• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    ARIMA models forecasting the SARS-COV-2 in the Islamic Republic of Iran

    2020-10-19 03:17:48NayerehEsmaeilzadehMohammadtaghiShakeriMostafaEsmaeilzadehVahidRahmanian

    Nayereh Esmaeilzadeh, Mohammadtaghi Shakeri, Mostafa Esmaeilzadeh, Vahid Rahmanian

    1Department of Epidemiology, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran

    2Department of Biostatistics, School of Health, Mashhad University of Medical Sciences, Mashhad, Iran

    3Department of Mechanical Engineering, Mashhad Branch, Azad University, Mashhad, Iran

    4Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran

    Currently, the COVID-19 epidemic has spread to more than 210 countries, with 3 272 202 confirmed cases and 230 104 deaths globally as of 3rd May 2020. Iran is found as the hotspot region of COVID-19 in the Eastern Mediterranean with more than 93 thousands confirmed cases and 5 957 deaths until 30th April[1]. Suppression strategies especially case isolation, elective home quarantine, and other mitigation approaches such as the closure of educational centers and transmission control by the lockdown of social activities are applied to reduce the basic reproduction number to less than 1[2]. The strategies have achieved varying degrees of success in different countries[3]. The autoregressive integrated moving average (ARIMA) models were developed to determine the temporal patterns and short-term prediction[4].

    This approach is useful for forecasting and evaluation of confronting measures and a number of studies have confirmed it[5-7]. The results of this study can help to make an informative decision by the government and set proper policy to adopt interventions for this infectious disease.

    The daily new laboratory-confirmed, recovered and death due to COVID-19 cases between 20th February 2020 and 30th April 2020 extracted from World Health Organization website[1].

    Firstly, we developed the ARIMA model for each series. This model includes single regression, multiple regression, and the moving averages. It can remove the confounding effect of time. Therefore, the time series model ARIMA (p, d, q) consists of several components. The order of p, d, and q is explained as the autoregressive part of the model, the integrated part of the model, and the moving average parameter[8].

    This linear combination is formulated as:

    Where y is a dependent variable (daily cases of COVID19), λpis an autoregressive operator coefficient γqis the moving average operator coefficient, yt-pis the value of the cases of COVID-19 in an earlier time, εt-qis the value of the cases of COVID-19 deviation in q time, and etis a random error term with the white-nose distribution. The assumption of this model is based on the stationary data, so we performed the Bartlett and the unit-root tests for determination stationery for variance and mean value of data and then transformed them if needed. For estimation of the number of autoregressive and moving average parameters, we used autocorrelation functions and partial autocorrelation functions correlograms, after which possible models were identified[9].

    In the next step, we evaluated the goodness-of-fit of the end model through checking white noise residuals with Ljung-Box (Q) test and the best- model which was fitted to the data was selected based on least value of the Akaike Information Criterion (AIC)[5].

    Then, the best ARIMA models were applied to the prediction of the events of COVID-19, and the forecasting precision was estimated by the root-mean-square error (RMSE). This is computed using the following formula:

    Figure 1. Autocorrelation and partial autocorrelation functions plots and daily observed numbers of series of COVID-19, fitted values (20th February to 30th April) and 1-step ahead predicted values (14 days ahead).

    Where Ytof events is the observed number, Υt is the forecast values at time t, and N is the number of events[10]. The statistical significance level was set at 0.05. Stata (ver.14) was used as the software for the statistical analysis.

    The trend of the actual and predicted number of cases for each series of COVID-19 including new cases, recovery, and death cases for 71 days from 20th February 2020 to 30th April 2020 is presented in Figure 1. Also, these graphs indicate the forecast numbers for the 14 days ahead as shown in see Table 1.

    After the stationary tests, the square root transformation was used for the new cases, death cases, and recovery cases, and no one needed a regular difference. All statistical methods were performed on the transformed data. Autocorrelation functions and partial autocorrelation functions plots were drawn for each series of COVID-19 cases. In these charts, the grey zone displays the 95% confidence interval and the lines that are continuously out of range is considered as significantly different (Figure 1).

