• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    環(huán)化及亞胺/酰胺部分氫化一鍋法串聯(lián)反應(yīng)合成1,2,3,4-四氫喹喔啉

    2020-10-16 05:42:16潘一驍李艷穩(wěn)韓佳宏趙浩強(qiáng)丁相元徐立進(jìn)范青華

    潘一驍,李艷穩(wěn),韓佳宏,趙浩強(qiáng),馮 宇,丁相元,徐立進(jìn),范青華,時 茜

    (1.中國人民大學(xué)化學(xué)系,北京 100872;2.中國科學(xué)院化學(xué)研究所,北京 100190;3.溫州大學(xué)化學(xué)與材料工程學(xué)院,溫州 325035)

    1 Introduction

    1,2,3,4-Tetrahydroquinoxaline moieties are widely found in numerous biologically active natural products and pharmaceuticals[1—10],and they are also known as promising dyes and cell adhesion agents[11—13].Consequently,various methods have been established to access these useful compounds[14—27].The selective reduction of the easily accessible quinoxalines represents one of the most convenient and straight forward routes to these heterocycles[28—32].Traditional reduction methods usually involve the use of stoichiometric metal hydrides or reactive metals as the reducing agents,and are often plagued with narrow substrate scope,low functional compatibility,poor chemoselectivity and the generation of copious amounts of toxic waste[33—37].To circumvent these problems,tremendous efforts have been devoted to the selective reduction of quinoxalines with cheap molecular hydrogen in the presence of homogeneous or heterogeneous catalysts,and significant advances have been made in the past several decades[38—66].Promising results have also been achieved in catalytic reduction of quinoxalines using formates[67—74],Hantzsch esters[75],hydrosilanes[76,77],water[78—80]and ammonia borane[81]as the hydrogen donor.However,most of these reports strongly rely on the priorly prepared and purified quinoxaline substrates,and the step-economical synthesis of tetrahydroquinoxalines via in situ generation of quinoxalines from readily available starting materials remains a challenge.In 2013,Beller et al.[59]disclosed the efficient preparation of chiral 2-phenyl tetrahydroquinoxaline directly from phenylglyoxal and 1,2-diaminobenzene following sequential cyclization/Fe-catalyzed catalytic asymmetric hydrogenation reaction,but only one example was given[Scheme 1(A),Path a].Later,Shi et al.[82]reported a similar tandem process involving cyclization and transfer hydrogenation for the step-economical preparation of chiral 2-aryl tetrahydroquinoxalines from aryl glyoxals and 1,2-diaminobenzenes[Scheme 1(A),Path b].Zhou et al.[83]demonstrated a B2(OH)4-mediated one-pot double reductive amination of 1,2-diaminobenzenes with 1,2-dicarbonyl compounds to give rise to 1,2,3,4-tetrahydroquinoxalines with water as both the solvent and proton donor[Scheme 1(A),Path c].It has long been known that 1,2,3,4-tetrahydroquinoxalines can be prepared via deoxygenative reduction of the amide moiety of 3,4-dihydroquinoxalin-2(1H)-ones[84—86],but the application of this transformation in organic synthesis is often hampered by the requirement of an overstoichiometric amount of expensive and sensitive reducing hydride reagent such as LiAlH4and borane.In this respect,our group[87]have recently reported the development of a one-pot tandem procedure involving cyclization and sequential hydrosilylation of imines and amides with polymethylhydrosiloxane(PMHS)under the catalysis of B(C6F5)3for the step-economical construction of 1,2,3,4-tetrahydroquinoxalines directly from readily available 1,2-diaminobenzenes and α-ketoesters[Scheme 1(B),Path a].However,the concomitant formation of large amounts of siloxane waste strongly reduces the atom efficiency of this process.Clearly,the use of inexpensive molecular hydrogen as the reducing agent would be the optimal choice in terms of atom economy and waste minimization.Although catalytic deoxygenative hydrogenation of amides into amines is rather challenging because of the low electrophilicity of the amide carbonyl carbon and the difficulty in the control of C—O bond cleavage selectivity,exciting achievements have been made in this field in the past several years[88—109].In particular,the groups of Cole-Hamilton[97,98],Klankermayer[99—101],Beller[102]and Zhou[103]reported the efficient Ru(Ⅲ)-catalyzed reduction of various amides into amines under relatively mild conditions.Given the general applications of these catalytic systems,we became attracted to exploring their performance in step-economical construc-

    Scheme 1 Synthesis of tetrahydroquinoxalines via in situ generation of quinoxalines(A)and quinoxalinones(B)tion of 1,2,3,4-tetrahydroquinoxalines directly from 1,2-diaminobenzenes and α-ketoesters through a one-pot cascade cyclization/hydrogenation of imines and amides.

    With our continuing interest in the transition-metal catalyzed reduction of N-heteroaryl compounds[110—117],we report herein that 2-substituted-1,2,3,4-tetrahydroquinoxalines can be prepared step-economically in good to excellent yields with high tolerance of functional groups via a tandem process combining cyclization of 1,2-diaminobenzenes and α-ketoesters and the following sequential hydrogenation of imines and deoxygenative hydrogenation of amides under Ru catalysis[Scheme 1(B),Path b].

