function allocation in the fields of industrial automation, but there are few researches on the dynamic function allocation of man-machine system of remotely operated agricultural tractor.

    1 Function allocation and levels of automation

    1.1 Trigger mechanism of dynamic function allocation

    According to the different control subjects, the trigger mechanism of dynamic function allocation can be divided into two types: human trigger and system trigger. Human trigger refers to the operator’s subjective decision on whether to switch and change the control authority according to his own workload and current task state. System trigger mainly has the following trigger mechanisms[19]: (1) emergency—the existing function allocation mode will be changed according to the emergency degree and number of events at any time; (2) operator’s working ability—the control authority is determined according to the change of human’s working ability at a certain time or period of time; (3) operator’s physiological state—the functions are allocated by monitoring the change of operator’s physiological index; (4) operator model—the function allocation is triggered by estimating and predicting the operator’s state. In the above trigger mechanisms, human trigger mechanism will increase the load of human. the trigger mechanism based on emergency needs to list all kinds of emergency situations and determine the degree of each situation in detail, which is too difficult for dynamic complex situations, and it is also difficult to build a reliable model with human awareness by the operator model based trigger mechanism. Therefore, in this paper, the state of the operator, the workload of the operator and the task demand are used as trigger mechanism to guide the function allocation.

    On one hand, we should pay attention to the role of operators, make full use of human experience and knowledge, and reduce the complexity of automation level during dynamic function allocation. On the other hand, we should comprehensively consider the limitations of operators so that the workload and difficulty of allocation are within the scope of their ability. Function allocation is a typical multi-attribute decision-making problem, so experts can’t measure the relevant factors accurately and using only language value to evaluate them. Operator state are estimated according to the change of the physiological data of the operator. The experts evaluate the operator’s state parameters in three levels: poor, general, and good (represented by numbers 1, 2, and 3 respectively). Similarly, the task demand is evaluated and discussed by multiple experts according to actual experiences, corresponding to the three concepts of low, general and high (represented by numbers 1, 2, and 3 respectively). The operator’s workload refers to the number of tasks processed by the operator at a certain time (represented by numbers 1, 2, and 3 respectively).

    1.2 Levels of automation and its authority

    The determination of automation level is an important step in the allocation of human-machine functions. Shridan and Verplank divided the tasks/functions in the human-computer interaction system into 10 levels of automation (LOA)[20]. According to actual needs, this paper is divided into five level of automation, corresponding to different control permissions as shown in Table 1 and Table 2.

    Tab. 1 Levels of Automation

    Tab. 2 Control authority corresponding to levels of automation

    Here, we obtained the corresponding relationship of levels of automation and three trigger factors (operator state, workload, and task demand) according to the expert knowledge as shown in Table 3.

    Tab. 3 Corresponding relationship of LOA and trigger factors

    2 Neural network models

    Since BP neural network has good nonlinear mapping ability and generalization ability, it can be used to realize the human-machine function assignment of teleoperation agricultural robot system. However, there are some limitations such as slow convergence speed, poor network performance and ease to fall into local minimum. Therefore, this paper uses genetic algorithm and adaptive genetic algorithm to optimize the BP neural network.

    2.1 BP neural network model

    BP neural network is a kind of multi-layer feedback neural network adopting error back propagation learning algorithm[21]. It is one of the most widely used neural network models in artificial neural network (ANN). It has excellent nonlinear mapping ability, self-adaptive and self-learning characteristics. The topological structure of BP neural network model is divided into three parts: input layer, hidden layer and output layer. The external information is transmitted to the hidden layer through the input layer, and the learning rule uses the gradient descent method. Through back propagation, the weights and thresholds of each layer are adjusted gradually until the sum of squares of network errors is the minimum.

    Suppose the output layer hasnneurons with the actual output value ofyand the expected output value ofy′, the total error function E, namely the optimal objective function, is as follows

    (1)

    And, the modified value of each weight is,

    (2)

    whereωi jis the weight from the input layer node to the hidden layer node,ηis the learning rate, andfjis the activation function of the hidden layer. Tansing type activation functionis used from input layer to hidden layer, and Purelin type activation functionis usedfrom hidden layer to output layer.