    The potential ARIMA models for the new cases of COVID-19 cases were ARIMA (1, 0, 0) and ARIMA (1, 0, 1), and for the recovery cases were ARIMA (1, 0, 1) and ARIMA (2, 0, 1). Finally, ARIMA (1, 0, 1) and ARIMA (1, 0, 0) were recruited for the death cases.

    The goodness-of-fit of the models was evaluated by using the Ljung-Box (Q) test and AIC. The ARIMA (1, 0, 0), ARIMA (1, 0, 1), and ARIMA (1, 0, 1) were selected for determining the new confirmed cases, the death cases, and the recovery cases as the best ARIMA models, respectively.

    Table 1. The forecast values (95% CI) according to fitted models of COVID-19 for the period from 1st May to 14th May 2020.

    Table 2. Characteristics of the best ARIMA fitted models series of COVID-19 from 20th February to 30th April.

    The results of the goodness-of-fit of the models are presented in Table 2. Note that this is only for the best-fitted models. For the residuals of the selected models, it is shown that the data were completely modelled.

    We found models based on the best models that fit for each series of COVID-19 between 20th February 2020 and 30th April 2020 and then forecasted them for 14 days ahead (Figure 1A and Table 1). Next, we compared the actual data of COVID-19 events with the predicted cases. The predicted models are approximately in line with the real death and new confirmed cases, but the recovery cases are less precise than others as shown in Figure 1. The formula of models is as follows:

    The equation of daily new laboratory-confirmed cases is:

    Eq. (3) indicates that an increment in the square number of new cases at this time leads to increase of 98% in square number for new cases, one day ahead (P<0.001), and the Wald test is significant. After an exponential increase in the middle of the epidemic period, the situation is converted as shown in Figure 1A. In a short time, we have predicted a declining trend in the occurrence of new cases.

    The equation of the recovery cases is:

    Eq. (4) shows that the rising square number of recovery cases at this time results in a significant increase of 98% in the square number of recovery cases one day ahead, and a negative correlation with the deviation in one time ago (P<0.001). The Wald test is significant. This character is shown in Figure 1B, where we expect to see a somewhat decreased trend over time.

    The equation of death cases is as follows:

    Similarly, Eq. (5) shows that the increasing square number of death cases at this time leads to an increase in the square number of death cases one day ahead, and a negative correlation with the deviation in one time ago (P<0.001). The Wald test is significant. Figure 1C shows that after an exponential increase in the early stage of the epidemic period, the situation converted. In a short time, we predict a smoothly decline trend in the occurrence of death cases as shown in Figure 1C.

    The forecasting in this study was based on the primary time series methods. This means that it is affected by the outlier data, not considering the unknown noise. Therefore, the models have better performance for the short term, but the findings should be explained with thriftiness[8,9]. However, the application and interpretation of these models are simple and is an immediate tools for monitoring systems[6,7].

    The government of the Islamic Republic of Iran advised to close the educational centers and locked down activities and other confronting approaches from the earliest days of the outbreak on 24th February.

    It is noted that Iranian people celebrate their own new year starting on 21th March 2020. They follow the calendar which is based on solar and is different from Christian’s calendar. In their new year, people visiting family and friends traditionally and this results in the growing number of contacts between people which eventually can increase the number of new cases and casualties with the spread of COVID-19. It is anticipated that these patterns may be repeated during or after the Ramadan (the holy month in Islam) due to crowding people for praying in mosques and holy shrines. Therefore, the government should consider preventing measures to control the spread of the viruses under these conditions.

    The predicted number of new confirmed, death, and recovery cases indicated somewhat is decreasing. The goodness-of-fit criteria were suitable for these events. However, the confirmed cases can rise remarkably, unless necessary preventive measures are kept in place. In conclusion, the proposed models in this work can act as a predictive tool for public health planning for better understanding of the dynamics of COVID-19 in a resource-constrained context with minimal data entry. Updating these data can be highly useful for an accurate predictions.

    Conflict of interest statement

    The authors declare that there is no conflict of interest.

    Acknowledgements

    This study was conducted using existing COVID-19 data on the web official site of the World Health Organization and did not impose additional costs. The authors would like to thank for the support received from Mashhad University of Medical Sciences (Identified No: IR.MUMS.REC.1399.140).