    2 Experimental

    2.1 General Information

    Unless otherwise noted,all commercially available chemicals including organic solvents were used as received from Aldrich,Acros or Strem without further purification.Nuclear magnetic resonance(1H NMR and13C NMR)spectra were recorded on a Bruker Model Avance DMX 400 Spectrometer(1H 400 MHz and13C 100.6 MHz,respectively,Bruker Daltonics.Inc).High resolution mass Spectra(HRMS)were collected on a APEX Ⅱ electrospray ionization-mass spectra(ESI-MS,Bruker Daltonics.Inc.),4,5-Dibromobenzene-1,2-diamine(1d)[118],4,5-dimethoxybenzene-1,2-diamine(1e)[119],and α-ketoesters[120,121]were prepared according to the previous reports.Ru(acac)3[Ruthenium(Ⅲ)acetylacetonate],TsOH·H2O(p-toluenesulfonic acid),Yb(OTf)3·H2O[Ytterbium(Ⅲ)trifluoromethanesulfonate hydrate],In(OTf)3[Indium(Ⅲ)trifluoromethanesulfonate],HBF4[50%(mass fraction)solution in water],methanesulfonic acid(MSA),bis(trifluoromethanesulfonyl)imide(HNTf2)and 1,2-dimethoxyethane(DME)were purchased from Acros(purity 99%).1,1,1-Tris(diphenylphosphinomethyl)ethane(Triphos)was purchased from Alfa(purity 97%).

    2.2 General Procedure

    2.2.1 Synthetic Route of the Target Compounds 33aa— 33na A 10.0 mL glass vial equipped with a magnetic stirrer bar was sequentially charged with 0.25 mmol of o-phenylenediamine(1a),0.3 mmol of 2-oxopropanoate(2a),3.0 mg(0.0075 mmol)of Ru(acac)3,9.0 mg(0.015 mmol)triphos,3.11 μL(0.025 mmol,50%,mass fraction)of HBF4,25.0 mg of 0.4 nm molecular sieve(MS)and 1.0 mL ofn-Bu2O.Then the reaction vial was placed into a 25 mL autoclave.The autoclave was closed,and the final pressure of the hydrogen gas was adjusted to 3 MPa after purging the autoclave with hydrogen gas several times.The reaction mixture was stirred at 130℃for 18 h.After cooling the autoclave to room temperature,the hydrogen gas was carefully released.Then 5.0 mL of saturated aqueous NaHCO3solution was added to the reaction mixture,which was extracted with EtOAc three times(5.0 mL each time).The combined organic phases were dried over anhydrous Na2SO4,then filtered and evaporated under reduced pressure.After the removal of volatile materials by rotary evaporation,the resultant mixture was purified by silica gel column chromatography using a mixture of EtOAc and hexane to give compound 3aa.Taking compound 3aa synthesis as an example,compounds 3ab—3na were synthesized according to this method.The physical and chemical properties and NMR data of compounds 3aa—3na are listed in Tables 1 and 2,respectively.The NMR spectrum is shown in Fig.S1—Fig.S78(see the Electronic Supplementary Material of this paper).The synthetic route is shown in Scheme 2.

    Table 1 Appearance,melting points,yields and HRMS data for compounds 3aa—3na

    Table 2 1H NMR and13C NMR data for compounds 3aa—3na

    Continued

    Scheme 2 Tandem synthesis of tetrahydroquinoxalines via catalytic hydrogenation

    2.2.2 Synthetic Route of the Target Compounds 44ab— 44yaA 10.0 mL glass vial containing a magnetic stirring bar was sequentially charged with 0.25 mmol of compoudn 1a,0.30 mmol of compound 2a,3.0 mg(0.0075 mmol)of Ru(acac)3,9.0 mg(0.015 mmol)of triphos,25.0 mg of 0.4 nm MS and 1.0 mL ofn-Bu2O.Then the reaction vial was placed into a 25 mL autoclave.The autoclave was closed,and the final pressure of the hydrogen gas was adjusted to 2 MPa after purging the autoclave with hydrogen gas several times.The reaction mixture was stirred at 130℃ for 4 h.After cooling the autoclave to room temperature,the hydrogen gas was carefully released.Then the reaction mixture was concentrated by vacuum evaporation and the residue was purified by column chromatography on silica gel using a mixture of ethyl acetate and hexane to give the pure compound 4aa.Taking compound 4aa synthesis as an example,compounds 4ab—4ya were synthesized according to this method.The physical and chemical properties and NMR data of compounds 4aa—4ya are listed in Tables 3 and 4,respectively.The NMR spectrum is shown Fig.S79—Fig.S100(see the Electronic Supplementary Material of this paper).The synthetic route is shown in Scheme 3.

    Table 3 Appearance,melting points,yields and HRMS data for compounds 4aa—4ya

    Table 4 1H NMR and13C NMR data for compounds 4aa—4ya

    Scheme 3 Catalytic synthesis of dihydroquinoxalin-2(1H)-ones

    3 Results and Discussion

    3.1 Optimization of Reaction Conditions

    We commenced our investigations with the optimization conditions for the reaction of compound 1a with compound 2a under H2and Ru catalysis.We first examined the catalytic performance of the ruthenium catalyst generatedin situfrom triphos and Ru(acac)3in the absence of any co-catalyst under 4 MPa H2at 140 ℃ in tetrahydrofuran(THF).After 18 h,the reaction went to completion,and a mixture of the target product 2-methyl-1,2,3,4-tetrahydroquinoxaline(3aa,yield of 15%),3-methyl-3,4-dihydroquinoxalin-2(1H)-one(4aa,yield of 80%)and 3-methylquinoxalin-2(1H)-one(5aa,yield of 3%)was obtained(Table 5,Entry 1).This observation suggested that the current catalytic system worked well for the cyclization of compound 1a with compound 2a to give compound 5aa and for the following hydrogenation of the imine moiety of compound 5aa to give compound 4aa,but its capacity to catalyze the final deoxygenative hydrogenation of the amide moiety of compound 4aa into compound 3aa appeared to be problematic.Other ruthenium complexes,such as[Ru(2-methylallyl)2(COD)]and[Ru(triphos)(tmm)],were also evaluated in this reaction,but none of them performed as effectively as Ru(acac)3(Table 5,Entries 2 and 3).Considering the importance of co-catalyst in improving the catalytic efficiency of Ru/triphos-catalyzed hydrogenation of carboxylic acid derivatives[117—123]andN-alkylation of amines[124—131],we speculated that the introduction of catalytic amount of additive might improve the catalytic efficiency.