    The main control factors of dynamic function allocation are operator state, operator workload, and task demand. The three factors above are set as input parameters of neural network model. According to relevant research, when the input node of BP neural network ismand the number of hidden layer nodes is set to 2m+1, the predicted value of BP network model is closer to the actual result[22]. Therefore, the number of hidden layer nodes is 7. The BP network model designed in this paper adopts a three-layer network, and the BP structure is 3-7-1, as shown in Figure 1.

    Fig. 1 Topological graph of BP neural networks model

    2.2 Genetic algorithm based BP neural network model

    Genetic algorithm has the ability of global search, which is used to make up for the deficiency of BP neural network in randomly selecting connection weights and thresholds. The flow chart of genetic BP neural network is shown in Figure 2.

    The specific steps are as follows:

    1) First code and generate the initial population.

    2) Set the fitness function value to determine the probability of individual selection.

    Fig. 2 Flow chart of GABP neural networks

    3) Set the operators to determine the probability of individual being selected.

    4) Cross to obtain cross set ofNchromosomes, the new generation of individuals will carry the information of the previous generation.

    5) Set the mutation probability to make some genes in the chromosome mutate to form a new population, thus to improve individual adaptability.

    6) Calculate the fitness function value and judge whether the termination conditions are met. Otherwise, return to step 2).

    2.3 Adaptive genetic algorithm based BP neural network model

    Adaptive genetic algorithm has strong global optimization characteristics, and BP neural network is good at local search, therefore the combination of the two makes the network structure performance reach the optimal[23]. The improved algorithm flowchart is shown in Figure 3.

    Fig. 3 Flow chart of BP neural network model based on adaptive genetic optimization

    According to the flow chart, adaptive genetic algorithm BP neural network is mainly divided into three steps: initialization of network topology, search of optimal weight, and output of prediction results. Adaptive genetic algorithm is mainly used to adjust the crossover probability and mutation probability until the network weight is optimal to improve the prediction accuracy of BP neural network, enhance learning efficiency, and reduce training time.

    The model parameters are listed in Table 4.

    Tab. 4 Simulation parameters

    3 Results and analysis

    In this section, 50 sets of training data and 10 sets of test data are obtained by linear interpolation. The same data is used for LOA prediction of BP neural network based on genetic algorithm and BP neural network based on adaptive genetic algorithm, and the number of iterations and prediction accuracy are compared and analyzed[24-32].

    3.1 Comparison and analysis of convergence rate

    By training the same set of data, it can be seen from Figure 4 and Figure 5 that, under the same accuracy requirement the traditional genetic algorithm needs 50 iterations and the adaptive genetic algorithm needs 23 iterations. In terms of the number of iterations, the prediction model of BP neural network based on adaptive genetic algorithm is obviously better than that based on traditional genetic algorithm.

    Fig. 4 Convergence curve of BP neural network based on genetic algorithm

    3.2 Comparison and analysis of prediction model accuracy

    The prediction results of BP neural network, genetic algorithm optimization and adaptive genetic optimization are compared with the expected values one by one.

    Fig. 5 Convergence curve of BP neural network based on adaptive genetic algorithm

    Fig. 6 Test results of BP neural network

    Fig. 7 Test results of GABP neural network

    Fig. 8 Test results of AGABP neural network

    It can be seen from the above results that the prediction accuracy of BP neural network and genetic BP neural network are 40% and 45% respectively, which is quite different from the expected value. The BP neural network automatic grade prediction model based on the adaptive genetic algorithm not only has a faster convergence speed, but also has a better accuracy of 95%.

    4 Conclusion

    In order to solve the problem of dynamic allocation of functions in the remote operating agricultural tractor system, an adaptive genetic algorithm BP neural network is proposed in this paper. The dynamic function allocation takes into account the operator’s state, operator’s workload and task requirements. Genetic algorithm is used to optimize BP neural network. Although the prediction accuracy is only enhanced to some extent, the genetic algorithm easily falls into the local optimal solution. Therefore, this paper proposes a BP neural network automation grade model as a solution based on adaptive genetic algorithm. This model not only has a faster convergence speed but also has a higher prediction accuracy compared to BP neural network model and genetic algorithm optimization BP neural network model according to the results of the simulation.