    Authors’ contributions

    All authors contributed equally in conceptualizing the article, retrieving related literature and drafting the final manuscript.

    亚洲精品久久午夜乱码| 亚洲国产日韩一区二区| 欧美日韩成人在线一区二区| 精品一区在线观看国产| a 毛片基地| 亚洲国产毛片av蜜桃av| 免费女性裸体啪啪无遮挡网站| 亚洲美女黄色视频免费看| 中文精品一卡2卡3卡4更新| 丝袜美足系列| av线在线观看网站| 校园人妻丝袜中文字幕| 少妇人妻精品综合一区二区| 精品一品国产午夜福利视频| 麻豆av在线久日| 国产男人的电影天堂91| 亚洲国产色片| 少妇被粗大的猛进出69影院| 汤姆久久久久久久影院中文字幕| 欧美中文综合在线视频| 少妇熟女欧美另类| 人妻一区二区av| 这个男人来自地球电影免费观看 | 亚洲情色 制服丝袜| 亚洲欧美日韩另类电影网站| 亚洲视频免费观看视频| 亚洲av电影在线进入| 1024视频免费在线观看| 亚洲综合色惰| 国产精品三级大全| 久久久久精品性色| 午夜福利一区二区在线看| 国产成人精品福利久久| 国产熟女欧美一区二区| 18在线观看网站| 久久久久久久久久久久大奶| 香蕉国产在线看| 少妇人妻久久综合中文| 极品人妻少妇av视频| 日韩制服骚丝袜av| 成人国语在线视频| 午夜福利影视在线免费观看| 女人高潮潮喷娇喘18禁视频| 久久av网站| 国产一区二区三区综合在线观看| 亚洲成人av在线免费| 成人亚洲欧美一区二区av| 精品人妻偷拍中文字幕| 欧美bdsm另类| 久久午夜福利片| 亚洲图色成人| 亚洲欧美精品自产自拍| 欧美国产精品一级二级三级| 黄色视频在线播放观看不卡| 午夜免费观看性视频| 永久免费av网站大全| 久久久久国产一级毛片高清牌| av电影中文网址| 国产亚洲精品第一综合不卡| 亚洲一码二码三码区别大吗| xxx大片免费视频| 久久国内精品自在自线图片| 日韩欧美一区视频在线观看| 国产精品成人在线| 黄色毛片三级朝国网站| 久久久久久久国产电影| 成人亚洲精品一区在线观看| 亚洲欧洲国产日韩| 亚洲欧美一区二区三区久久| 日韩电影二区| 大香蕉久久成人网| 亚洲情色 制服丝袜| 国产精品久久久久久精品古装| 中文字幕人妻丝袜一区二区 | 国产片内射在线| 少妇熟女欧美另类| 美女高潮到喷水免费观看| 久久久久精品久久久久真实原创| 亚洲精品国产av成人精品| 91成人精品电影| 天堂中文最新版在线下载| xxx大片免费视频| 9热在线视频观看99| 日韩欧美一区视频在线观看| 2022亚洲国产成人精品| 两个人看的免费小视频| 亚洲欧美一区二区三区国产| 少妇人妻精品综合一区二区| 亚洲精品乱久久久久久| 久久韩国三级中文字幕| 麻豆乱淫一区二区| 久久精品熟女亚洲av麻豆精品| 性高湖久久久久久久久免费观看| 18在线观看网站| 日韩大片免费观看网站| 91精品伊人久久大香线蕉| 久久精品夜色国产| tube8黄色片| 精品酒店卫生间| 制服丝袜香蕉在线| 国产精品一国产av| 中文精品一卡2卡3卡4更新| 亚洲国产精品成人久久小说| 国产成人一区二区在线| 亚洲av男天堂| 精品少妇一区二区三区视频日本电影 | 曰老女人黄片| 蜜桃在线观看..