    Table 5 Optimization of reaction conditionsa

    Then the effect of some additives was examined(Table 5,Entries 4—12).Delightfully,a catalytic amount of HBF4(10%,molar fraction)was found to increase the yield of compound 3aa to 88%(Table 5,Entry 6).Further optimization revealed that replacing THF with other solvents such as 1,4-dioxane,toluene and 1,2-dimethoxyethane(DME)only resulted in lower yields of compound 3aa(Table 5,Entries 11—13),but a slightly better yield of 90%was obtained in n?Bu2O(Table 5,Entry 14).Moreover,when the H2pressure was decreased to 3 MPa,the yield of compound 3aa dropped slightly in THF(Table 5,Entry 15),but in n-Bu2O the catalyst was equally effective(Table 5,Entry 16).Obviously,n-Bu2O is the choice of solvent.Furthermore,when keeping the H2pressure at 3 MPa while adding MS to the reaction system,the yield of compound 3aa was improved to 92%(Table 5,Entry 17).Notably,decreasing the reaction temperature to 130 ℃led to an excellent yield of 96%(Table 5,Entry 18).Although Beller et al.have shown that Ru(acac)3/triphos/Yb(OTf)3·H2O could work well for hydrogenation of various amides into amines[102],it only resulted in the formation of product 3aa in 25%yield in our case(Table 5,Entry 19).The catalytic system consisting of[Ru(H)2(CO)(triphos)],TsOH·H2O and BF3·Et2O,reported to effectively catalyze deoxygenative hydrogenation of various amides by Zhou et al.[103],only gave the target product 3aa in 63%yield(Table 5,Entry 20).Finally,the conditions in Entry 18 were chosen as the optimal reaction conditions.

    3.2 Substrate Scope

    Having established the optimized reaction conditions,we then turned to evaluate the reactivity of different α-ketoesters with compound 1a.As shown in Table 6,α-alkyl substituted α-ketoesters(2b—2k)underwent smooth reaction with compound 1a to provide the expected 2-alkyl substituted tetrahydroquinoxalines(3ab—3ak)in good to excellent yields.No significant steric effect on the reaction outcome was observed,although the presence of sterically demanding substituents resulted in slightly decreased yields(3af,3ag,3ai).The presence of a CF3group did not hamper the reaction with the product 3ak obtained in 75%yield.Likewise,α-aryl substituted α-ketoesters(2l—2u)bearing either electron-donating or withdrawing groups on the aryl ring were all tolerated,delivering the corresponding 2-aryl substituted tetrahydroquinoxalines(3al—3au)in high yields.Notably,halide substituents,such as F(3ap),Cl(3aq)and Br(3ar),were compatible with the reaction conditions,thereby providing ample opportunities for further chemical diversification.Compound 2t with an ortho-substituted methyl group gave a slightly lower yield probably as a result of steric hindrance.Similarly,ethyl 2-(naphthalen-1-yl)-2-oxoacetate(2v)delivered the product 3av in 76%yield.It is noticed that ethyl(E)-2-oxo-4-phenylbut-3-enoate(2w)exhibited good reactivity to afford the product 3aw in 85%yield,and the sensitive C=C bond remained intact throughout the reaction.To demonstrate the practicability of this methodology,we tried a gram-scale reaction of compound 1a(10.0 mmol)with compound 2a(12.0 mmol),and the desired product 3aa was obtained in 89%yield.

    In addition to α-ketoesters,we also investigated the reaction of compound 1a with diethyl oxalate(2x),dimethyl carbonate(2y)and 4-methylene-2-oxetanon(2z)under the optimized reaction conditions.Gratifyingly,the corresponding products 3ax—3az with different ring sizes were isolated in moderate to good yields.

    We next investigated the substrate scope with respect to 1,2-diaminobenzenes under the optimized reaction conditions(Table 6).The symmetrical 1,2-arylenediamines(1b—1f)bearing electron-rich and electrondeficient substituents on the aryl ring also performed well,giving rise to the corresponding tetrahydroquinoxaline products(3ba—3fa)in high yields.The electronic nature of the substituents on the aryl ring seemed to affect their reactivity as substrates containing electron-deficient substituents were slightly less reactive(3ca,3da).The N1-substituted benzene-1,2-diamines(1g—1i)were also converted efficiently to give the products 3ga—3ia.Notably,for substrate 1i,the allyl moiety remained intact during the reaction.Delightfully,other diamine compounds,such as 2,3-diaminomaleonitrile(1j),trans-1,2-diphenylethane-1,2-diamine(1k),trans-cyclohexane-1,2-diamine(1l)andN,N′-dimethylethylenediamine(1m)also exhibited good reactivity,providing the target products(3ja—3ma)in 52%—72%yields.Interestingly,the sensitive C=C bond in product 3ja was well tolerated in the reaction.