    午夜日韩欧美国产| 日本精品一区二区三区蜜桃| 在线十欧美十亚洲十日本专区| 久久国产精品人妻蜜桃| 最新在线观看一区二区三区| 久久香蕉激情| 久久久久久久久久久久大奶| 叶爱在线成人免费视频播放| 亚洲av美国av| 在线视频色国产色| 欧美亚洲日本最大视频资源| 国产精品免费视频内射| 一边摸一边抽搐一进一出视频| 久久 成人 亚洲| 国产精品久久电影中文字幕 | 国产亚洲精品久久久久5区| 国产午夜精品久久久久久| 另类亚洲欧美激情| 亚洲第一av免费看| 在线观看一区二区三区激情| 韩国精品一区二区三区| 亚洲熟女毛片儿| 日韩中文字幕欧美一区二区| 亚洲五月色婷婷综合| 亚洲av片天天在线观看| 一区二区三区国产精品乱码| av国产精品久久久久影院| 国产日韩一区二区三区精品不卡| svipshipincom国产片| 久久久国产成人精品二区 | 久久99一区二区三区| 久久香蕉国产精品| 免费在线观看完整版高清| 欧美激情 高清一区二区三区| 国产蜜桃级精品一区二区三区 | 精品久久久久久电影网| 日本撒尿小便嘘嘘汇集6| x7x7x7水蜜桃| 精品久久久久久电影网| 精品熟女少妇八av免费久了| 欧美乱妇无乱码| 天天操日日干夜夜撸| 国产成人精品在线电影| 99在线人妻在线中文字幕 | 亚洲精品久久午夜乱码| 十分钟在线观看高清视频www| 国产av又大| 视频在线观看一区二区三区| 丝袜人妻中文字幕| 国产精品成人在线| 国产欧美日韩一区二区精品| 亚洲熟女精品中文字幕| 1024视频免费在线观看| 亚洲av第一区精品v没综合| 亚洲av电影在线进入| 亚洲性夜色夜夜综合| 90打野战视频偷拍视频| 成年人免费黄色播放视频| 欧美激情 高清一区二区三区| 人妻 亚洲 视频| 悠悠久久av| 飞空精品影院首页| 美女视频免费永久观看网站| 曰老女人黄片| 两性午夜刺激爽爽歪歪视频在线观看 | 99久久精品国产亚洲精品| 嫁个100分男人电影在线观看| 欧美在线一区亚洲| 久久精品国产亚洲av高清一级| 少妇裸体淫交视频免费看高清 | 91成年电影在线观看| 亚洲 国产 在线| 久久国产精品影院| 在线观看66精品国产| 一级a爱视频在线免费观看| av电影中文网址| 欧美乱码精品一区二区三区| 午夜日韩欧美国产| 在线国产一区二区在线| 真人做人爱边吃奶动态| 精品国内亚洲2022精品成人 | 精品少妇一区二区三区视频日本电影| 久热爱精品视频在线9| 麻豆成人av在线观看| 国产亚洲av高清不卡| 成人特级黄色片久久久久久久| 建设人人有责人人尽责人人享有的| 国产精品一区二区精品视频观看| 女同久久另类99精品国产91| 12—13女人毛片做爰片一| 亚洲专区中文字幕在线| 日韩欧美国产一区二区入口| 人人妻,人人澡人人爽秒播| 精品人妻1区二区| videos熟女内射| 一级a爱片免费观看的视频| 国产免费av片在线观看野外av| 亚洲av美国av| 久久久水蜜桃国产精品网| av有码第一页| 久久精品国产亚洲av高清一级| 99国产精品一区二区蜜桃av | 亚洲av片天天在线观看| 天天躁日日躁夜夜躁夜夜| 国产精品久久久久成人av| 欧美 亚洲 国产 日韩一| 欧美乱色亚洲激情| 手机成人av网站| 成年人午夜在线观看视频| 国产精品一区二区精品视频观看| 亚洲精品成人av观看孕妇| 女人被躁到高潮嗷嗷叫费观| 亚洲全国av大片| 国产日韩欧美亚洲二区| 国产又色又爽无遮挡免费看| 日本精品一区二区三区蜜桃| 黑丝袜美女国产一区| 视频区欧美日本亚洲| 国产亚洲精品久久久久5区| cao死你这个sao货| 