| 久久人妻熟女aⅴ| 中文字幕制服av| 秋霞在线观看毛片| 久久久a久久爽久久v久久| 99re6热这里在线精品视频| 国产免费福利视频在线观看| 五月伊人婷婷丁香| 成人漫画全彩无遮挡| 久久国内精品自在自线图片| 国产爽快片一区二区三区| 免费在线观看完整版高清| 国产女主播在线喷水免费视频网站| 午夜av观看不卡| 有码 亚洲区| 国产免费一区二区三区四区乱码| 亚洲三区欧美一区| 美女中出高潮动态图| 美女脱内裤让男人舔精品视频| 亚洲精品日韩在线中文字幕| 成人国语在线视频| 人人澡人人妻人| 免费日韩欧美在线观看| 18禁观看日本| 秋霞伦理黄片| 亚洲精品美女久久久久99蜜臀 | 国产亚洲av片在线观看秒播厂| 日本-黄色视频高清免费观看| 久久久国产一区二区| 少妇人妻精品综合一区二区| 欧美最新免费一区二区三区| 久久久精品94久久精品| 精品亚洲乱码少妇综合久久| 18在线观看网站| 啦啦啦视频在线资源免费观看| 国产亚洲av片在线观看秒播厂| 亚洲av欧美aⅴ国产| 国产亚洲最大av| 飞空精品影院首页| av网站免费在线观看视频| 精品第一国产精品| 国产爽快片一区二区三区| 亚洲第一区二区三区不卡| www.熟女人妻精品国产| 国产乱人偷精品视频| 边亲边吃奶的免费视频| 男男h啪啪无遮挡| 国产xxxxx性猛交| 国产精品国产三级专区第一集| 久久精品久久精品一区二区三区| 亚洲国产看品久久| 免费观看a级毛片全部| videossex国产| 日韩精品免费视频一区二区三区| 最黄视频免费看| 亚洲四区av| 久久毛片免费看一区二区三区| 亚洲天堂av无毛| 午夜91福利影院| 91成人精品电影| av视频免费观看在线观看| 日韩欧美精品免费久久| 婷婷色综合www| 最近2019中文字幕mv第一页| 免费黄网站久久成人精品| 免费在线观看完整版高清| 九草在线视频观看| 亚洲精品视频女| 亚洲国产欧美在线一区| 精品国产国语对白av| 午夜精品国产一区二区电影| 在线精品无人区一区二区三| 国产精品国产三级专区第一集| 国产亚洲午夜精品一区二区久久| 欧美 亚洲 国产 日韩一| 精品亚洲成国产av| 免费高清在线观看日韩| 亚洲综合色惰| 丝袜美足系列| 丝袜在线中文字幕| 捣出白浆h1v1| 2018国产大陆天天弄谢| 久久精品国产a三级三级三级| 母亲3免费完整高清在线观看 | 九九爱精品视频在线观看| 交换朋友夫妻互换小说| 精品国产国语对白av| 国产午夜精品一二区理论片| 色婷婷av一区二区三区视频| 亚洲精品在线美女| 天天躁夜夜躁狠狠久久av| 免费观看性生交大片5| 天天影视国产精品| 少妇人妻 视频| 日韩 亚洲 欧美在线| 伦理电影大哥的女人| 免费久久久久久久精品成人欧美视频| 熟妇人妻不卡中文字幕| 街头女战士在线观看网站| 一本久久精品| 精品少妇黑人巨大在线播放| 夫妻午夜视频| 久久久a久久爽久久v久久| 久久99蜜桃精品久久| 一级毛片我不卡| 亚洲欧美成人精品一区二区| 又粗又硬又长又爽又黄的视频| 欧美日韩亚洲高清精品| 只有这里有精品99| 王馨瑶露胸无遮挡在线观看| 91精品三级在线观看| 精品午夜福利在线看| 如何舔出高潮| 一区二区三区精品91| 咕卡用的链子| 久久久久国产网址| 久久午夜综合久久蜜桃| 精品一品国产午夜福利视频| 色吧在线观看| 自线自在国产av| 亚洲精品视频女| 天天躁日日躁夜夜躁夜夜| 欧美激情 高清一区二区三区| 成人国语在线视频| 韩国精品一区二区三区| 哪个播放器可以免费观看大片| 在现免费观看毛片| 国产精品av久久久久免费| 国产综合精华液| 亚洲国产毛片av蜜桃av| 久久这里只有精品19| 少妇 在线观看| 