    Table 6 Reaction scope with respect to α-ketoestersa

    Continued

    Notably,when using Ru(acac)3/triphos alone as the catalyst in the absence of any co-catalyst,the reaction of compound 1a and compound 2a provided 3-methyl-3,4-dihydroquinoxalin-2(1H)-one(4aa)predominantly in 83%isolated yield with a small amount of compound 3aa(10%)(Table 5,Entries 21).Delightfully,by lowering the hydrogen pressure to 2 MPa,compound 4aa could be exclusively obtained in 92%yield in 4 h,and the formation of compound 3aa was almost totally suppressed(Table 7).Similarly,the target products 4ab,4ad,4aj,4al,4aw and 4ba were isolated in excellent yields.The reaction of compound 1a with4-methylene-2-oxetanon(2y)led to the formation of product 4ay in 83%yield.2,3-Diaminomaleonitrile(1j)andtrans-cyclohexane-1,2-diamine(1l)gave the corresponding products 4ja and 4la in 85%and 69%yields,respectively.

    Table 7 One-pot tandem synthesis of dihydroquinoxalin-2(1H)-onesa

    To expand the scope of our catalytic systems further,the reaction of 2-aminophenol(1n)with compound 2a was also studied.As shown in Scheme 4,the synthetically useful compounds 3na and 4na could be selectively synthesized in good yields by tuning the reaction conditions.

    Scheme 4 Ru-catalyzed tandem synthesis of oxazine and oxazin-2-one

    Aiming to gain insight into the reaction mechanism,we first measured the kinetic profile of the reaction between compound 1a and 2a.As shown in Fig.1,almost all of compound 1a was converted into an intermediate identified as compound 5aa within 1 h by cyclization with compound 2a.Subsequent hydrogenation of compound 5aa led to the formation of compound 4aa,and this is followed by the deoxygenative hydrogenation of compound 4aa to give compound 3aa.Clearly,compounds 4aa and 5aa were intermediates during the reaction.HRMS analysis of the reaction system of compounds 1a and 2a under standard conditions revealed no formation of propane-1,2-diol.Thereby ruling out the possibility that the reaction proceeds via first reduction of the ketoester to the diol and subsequent alkylation.

    Fig.1 Kinetic profile for the reaction of 1a and 2a under standard reaction conditions

    To obtain more information about the reaction mechanism,the following several experiments were then carried out(Scheme 5).Full conversion of compound 1a into compound 5aa was observed in 1 h in the presence of molecular sieves without the use of Ru(acac)3/triphos catalyst,HBF4and H2,but a longer reaction time of 3 h was needed in the absence of molecular sieves[Scheme 5(A)].Clearly,the addition of molecular sieves was beneficial to the cyclization of compounds 1a and 2a,and the role of the in situ formed Ru(Ⅲ)catalyst was to catalyze the reduction of compounds 5aa and 4aa.Indeed,when subjecting compounds 4aa and 5aa to the standard reaction conditions respectively,the product 3aa was obtained in excellent yields in both cases[Scheme 5(B),5(C)].Further study showed that the reduction of 5aa in the absence of HBF4only resulted in the formation of compound 3aa in 15%yield,and compound 4aa was generated in 82%yield[Scheme 5(D)].These observations together with the results in Scheme 2 suggest that the Ru(acac)3/triphos catalyst alone could not work well for the reduction of compound 4aa into compound 3aa,and the presence of the HBF4cocatalyst is necessary for the smooth deoxygenative reduction of the amide carbonyl group.In order to understand the role of HBF4,a 4aa-HBF4adduct was isolated by heating a mixture of equivmolar compound 4aa and HBF4at reflux in ethanol,and its structure was determined by NMR spectra and HRMS analysis.This adduct could be hydrogenated under the catalysis of Ru(acac)3/triphos to deliver compound 3aa in 81%yield,with no need for additional HBF4[Scheme 5(E)].Notably,in the presence of catalytic amount of this salt,compound 4aa could be reduced with Ru(acac)3/triphos to afford compound 3aa in 89%yield,indicating the salt to be a catalytic active intermediate[Scheme 5(F)].This is in agreement with the previous studies about the application of Bronsted acids for amide activation in the transformations of amides in the literature[132].

    Scheme 5 Experiments aimed to probe the reaction mechanism

    Based on the aforementioned studies and previous reports[97—132],a reasonable reaction mechanism was suggested(Scheme 6).The starting materials compounds 1 and 2 initially undergoed cyclization to give the quinoxalinone intermediate 5.The following Ru-catalyzed hydrogenation of compound 5 led to the formation of dihydroquinoxalinone intermediate 4.Subsequent protonation of compound 4 with HBF4and enolization resulted in the formation of the zwitterionic adduct A,which was then hydrogenated into the intermediate B.The acid then promoted the dehydration of B to afford the iminium intermediate C.Finally the product 3 was produced upon hydrogenation of C under Ru(Ⅲ)catalysis.

    Scheme 6 Proposed reaction mechanism

    4 Conclusions

    We have established an efficient,general and step-economical synthetic route to access a variety of 2-substituted 1,2,3,4-tetrahydroquinoxalinesviaa tandem one-pot process involving cyclization/hydrogenation/deoxygenative hydrogenation from readily available 1,2-diaminobenzenes andα-ketoesters under Ru(Ⅲ)catalysis.High yields,broad substrate scope and remarkable functional group compatibility were observed.The reaction was quite sensitive to the choice of co-catalyst,and HBF4was proved to be optimal.In addition,reducing the hydrogen pressure and omitting the co-catalyst led to the exclusive generation of 3,4-dihydroquinoxalin-2(1H)-ones in good yields.