成人手机av| 精品无人区乱码1区二区| 亚洲精品乱久久久久久| 老司机福利观看| 久久国产精品人妻蜜桃| 精品国内亚洲2022精品成人 | 在线观看www视频免费| 精品电影一区二区在线| 亚洲全国av大片| 啦啦啦免费观看视频1| 亚洲美女黄片视频| 丁香欧美五月| 久久天堂一区二区三区四区| 欧美日韩乱码在线| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 中国美女看黄片| 日本vs欧美在线观看视频| 少妇的丰满在线观看| 亚洲精品国产色婷婷电影| av天堂久久9| 欧美日韩亚洲国产一区二区在线观看 | 亚洲国产精品一区二区三区在线| 欧美激情高清一区二区三区| 久久久久国内视频| 亚洲熟女精品中文字幕| 亚洲免费av在线视频| 成人18禁在线播放| 亚洲色图综合在线观看| 欧美乱码精品一区二区三区| 国产精品一区二区精品视频观看| 三上悠亚av全集在线观看| tube8黄色片| 国产精品免费一区二区三区在线 | 色精品久久人妻99蜜桃| 亚洲人成电影观看| 人人妻人人澡人人看| 国产亚洲欧美精品永久| 久久人妻av系列| 一本大道久久a久久精品| 9热在线视频观看99| 久久久久久久国产电影| 人人妻,人人澡人人爽秒播| 国产精品久久久av美女十八| 黄片小视频在线播放| 日韩视频一区二区在线观看| 天堂中文最新版在线下载| 69精品国产乱码久久久| 亚洲avbb在线观看| 两个人看的免费小视频| 午夜福利影视在线免费观看| 一区二区三区激情视频| 黄色 视频免费看| 国产亚洲精品第一综合不卡| 欧美激情 高清一区二区三区| 一个人免费在线观看的高清视频| 男女免费视频国产| 高清毛片免费观看视频网站 | 亚洲片人在线观看| 人妻一区二区av| 狠狠婷婷综合久久久久久88av| 欧美在线一区亚洲| 男人操女人黄网站| 久久久久久亚洲精品国产蜜桃av| 国产片内射在线| 91在线观看av| 精品国产亚洲在线| 日韩欧美国产一区二区入口| 成年动漫av网址| 国产午夜精品久久久久久| 国产精品久久视频播放| 麻豆国产av国片精品| 自拍欧美九色日韩亚洲蝌蚪91| 最近最新中文字幕大全电影3 | 99久久综合精品五月天人人| 精品久久久久久久久久免费视频 | 18禁黄网站禁片午夜丰满| 日本撒尿小便嘘嘘汇集6| 国产aⅴ精品一区二区三区波| 成人精品一区二区免费| 中文亚洲av片在线观看爽 | 国产欧美日韩综合在线一区二区| 午夜成年电影在线免费观看| 一区二区三区国产精品乱码| 欧美日韩av久久| 老熟女久久久| 国产欧美日韩一区二区三| 免费高清在线观看日韩| 国产成人影院久久av| 成熟少妇高潮喷水视频| 日韩免费高清中文字幕av| 国产精品久久久久久精品古装| 国产又色又爽无遮挡免费看| 黄色视频不卡| 这个男人来自地球电影免费观看| 国产成人欧美在线观看 | 丰满的人妻完整版| 国产一区二区三区在线臀色熟女 | 嫁个100分男人电影在线观看| 亚洲成a人片在线一区二区| 精品国产乱子伦一区二区三区| 亚洲午夜精品一区,二区,三区| 女人高潮潮喷娇喘18禁视频| 国产欧美日韩一区二区三| 天天操日日干夜夜撸| 色婷婷av一区二区三区视频| 9色porny在线观看| 下体分泌物呈黄色| 天天躁狠狠躁夜夜躁狠狠躁| 岛国毛片在线播放| 久久精品成人免费网站| 欧美日韩亚洲国产一区二区在线观看 | √禁漫天堂资源中文www| 国产精品乱码一区二三区的特点 | 一边摸一边抽搐一进一小说 | 久久香蕉精品热| 巨乳人妻的诱惑在线观看| 日韩视频一区二区在线观看| 