国产男女超爽视频在线观看| 精品少妇久久久久久888优播| 男人添女人高潮全过程视频| 日日撸夜夜添| 久久久久久人妻| 1024视频免费在线观看| 国产精品久久久久久精品电影小说| 国产一区二区激情短视频 | 性高湖久久久久久久久免费观看| 青青草视频在线视频观看| 国产精品麻豆人妻色哟哟久久| 免费观看a级毛片全部| 午夜激情av网站| 亚洲av电影在线进入| 两个人看的免费小视频| 欧美变态另类bdsm刘玥| 两性夫妻黄色片| 最近中文字幕高清免费大全6| 亚洲精品第二区| 国产日韩欧美在线精品| 国产精品 国内视频| www.精华液| 一级黄片播放器| 男女无遮挡免费网站观看| 大话2 男鬼变身卡| 久久精品国产自在天天线| 国产成人a∨麻豆精品| 久久精品国产鲁丝片午夜精品| 狠狠婷婷综合久久久久久88av| 中文字幕色久视频| 水蜜桃什么品种好| 亚洲,欧美,日韩| 久久久久精品久久久久真实原创| 天天躁日日躁夜夜躁夜夜| 国产免费又黄又爽又色| 日韩av在线免费看完整版不卡| 在线观看美女被高潮喷水网站| 亚洲精品国产av蜜桃| 久久人妻熟女aⅴ| 欧美日本中文国产一区发布| 中文字幕最新亚洲高清| 日韩欧美一区视频在线观看| 2018国产大陆天天弄谢| 美女午夜性视频免费| 日本wwww免费看| 精品国产超薄肉色丝袜足j| 纵有疾风起免费观看全集完整版| 国产在视频线精品| 久久国产精品大桥未久av| 久久久久久久精品精品| 中文字幕人妻丝袜一区二区 | 人妻少妇偷人精品九色| 人成视频在线观看免费观看| 亚洲四区av| 亚洲人成77777在线视频| xxxhd国产人妻xxx| 亚洲久久久国产精品| 免费av中文字幕在线| 在线观看一区二区三区激情| av免费在线看不卡| 新久久久久国产一级毛片| 精品国产乱码久久久久久小说| 亚洲三区欧美一区| 久久久亚洲精品成人影院| 欧美人与性动交α欧美软件| 免费观看av网站的网址| 春色校园在线视频观看| 国产精品av久久久久免费| 91精品国产国语对白视频| 欧美黄色片欧美黄色片| 两个人看的免费小视频| 国产成人一区二区在线| 在线观看美女被高潮喷水网站| 热99久久久久精品小说推荐| 日本猛色少妇xxxxx猛交久久| 欧美精品高潮呻吟av久久| 久久精品久久久久久噜噜老黄| 在线观看www视频免费| 亚洲激情五月婷婷啪啪| 久久久久国产精品人妻一区二区| 日韩一本色道免费dvd| 国产片特级美女逼逼视频| 免费观看在线日韩| 日本欧美国产在线视频| 最近最新中文字幕大全免费视频 | 日日爽夜夜爽网站| 在线精品无人区一区二区三| 久久久久久久精品精品| 日韩,欧美,国产一区二区三区| 黄片播放在线免费| 欧美黄色片欧美黄色片| 天堂8中文在线网| 亚洲第一青青草原| 亚洲情色 制服丝袜| 亚洲精品一二三| 97在线视频观看| 精品国产一区二区三区四区第35| 国产成人精品婷婷| 精品国产一区二区三区四区第35| 国产男女内射视频| 国产av一区二区精品久久| 免费久久久久久久精品成人欧美视频| 秋霞伦理黄片| 97在线视频观看| 日韩一区二区视频免费看| av网站在线播放免费| 午夜影院在线不卡| 欧美日韩亚洲国产一区二区在线观看 | 又粗又硬又长又爽又黄的视频| 丝袜喷水一区| 国产男人的电影天堂91| 在线观看一区二区三区激情| 大片电影免费在线观看免费| 精品视频人人做人人爽| 高清av免费在线| 亚洲国产看品久久| 男女边吃奶边做爰视频| 亚洲欧美成人精品一区二区| 天堂8中文在线网| 国产毛片在线视频| 久久久久久久精品精品| 国产精品.