    Supporting Information:http://www.cjcu.jlu.edu.cn/CN/10.7503/cjcu20200333.

    This paper is supported by the National Natural Science Foundation of China(No.21372258).

    色综合站精品国产| 99久久综合精品五月天人人| 热re99久久国产66热| 麻豆成人av在线观看| 午夜福利18| 成人免费观看视频高清| 国产精品秋霞免费鲁丝片| 黄色a级毛片大全视频| 精品福利观看| 久久精品aⅴ一区二区三区四区| 久久中文字幕人妻熟女| 无人区码免费观看不卡| 波多野结衣巨乳人妻| 999久久久精品免费观看国产| 黄色女人牲交| 一边摸一边抽搐一进一小说| 中文字幕最新亚洲高清| 成人特级黄色片久久久久久久| 午夜a级毛片| 大陆偷拍与自拍| 日韩有码中文字幕| 日本 欧美在线| 国产亚洲欧美98| 热re99久久国产66热| ponron亚洲| 亚洲精品美女久久久久99蜜臀| 午夜福利在线观看吧| 精品午夜福利视频在线观看一区| 又黄又爽又免费观看的视频| 一区福利在线观看| 电影成人av| 亚洲欧美精品综合久久99| 欧美日本视频| 99国产极品粉嫩在线观看| 国产黄a三级三级三级人| 99riav亚洲国产免费| 成熟少妇高潮喷水视频| 午夜免费鲁丝| 免费在线观看影片大全网站| videosex国产| x7x7x7水蜜桃| 欧美 亚洲 国产 日韩一| 欧美日本亚洲视频在线播放| 久久久久久久精品吃奶| 首页视频小说图片口味搜索| 黑人欧美特级aaaaaa片| 亚洲最大成人中文| 亚洲精品在线观看二区| 精品乱码久久久久久99久播| 国产精品九九99| 制服丝袜大香蕉在线| 久久中文字幕人妻熟女| 69av精品久久久久久| 1024视频免费在线观看| 欧美色视频一区免费| 免费在线观看亚洲国产| 性少妇av在线| 亚洲精品国产一区二区精华液| 国产精品一区二区在线不卡| 欧美最黄视频在线播放免费| 咕卡用的链子| 色老头精品视频在线观看| 身体一侧抽搐| 精品人妻在线不人妻| 国产精品久久久久久人妻精品电影| 中出人妻视频一区二区| 麻豆成人av在线观看| 午夜免费观看网址| 一级作爱视频免费观看| 国产熟女xx| 亚洲美女黄片视频| 日韩av在线大香蕉| 成人18禁在线播放| 国产高清视频在线播放一区| 国产精品自产拍在线观看55亚洲| 精品一区二区三区四区五区乱码| 99国产精品一区二区三区| 精品久久久久久,| 少妇裸体淫交视频免费看高清 | 美女高潮到喷水免费观看| 日韩有码中文字幕| av电影中文网址| 精品久久久久久,| 日本a在线网址| 午夜福利成人在线免费观看| 动漫黄色视频在线观看| www.999成人在线观看| 欧美成狂野欧美在线观看| 亚洲在线自拍视频| 久久久久久人人人人人| 男女之事视频高清在线观看| 黄色丝袜av网址大全| 亚洲欧美激情在线| 琪琪午夜伦伦电影理论片6080| 操出白浆在线播放| 国产亚洲精品av在线| 国产野战对白在线观看| 一个人观看的视频www高清免费观看 | 老鸭窝网址在线观看| 婷婷丁香在线五月| 免费一级毛片在线播放高清视频 | 国产av又大| aaaaa片日本免费| 精品卡一卡二卡四卡免费| 人人妻,人人澡人人爽秒播| 国产精品精品国产色婷婷| 女人精品久久久久毛片| 精品福利观看| 欧美日本中文国产一区发布| x7x7x7水蜜桃| 精品久久久精品久久久| 日本欧美视频一区| 午夜福利视频1000在线观看 | 91成年电影在线观看| 免费不卡黄色视频| 少妇熟女aⅴ在线视频| 亚洲国产看品久久| 欧美成人一区二区免费高清观看 | 黄色视频,在线免费观看| 狂野欧美激情性xxxx| 欧美不卡视频在线免费观看 | 午夜a级毛片| 久久精品成人免费网站| 精品一区二区三区av网在线观看| 亚洲va日本ⅴa欧美va伊人久久| 97人妻天天添夜夜摸| 黄色丝袜av网址大全| 少妇 在线观看| 天天躁狠狠躁夜夜躁狠狠躁| 免费高清在线观看日韩| 电影成人av| 首页视频小说图片口味搜索| 国产日韩一区二区三区精品不卡| 侵犯人妻中文字幕一二三四区| 久久婷婷人人爽人人干人人爱 | 国产激情久久老熟女| 中文字幕最新亚洲高清| 亚洲国产日韩欧美精品在线观看 | 亚洲av电影不卡..在线观看| 欧美中文综合在线视频| 99国产精品99久久久久| 亚洲专区国产一区二区| www.自偷自拍.com| 日韩欧美一区二区三区在线观看| 久久久精品欧美日韩精品| 欧美成人一区二区免费高清观看 | 自拍欧美九色日韩亚洲蝌蚪91| www.