精品熟女少妇八av免费久了| 国产精品一区二区在线不卡| 成年人午夜在线观看视频| 男女午夜视频在线观看| 中文字幕人妻丝袜一区二区| 中国美女看黄片| 黄色丝袜av网址大全| 9热在线视频观看99| 午夜福利视频在线观看免费| 亚洲精品国产精品久久久不卡| 亚洲精品自拍成人| 国产男女内射视频| 国产精品久久久久成人av| 天天躁夜夜躁狠狠躁躁| 深夜精品福利| 最新的欧美精品一区二区| 成熟少妇高潮喷水视频| 又黄又粗又硬又大视频| 日韩欧美国产一区二区入口| 成人亚洲精品一区在线观看| 日本一区二区免费在线视频| 精品国内亚洲2022精品成人 | 久久精品国产清高在天天线| 久久亚洲真实| 夜夜夜夜夜久久久久| 99热网站在线观看| 老汉色av国产亚洲站长工具| 久久九九热精品免费| 桃红色精品国产亚洲av| 手机成人av网站| 老司机在亚洲福利影院| 国产精品久久久av美女十八| 丝袜美腿诱惑在线| 久久这里只有精品19| av超薄肉色丝袜交足视频| 欧美一级毛片孕妇| 岛国在线观看网站| 午夜福利视频在线观看免费| 俄罗斯特黄特色一大片| 日本vs欧美在线观看视频| 在线观看舔阴道视频| 女人高潮潮喷娇喘18禁视频| 免费高清在线观看日韩| 少妇的丰满在线观看| 久久精品亚洲精品国产色婷小说| ponron亚洲| 欧美激情极品国产一区二区三区| 女警被强在线播放| 精品卡一卡二卡四卡免费| 极品少妇高潮喷水抽搐| 成人亚洲精品一区在线观看| 视频区图区小说| 黄色毛片三级朝国网站| 一进一出抽搐gif免费好疼 | 精品国产一区二区三区四区第35| 高清黄色对白视频在线免费看| 狂野欧美激情性xxxx| 亚洲国产精品合色在线| 精品一区二区三卡| 亚洲av熟女| 国产男女内射视频| 久热爱精品视频在线9| 一区二区日韩欧美中文字幕| 久久久久国内视频| 久久影院123| 丰满饥渴人妻一区二区三| 99热只有精品国产| 午夜精品在线福利| 日日爽夜夜爽网站| 极品少妇高潮喷水抽搐| 一个人免费在线观看的高清视频| 国产成人av教育| 精品久久久精品久久久| 午夜福利视频在线观看免费| 露出奶头的视频| 成人国语在线视频| 91在线观看av| 亚洲国产毛片av蜜桃av| 久久99一区二区三区| 国产精品久久电影中文字幕 | av天堂在线播放| 一个人免费在线观看的高清视频| 亚洲人成伊人成综合网2020| 久久精品国产综合久久久| 国产又爽黄色视频| av网站免费在线观看视频| av一本久久久久| 黄网站色视频无遮挡免费观看| 欧美黄色片欧美黄色片| 黄色片一级片一级黄色片| 黑人操中国人逼视频| 啦啦啦免费观看视频1| 久久天躁狠狠躁夜夜2o2o| 国产aⅴ精品一区二区三区波| 变态另类成人亚洲欧美熟女 | 黄片播放在线免费| 亚洲精品中文字幕在线视频| 啦啦啦 在线观看视频| bbb黄色大片| av不卡在线播放| 一a级毛片在线观看| 一边摸一边抽搐一进一小说 | 亚洲成人国产一区在线观看| 男人操女人黄网站| 在线观看舔阴道视频| av在线播放免费不卡| 中国美女看黄片| 啦啦啦在线免费观看视频4| 日韩欧美国产一区二区入口| 黄频高清免费视频| 国产人伦9x9x在线观看| 精品电影一区二区在线| 精品久久久久久久毛片微露脸| 免费在线观看亚洲国产| 757午夜福利合集在线观看| 午夜免费观看网址| 欧美精品一区二区免费开放| 久久香蕉激情| 免费观看精品视频网站| 亚洲专区中文字幕在线| 亚洲国产精品一区二区三区在线| 色尼玛亚洲综合影院| 老司机靠b影院| 国产一区二区三区在线臀色熟女 | 99久久综合精品五月天人人| 亚洲精品成人av观看孕妇| 