久久久| 午夜福利视频精品| 99精国产麻豆久久婷婷| 日韩免费高清中文字幕av| 老司机影院毛片| 99九九在线精品视频| 亚洲经典国产精华液单| 日韩欧美精品免费久久| 亚洲欧美精品自产自拍| 水蜜桃什么品种好| 日产精品乱码卡一卡2卡三| 麻豆精品久久久久久蜜桃| 国产黄色免费在线视频| 国产无遮挡羞羞视频在线观看| 91国产中文字幕| 超碰97精品在线观看| 制服诱惑二区| 熟妇人妻不卡中文字幕| av免费在线看不卡| 久久狼人影院| 搡老乐熟女国产| 亚洲,欧美精品.| 丰满迷人的少妇在线观看| 人妻一区二区av| 精品少妇久久久久久888优播| 久久久久精品人妻al黑| 亚洲成人手机| 免费女性裸体啪啪无遮挡网站| 欧美 亚洲 国产 日韩一| 满18在线观看网站| 侵犯人妻中文字幕一二三四区| 1024视频免费在线观看| 妹子高潮喷水视频| 日韩不卡一区二区三区视频在线| 97在线人人人人妻| 欧美精品国产亚洲| 国产又色又爽无遮挡免| 黄片播放在线免费| 成人免费观看视频高清| 亚洲国产欧美网| 在线天堂最新版资源| 春色校园在线视频观看| 交换朋友夫妻互换小说| 国产乱来视频区| 成人手机av| 欧美日韩亚洲高清精品| 桃花免费在线播放| 亚洲国产看品久久| 青春草亚洲视频在线观看| 伦精品一区二区三区| 精品少妇久久久久久888优播| 国产在线免费精品| 一级毛片我不卡| 日本-黄色视频高清免费观看| 美女国产高潮福利片在线看| av在线观看视频网站免费| 国产成人欧美| 精品国产一区二区久久| 免费少妇av软件| 免费av中文字幕在线| 免费在线观看完整版高清| 久久99热这里只频精品6学生| 女人久久www免费人成看片| 午夜91福利影院| 国产精品av久久久久免费| 毛片一级片免费看久久久久| 免费少妇av软件| 成年女人在线观看亚洲视频| 国产欧美日韩综合在线一区二区| 一二三四在线观看免费中文在| 精品国产乱码久久久久久男人| 亚洲色图综合在线观看| 日韩电影二区| 精品国产一区二区久久| 超碰97精品在线观看| 久久精品国产自在天天线| 日韩制服丝袜自拍偷拍| 777米奇影视久久| 国产av一区二区精品久久| 国产精品人妻久久久影院| 纯流量卡能插随身wifi吗| 超色免费av| 亚洲一区中文字幕在线| 精品国产露脸久久av麻豆| 精品卡一卡二卡四卡免费| 女性生殖器流出的白浆| 91在线精品国自产拍蜜月| 欧美黄色片欧美黄色片| 美女xxoo啪啪120秒动态图| 少妇的逼水好多| 男女高潮啪啪啪动态图| 欧美av亚洲av综合av国产av | 一区二区三区精品91| 一区二区三区乱码不卡18| 欧美日本中文国产一区发布| 久久午夜综合久久蜜桃| 久久久久精品人妻al黑| 最近手机中文字幕大全| 亚洲av日韩在线播放| 超碰成人久久| 亚洲一区二区三区欧美精品| 纯流量卡能插随身wifi吗| 国产97色在线日韩免费| 考比视频在线观看| 亚洲精品av麻豆狂野| 色网站视频免费| 黄色视频在线播放观看不卡| av免费观看日本| 丁香六月天网| 亚洲欧洲精品一区二区精品久久久 | 亚洲精品一区蜜桃| 色哟哟·www| 国产探花极品一区二区| 一级毛片我不卡| 电影成人av| 亚洲国产欧美日韩在线播放| 国产成人免费观看mmmm| 国产又色又爽无遮挡免| av卡一久久| 国产成人精品无人区| 久久久精品区二区三区| 亚洲av男天堂| 蜜桃在线观看..