熟女人妻精品国产| 欧美日本视频| 国产精品99久久99久久久不卡| 在线观看66精品国产| 纯流量卡能插随身wifi吗| av欧美777| 天天添夜夜摸| 大香蕉久久成人网| 日韩一卡2卡3卡4卡2021年| 91大片在线观看| 国产亚洲精品一区二区www| 精品国产超薄肉色丝袜足j| 国产xxxxx性猛交| 成在线人永久免费视频| 欧美日韩福利视频一区二区| 手机成人av网站| 精品乱码久久久久久99久播| 极品人妻少妇av视频| 久久精品亚洲精品国产色婷小说| 91麻豆精品激情在线观看国产| 99在线视频只有这里精品首页| 国产亚洲精品综合一区在线观看 | 婷婷精品国产亚洲av在线| 黄频高清免费视频| 脱女人内裤的视频| 国产主播在线观看一区二区| 国产熟女午夜一区二区三区| 亚洲国产精品合色在线| 欧美激情极品国产一区二区三区| 成人三级做爰电影| 久久婷婷成人综合色麻豆| or卡值多少钱| 久久午夜综合久久蜜桃| 亚洲少妇的诱惑av| 日韩高清综合在线| 国产成+人综合+亚洲专区| 久热这里只有精品99| 国产熟女午夜一区二区三区| 老司机在亚洲福利影院| 久久久久久大精品| 国产在线精品亚洲第一网站| 国产男靠女视频免费网站| 色精品久久人妻99蜜桃| 在线观看舔阴道视频| 欧美黑人精品巨大| 人人妻人人澡人人看| 欧美激情久久久久久爽电影 | 韩国av一区二区三区四区| av欧美777| 99香蕉大伊视频| 在线十欧美十亚洲十日本专区| 人人妻人人爽人人添夜夜欢视频| 老司机福利观看| 精品一区二区三区视频在线观看免费| 亚洲性夜色夜夜综合| www.熟女人妻精品国产| 亚洲国产精品sss在线观看| 99riav亚洲国产免费| 午夜日韩欧美国产| 国产精品二区激情视频| 精品日产1卡2卡| 999久久久精品免费观看国产| 精品国产乱码久久久久久男人| 制服人妻中文乱码| av天堂在线播放| 1024视频免费在线观看| 欧美国产精品va在线观看不卡| 午夜福利,免费看| 最新在线观看一区二区三区| 亚洲国产高清在线一区二区三 | 丝袜美腿诱惑在线| 久久久久久亚洲精品国产蜜桃av| 免费高清视频大片| 欧美在线一区亚洲| 亚洲第一欧美日韩一区二区三区| 两性午夜刺激爽爽歪歪视频在线观看 | 丝袜美足系列| 亚洲色图综合在线观看| 夜夜看夜夜爽夜夜摸| 欧美在线黄色| 亚洲黑人精品在线| 中文字幕色久视频| 免费人成视频x8x8入口观看| a级毛片在线看网站| 久久久国产成人精品二区| 好看av亚洲va欧美ⅴa在| 婷婷精品国产亚洲av在线| 亚洲男人天堂网一区| 精品国产乱码久久久久久男人| 性少妇av在线| 亚洲av片天天在线观看| 日韩免费av在线播放| 国产一区二区激情短视频| 禁无遮挡网站| 国产日韩一区二区三区精品不卡| 精品少妇一区二区三区视频日本电影| 男人舔女人下体高潮全视频| 狠狠狠狠99中文字幕| 久久久久国产一级毛片高清牌| 亚洲专区字幕在线| 国产野战对白在线观看| 18禁美女被吸乳视频| 欧美一级毛片孕妇| 欧美日本亚洲视频在线播放| 三级毛片av免费| 中文亚洲av片在线观看爽| 日本免费a在线| 国产精品电影一区二区三区| 日韩欧美三级三区| 国产av一区在线观看免费| 国产野战对白在线观看| 久久这里只有精品19| 精品少妇一区二区三区视频日本电影| 色播亚洲综合网| 国产成人精品久久二区二区免费| 国产一卡二卡三卡精品| 国产精品永久免费网站| 午夜福利欧美成人| 少妇的丰满在线观看| ponron亚洲| 一边摸一边抽搐一进一小说| 午夜激情av网站| a在线观看视频网站| 香蕉久久夜色| 亚洲男人天堂网一区| 别揉我奶头~嗯~啊~动态视频| 高清在线国产一区| 国产色视频综合| av天堂久久9| 999久久久精品免费观看国产| 91精品三级在线观看| 人人妻人人澡人人看| 亚洲欧美精品综合一区二区三区| 99热只有精品国产| 老司机午夜十八禁免费视频| 亚洲一区中文字幕在线| 99国产精品免费福利视频| 午夜免费激情av| 国产精品永久免费网站| 久久久久久久久免费视频了| 久久久久亚洲av毛片大全| 俄罗斯特黄特色一大片| 夜夜夜夜夜久久久久| 又黄又爽又免费观看的视频| 中文字幕人成人乱码亚洲影| 亚洲国产欧美一区二区综合| 黄色丝袜av网址大全| 日本黄色视频三级网站网址| 99精品欧美一区二区三区四区| 18禁裸乳无遮挡免费网站照片 | 老鸭窝网址在线观看| xxx96com| 久久婷婷成人综合色麻豆| 成在线人永久免费视频| 色尼玛亚洲综合影院| 午夜福利18| 