亚洲男人天堂网一区| 国产97色在线日韩免费| 在线观看免费视频日本深夜| 五月开心婷婷网| 欧美日韩亚洲国产一区二区在线观看 | 窝窝影院91人妻| 色在线成人网| 久久精品成人免费网站| 一区二区三区国产精品乱码| 午夜福利欧美成人| 后天国语完整版免费观看| 一本大道久久a久久精品| 1024香蕉在线观看| 黄片大片在线免费观看| 精品国产国语对白av| 国产淫语在线视频| 午夜精品在线福利| 香蕉久久夜色| 久久精品国产亚洲av香蕉五月 | 国产精品1区2区在线观看. | 中文欧美无线码| 女人爽到高潮嗷嗷叫在线视频| 国产不卡一卡二| 久9热在线精品视频| 国产精品久久久久成人av| 午夜福利乱码中文字幕| 国产精华一区二区三区| 午夜91福利影院| 亚洲国产看品久久| 免费看十八禁软件| 黑人操中国人逼视频| 99re在线观看精品视频| 黄片大片在线免费观看| 少妇猛男粗大的猛烈进出视频| 国产不卡一卡二| 午夜精品久久久久久毛片777| 久久久久国产一级毛片高清牌| 日韩免费高清中文字幕av| 一进一出好大好爽视频| 精品无人区乱码1区二区| 国产精品免费视频内射| 99re6热这里在线精品视频| 久久久久久亚洲精品国产蜜桃av| 日韩中文字幕欧美一区二区| videosex国产| 少妇的丰满在线观看| 午夜两性在线视频| 天天添夜夜摸| 国产高清videossex| 亚洲伊人色综图| 中国美女看黄片| 成人精品一区二区免费| 一a级毛片在线观看| 99香蕉大伊视频| 欧美激情久久久久久爽电影 | 精品一区二区三区av网在线观看| 亚洲少妇的诱惑av| 中亚洲国语对白在线视频| 久久国产亚洲av麻豆专区| 免费黄频网站在线观看国产| 高清毛片免费观看视频网站 | av网站在线播放免费| 每晚都被弄得嗷嗷叫到高潮| 欧美日韩乱码在线| 亚洲欧美日韩高清在线视频| 精品人妻1区二区| 十八禁人妻一区二区| 女人爽到高潮嗷嗷叫在线视频| 久久精品国产清高在天天线| 夜夜夜夜夜久久久久| 婷婷成人精品国产| 在线看a的网站| 中文字幕av电影在线播放| 啦啦啦免费观看视频1| 操出白浆在线播放| 侵犯人妻中文字幕一二三四区| 黄色视频,在线免费观看| 黑人欧美特级aaaaaa片| 涩涩av久久男人的天堂| 欧美精品一区二区免费开放| 国产精品乱码一区二三区的特点 | 一级毛片精品| 久久精品国产亚洲av香蕉五月 | 亚洲成人国产一区在线观看| 老司机影院毛片| 久久人人爽av亚洲精品天堂| 日韩 欧美 亚洲 中文字幕| 在线av久久热| 午夜福利视频在线观看免费| aaaaa片日本免费| 乱人伦中国视频| 亚洲人成电影免费在线| 999久久久精品免费观看国产| а√天堂www在线а√下载 | 色在线成人网| 国产熟女午夜一区二区三区| 亚洲午夜精品一区,二区,三区| 日韩熟女老妇一区二区性免费视频| 久久午夜综合久久蜜桃| 久久国产精品男人的天堂亚洲| 国产国语露脸激情在线看| 一区二区三区激情视频| 男女下面插进去视频免费观看| 亚洲av片天天在线观看| 欧美黑人欧美精品刺激| www.