| 校园人妻丝袜中文字幕| 捣出白浆h1v1| 啦啦啦在线免费观看视频4| 最近中文字幕2019免费版| 9热在线视频观看99| 午夜福利网站1000一区二区三区| 老司机亚洲免费影院| 电影成人av| 国产精品蜜桃在线观看| 久久久久国产一级毛片高清牌| 熟女av电影| 国产免费一区二区三区四区乱码| 一级,二级,三级黄色视频| 亚洲国产成人一精品久久久| 国产成人精品婷婷| 国产在线视频一区二区| 亚洲av免费高清在线观看| 国产精品成人在线| 丝袜喷水一区| 国产日韩一区二区三区精品不卡| 国产精品一区二区在线观看99| a 毛片基地| 看非洲黑人一级黄片| 亚洲第一av免费看| 日本av手机在线免费观看| 国产熟女欧美一区二区| 一区二区三区激情视频| 18在线观看网站| 天堂俺去俺来也www色官网| 汤姆久久久久久久影院中文字幕| 亚洲欧美精品综合一区二区三区 | 十分钟在线观看高清视频www| 中文字幕亚洲精品专区| 亚洲色图 男人天堂 中文字幕| 婷婷色av中文字幕| 超色免费av| 国产精品蜜桃在线观看| av网站在线播放免费| 不卡视频在线观看欧美| 国产老妇伦熟女老妇高清| 亚洲天堂av无毛| 国产日韩欧美在线精品| xxxhd国产人妻xxx| 亚洲一码二码三码区别大吗| 久久久久久人人人人人| 国产成人精品婷婷| 岛国毛片在线播放| 欧美日韩精品网址| 国产欧美日韩综合在线一区二区| 秋霞伦理黄片| 久久ye,这里只有精品| 亚洲,欧美精品.| 天美传媒精品一区二区| 国产精品二区激情视频| 啦啦啦中文免费视频观看日本| 九草在线视频观看| 精品少妇内射三级| 免费高清在线观看日韩| av不卡在线播放| 国产精品 国内视频| 亚洲精品成人av观看孕妇| 中文欧美无线码| 黑人巨大精品欧美一区二区蜜桃| 99热网站在线观看| 一个人免费看片子| √禁漫天堂资源中文www| 国产一区有黄有色的免费视频| 最近最新中文字幕免费大全7| 国产淫语在线视频| 国产精品三级大全| 亚洲国产精品999| 啦啦啦在线免费观看视频4| 90打野战视频偷拍视频| 日韩免费高清中文字幕av| 满18在线观看网站| 最近的中文字幕免费完整| 国产精品偷伦视频观看了| 蜜桃国产av成人99| 国产国语露脸激情在线看| videos熟女内射| 国产精品免费大片| 一区福利在线观看| 成人漫画全彩无遮挡| 国产免费现黄频在线看| 99久久精品国产国产毛片| 亚洲精品自拍成人| 国产精品久久久久久久久免| 欧美bdsm另类| av线在线观看网站| 女人精品久久久久毛片| 亚洲国产看品久久| 9色porny在线观看| 色94色欧美一区二区| 热99国产精品久久久久久7| 汤姆久久久久久久影院中文字幕| 18禁动态无遮挡网站| 最新中文字幕久久久久| 精品亚洲成国产av| 亚洲精品国产一区二区精华液| 亚洲精品一二三| 国产成人免费无遮挡视频| 色94色欧美一区二区| 夜夜骑夜夜射夜夜干| 一级,二级,三级黄色视频| 婷婷色av中文字幕| 99热国产这里只有精品6| 波多野结衣av一区二区av| 午夜久久久在线观看| 国产毛片在线视频| 国产免费视频播放在线视频| 国产精品一区二区在线观看99| 毛片一级片免费看久久久久| 肉色欧美久久久久久久蜜桃| a 毛片基地| 91国产中文字幕| 国产成人欧美| 亚洲av男天堂| 日韩一区二区视频免费看| 国产综合精华液| 人人妻人人澡人人爽人人夜夜| 亚洲国产最新在线播放| 人成视频在线观看免费观看| 少妇熟女欧美另类| 99香蕉大伊视频| 久久久a久久爽久久v久久| av一本久久久久| 天堂中文最新版在线下载| 自线自在国产av| 国产精品欧美亚洲77777| 欧美日本中文国产一区发布| 一本大道久久a久久精品| 久久久亚洲精品成人影院|