人人妻人人澡人人看| 麻豆久久精品国产亚洲av| 一边摸一边抽搐一进一小说| 麻豆成人av在线观看| av视频在线观看入口| 热re99久久国产66热| 午夜福利欧美成人| 一进一出好大好爽视频| 久久天堂一区二区三区四区| 久久天躁狠狠躁夜夜2o2o| 国产精品永久免费网站| 久热爱精品视频在线9| 男女床上黄色一级片免费看| 非洲黑人性xxxx精品又粗又长| netflix在线观看网站| 亚洲专区中文字幕在线| 午夜福利免费观看在线| 久久这里只有精品19| 免费在线观看视频国产中文字幕亚洲| 男女下面进入的视频免费午夜 | av欧美777| 国产色视频综合| 精品国产国语对白av| 啦啦啦免费观看视频1| 国产精华一区二区三区| netflix在线观看网站| 黄色女人牲交| 国产精品美女特级片免费视频播放器 | 精品久久久精品久久久| 丰满的人妻完整版| 日韩一卡2卡3卡4卡2021年| 欧美精品啪啪一区二区三区| 性色av乱码一区二区三区2| 搡老熟女国产l中国老女人| 欧美日韩中文字幕国产精品一区二区三区 | 夜夜看夜夜爽夜夜摸| 麻豆av在线久日| 欧美精品亚洲一区二区| 久久精品成人免费网站| 黄网站色视频无遮挡免费观看| 麻豆av在线久日| 老司机深夜福利视频在线观看| 亚洲,欧美精品.| 欧美色欧美亚洲另类二区 | 亚洲aⅴ乱码一区二区在线播放 | 黄色视频,在线免费观看| 久久久精品国产亚洲av高清涩受| 国内精品久久久久精免费| 免费少妇av软件| 久久精品91无色码中文字幕| 久久青草综合色| 少妇 在线观看| 亚洲,欧美精品.| 在线观看免费午夜福利视频| 久久国产精品人妻蜜桃| 伊人久久大香线蕉亚洲五| 色播亚洲综合网| 日日爽夜夜爽网站| 国产又色又爽无遮挡免费看| 久99久视频精品免费| 在线十欧美十亚洲十日本专区| 日本精品一区二区三区蜜桃| 亚洲第一欧美日韩一区二区三区| 悠悠久久av| 母亲3免费完整高清在线观看| 久久久久久久久免费视频了| 人人妻,人人澡人人爽秒播| 亚洲精品久久国产高清桃花| 精品国内亚洲2022精品成人| 99re在线观看精品视频| 久久香蕉激情| 老熟妇乱子伦视频在线观看| 亚洲狠狠婷婷综合久久图片| 国产97色在线日韩免费| 久久午夜亚洲精品久久| 熟妇人妻久久中文字幕3abv| 啦啦啦免费观看视频1| 别揉我奶头~嗯~啊~动态视频| 国产精品99久久99久久久不卡| 国产精品精品国产色婷婷| 九色国产91popny在线| 757午夜福利合集在线观看| 中文字幕人妻丝袜一区二区| 久久精品国产99精品国产亚洲性色 | 高潮久久久久久久久久久不卡| 国产成人系列免费观看| 真人一进一出gif抽搐免费| 亚洲专区字幕在线| 一二三四社区在线视频社区8| 校园春色视频在线观看| 人人妻,人人澡人人爽秒播| 老鸭窝网址在线观看| 精品久久久久久久人妻蜜臀av | 一级片免费观看大全| 精品高清国产在线一区| 91麻豆精品激情在线观看国产| 久久久久久亚洲精品国产蜜桃av| 老司机靠b影院| 高清毛片免费观看视频网站| 成人国产综合亚洲| 淫秽高清视频在线观看| 伦理电影免费视频| 日本五十路高清| 午夜福利视频1000在线观看 | 亚洲中文日韩欧美视频| 国产精品久久久人人做人人爽| 日本一区二区免费在线视频| 亚洲熟女毛片儿| 亚洲一码二码三码区别大吗| 波多野结衣巨乳人妻| 欧美午夜高清在线| 亚洲免费av在线视频| 黄色 视频免费看| 久久久久国内视频| 成人国产综合亚洲| 丝袜美腿诱惑在线| 欧美一级a爱片免费观看看 | 黄片播放在线免费| 午夜福利18| 免费在线观看黄色视频的| 久久国产精品影院| 天天添夜夜摸| 免费观看精品视频网站| 国产又色又爽无遮挡免费看| 国产成人一区二区三区免费视频网站| 一边摸一边做爽爽视频免费| 国产高清有码在线观看视频 | 天堂动漫精品| 美女扒开内裤让男人捅视频| 男女午夜视频在线观看| 一进一出抽搐动态| 久久国产乱子伦精品免费另类| 欧美成人免费av一区二区三区| av欧美777| 国产日韩一区二区三区精品不卡| 久久久久久国产a免费观看| 9191精品国产免费久久| 中文字幕久久专区| av有码第一页| 99国产精品一区二区三区| 一级片免费观看大全| 久久精品91蜜桃| 国产精品美女特级片免费视频播放器 | 一边摸一边抽搐一进一小说| 每晚都被弄得嗷嗷叫到高潮| 欧美丝袜亚洲另类 | 一级毛片女人18水好多| 俄罗斯特黄特色一大片| 国产精品98久久久久久宅男小说| 波多野结衣一区麻豆| 黑人巨大精品欧美一区二区蜜桃| 精品日产1卡2卡| 午夜免费观看网址| 国产1区2区3区精品| 