精华液| 免费看a级黄色片| 波多野结衣一区麻豆| 精品少妇一区二区三区视频日本电影| 一夜夜www| 99久久99久久久精品蜜桃| 美女高潮喷水抽搐中文字幕| 首页视频小说图片口味搜索| 嫩草影视91久久| 中文字幕人妻熟女乱码| 一二三四在线观看免费中文在| 香蕉丝袜av| 成人精品一区二区免费| 99精品欧美一区二区三区四区| 成人18禁在线播放| 国产又爽黄色视频| 国产亚洲欧美98| 好男人电影高清在线观看| 后天国语完整版免费观看| 精品少妇一区二区三区视频日本电影| 在线看a的网站| 午夜福利影视在线免费观看| 国产午夜精品久久久久久| 欧美大码av| 在线观看免费视频网站a站| 欧美丝袜亚洲另类 | 精品少妇久久久久久888优播| 国产主播在线观看一区二区| 亚洲精品乱久久久久久| 国产精品影院久久| 欧美日韩福利视频一区二区| 日韩中文字幕欧美一区二区| 老鸭窝网址在线观看| 黑人操中国人逼视频| 国产精品九九99| 久久影院123| 久热这里只有精品99| 老司机福利观看| 在线视频色国产色| 99久久国产精品久久久| 悠悠久久av| 欧美色视频一区免费| 建设人人有责人人尽责人人享有的| 亚洲一区二区三区欧美精品| 亚洲国产精品合色在线| 亚洲七黄色美女视频| 成人永久免费在线观看视频| 欧美日韩中文字幕国产精品一区二区三区 | 多毛熟女@视频| 国产蜜桃级精品一区二区三区 | 国产一区在线观看成人免费| 亚洲欧美激情综合另类| 中文字幕制服av| 别揉我奶头~嗯~啊~动态视频| 悠悠久久av| 一区在线观看完整版| 国产无遮挡羞羞视频在线观看| 亚洲人成电影观看| 水蜜桃什么品种好| 久久久久久久久久久久大奶| 女性被躁到高潮视频| 91老司机精品| 一区福利在线观看| 成年女人毛片免费观看观看9 | 90打野战视频偷拍视频| 日日爽夜夜爽网站| 中文字幕人妻丝袜一区二区| 久久久久久久久免费视频了| 久久中文看片网| 高清在线国产一区| 久久亚洲精品不卡| 国产成人啪精品午夜网站| 一区福利在线观看| 亚洲国产中文字幕在线视频| 精品乱码久久久久久99久播| 亚洲 欧美一区二区三区| 天堂动漫精品| xxxhd国产人妻xxx| 日韩三级视频一区二区三区| 久久 成人 亚洲| 国产午夜精品久久久久久| 我的亚洲天堂| 精品人妻熟女毛片av久久网站| 午夜免费鲁丝| 精品人妻熟女毛片av久久网站| 人人妻人人添人人爽欧美一区卜| 男女床上黄色一级片免费看| 久久人人爽av亚洲精品天堂| 国产精品二区激情视频| 黑人欧美特级aaaaaa片| 一本一本久久a久久精品综合妖精| 最近最新中文字幕大全电影3 | 99国产极品粉嫩在线观看| 很黄的视频免费| 国产在线观看jvid| 婷婷丁香在线五月| 一区福利在线观看| 成人18禁在线播放| 国产av一区二区精品久久| 成人影院久久| 深夜精品福利| 国产精品电影一区二区三区 | 91老司机精品| 十八禁网站免费在线| 丰满迷人的少妇在线观看| 日韩欧美三级三区| 精品少妇久久久久久888优播| 亚洲熟妇熟女久久| 中文字幕av电影在线播放| 国产一区二区三区在线臀色熟女 | 下体分泌物呈黄色| 18禁裸乳无遮挡免费网站照片 | 不卡av一区二区三区| 夜夜爽天天搞| 国产亚洲av高清不卡| 制服诱惑二区| 男人舔女人的私密视频| 99久久国产精品久久久| 国产亚洲精品第一综合不卡| 精品久久蜜臀av无| 午夜福利乱码中文字幕| 黑人猛操日本美女一级片| 另类亚洲欧美激情| 久久人人爽av亚洲精品天堂| 19禁男女啪啪无遮挡网站| 在线观看免费高清a一片| 国内毛片毛片毛片毛片毛片| 色老头精品视频在线观看| 日韩大码丰满熟妇| 欧美 日韩 精品 国产| 国产麻豆69| 欧美精品高潮呻吟av久久| 亚洲avbb在线观看| 亚洲片人在线观看| 国产精品一区二区在线不卡| 国产欧美亚洲国产| 咕卡用的链子| 亚洲精品中文字幕一二三四区| 手机成人av网站| 一区二区三区精品91| 三上悠亚av全集在线观看| e午夜精品久久久久久久| 欧美在线黄色| 91大片在线观看| 国产欧美亚洲国产| av电影中文网址|