久久中文字幕人妻熟女| 亚洲欧美精品综合一区二区三区| 国产熟女午夜一区二区三区| 亚洲自拍偷在线| 多毛熟女@视频| 国产精品一区二区三区四区久久 | 欧美日韩精品网址| 一区在线观看完整版| av中文乱码字幕在线| 成熟少妇高潮喷水视频| 日本精品一区二区三区蜜桃| 91在线观看av| 一级,二级,三级黄色视频| 999精品在线视频| 午夜老司机福利片| 午夜a级毛片| 国产高清videossex| 成人三级黄色视频| 亚洲第一欧美日韩一区二区三区| 亚洲第一青青草原| 国产亚洲精品av在线| 一夜夜www| 一级黄色大片毛片| 无人区码免费观看不卡| 一区福利在线观看| 亚洲色图综合在线观看| 精品免费久久久久久久清纯| 亚洲 欧美 日韩 在线 免费| 久久久精品国产亚洲av高清涩受| 日本 av在线| 精品国产乱子伦一区二区三区| 国产精品自产拍在线观看55亚洲| 亚洲专区国产一区二区| 国产麻豆成人av免费视频| 亚洲第一av免费看| 50天的宝宝边吃奶边哭怎么回事| 香蕉丝袜av| 国产精品亚洲一级av第二区| 国内精品久久久久久久电影| 亚洲片人在线观看| 啦啦啦韩国在线观看视频| 中文字幕另类日韩欧美亚洲嫩草| 亚洲成人免费电影在线观看| 免费不卡黄色视频| 91麻豆精品激情在线观看国产| 一级毛片高清免费大全| 夜夜爽天天搞| 999久久久国产精品视频| www国产在线视频色| 99热只有精品国产| 国产成+人综合+亚洲专区| www.www免费av| 神马国产精品三级电影在线观看 | 欧美黄色淫秽网站| 久久天堂一区二区三区四区| 精品卡一卡二卡四卡免费| 一级片免费观看大全| 欧美一区二区精品小视频在线| www国产在线视频色| 美女高潮喷水抽搐中文字幕| 欧美乱色亚洲激情| 91国产中文字幕| 久久人人精品亚洲av| 最近最新中文字幕大全电影3 | 又大又爽又粗| 亚洲精品一区av在线观看| 午夜久久久久精精品| 久久久精品欧美日韩精品| 麻豆成人av在线观看| 午夜老司机福利片| 丰满的人妻完整版| 欧美日本视频| 在线观看免费日韩欧美大片| 无遮挡黄片免费观看| 国产精品一区二区在线不卡| 久久中文字幕人妻熟女| 精品一区二区三区视频在线观看免费| www国产在线视频色| 中文字幕人妻丝袜一区二区| 99国产精品一区二区三区| 后天国语完整版免费观看| 无遮挡黄片免费观看| 国产成人av激情在线播放| 搡老妇女老女人老熟妇| 精品一区二区三区视频在线观看免费| 国产成人欧美在线观看| 99国产精品免费福利视频| 少妇熟女aⅴ在线视频| 久久午夜亚洲精品久久| 美女午夜性视频免费| 日韩大尺度精品在线看网址 | 国产成人欧美| 自拍欧美九色日韩亚洲蝌蚪91| АⅤ资源中文在线天堂| 岛国在线观看网站| 国产极品粉嫩免费观看在线| 国产免费av片在线观看野外av| 精品国产国语对白av| 午夜免费激情av| 天天躁狠狠躁夜夜躁狠狠躁| 中文字幕久久专区| av网站免费在线观看视频| 成人国产一区最新在线观看| 级片在线观看| 午夜亚洲福利在线播放| 少妇粗大呻吟视频| 精品久久久久久成人av| 91成年电影在线观看| 中文亚洲av片在线观看爽| 亚洲成国产人片在线观看| 99国产精品免费福利视频| 亚洲一区中文字幕在线| 国产成人一区二区三区免费视频网站| 欧美午夜高清在线| 中文字幕精品免费在线观看视频| 69精品国产乱码久久久| 婷婷六月久久综合丁香| 亚洲av片天天在线观看| 国产亚洲av嫩草精品影院| 美女大奶头视频| 久久人人爽av亚洲精品天堂| 大型av网站在线播放| 97碰自拍视频| 久久热在线av| 18禁美女被吸乳视频| 999久久久国产精品视频| 亚洲欧洲精品一区二区精品久久久| 俄罗斯特黄特色一大片| 丝袜在线中文字幕| 色尼玛亚洲综合影院| 欧美日韩亚洲综合一区二区三区_| 在线观看www视频免费| 国产亚洲欧美精品永久| 色综合站精品国产| 亚洲国产高清在线一区二区三 | 欧美一级a爱片免费观看看 | 精品免费久久久久久久清纯| 午夜精品国产一区二区电影| 日韩欧美国产在线观看| 啦啦啦 在线观看视频| 老司机深夜福利视频在线观看| videosex国产| 很黄的视频免费| 中文字幕精品免费在线观看视频| av视频在线观看入口| 一级黄色大片毛片| 别揉我奶头~嗯~啊~动态视频| 亚洲少妇的诱惑av| 成人三级做爰电影| 亚洲成av片中文字幕在线观看| 亚洲 欧美一区二区三区| 淫秽高清视频在线观看| 欧美精品啪啪一区二区三区| 丝袜人妻中文字幕| 亚洲精品在线美女| 很黄的视频免费| 国产一区在线观看成人免费| 伦理电影免费视频|