• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental model standardizing polyvinyl alcohol hydrogel to simulate endoscopic ultrasound and endoscopic ultrasound-elastography

    2020-10-09 08:53:26ElymirGalvisGarciaSergioSobrinoCossioArturoRedingBernalYesicaContrerasMarinKarinaSolorzanoAcevedoPatriciaGonzalezZavalaRosaQuispeSiccha
    World Journal of Gastroenterology 2020年34期

    Elymir S Galvis-Garcia, Sergio Sobrino-Cossio, Arturo Reding-Bernal, Yesica Contreras-Marin, Karina Solorzano-Acevedo, Patricia Gonzalez -Zavala, Rosa M Quispe-Siccha

    Abstract

    Key Words: Endoscopic ultrasound simulators in endoscopy; Polyvinyl alcohol; Endoscopic ultrasound; Endoscopic ultrasound elastography; Strain; Elasticity

    INTRODUCTION

    According to the American Society for Gastrointestinal Endoscopy, before trainees can be certified in advanced endoscopic techniques, they must perform a minimum number of procedures to achieve competence[1]. Simulators may reduce the learning curve[1]; however, current models do not recreate reality, require considerable investment in terms of time and resources, and do not necessarily reproduce the haptic[2,3]. Biomaterials, compatible with human tissues make it possible to simulate lesions[4]. Natural (collagen, chitosan, fibrin,etc.) or synthetic hydrogels [polyethylene oxide, polyacrylic acid, polyvinyl pyrrolidone and polyvinyl alcohol (PVA)], absorb liquid without dissolving, due to their permeability and low friction coefficient[5,6]. Manipulation of the molecular weight (MW) and concentration of the PVA hydrogel results in contrasting densities (viscoelasticity), in order to simulate models more realistically[7-9]. These phantoms are compatible with magnetic resonance imaging and ultrasonography; which can produce acoustic, optical and elastographic images[10]. Elastography measures the degree of tissue stiffness illustrated in digital color distribution by means of the deformation histogram (DH) and strain ratio (SR). The classification system for EUS-elastography (EUS-E) is based on color patterns that measure the degree of tissue stiffness. EUS-E refers to the region of interest: A which comprises the tumor area and B the soft surface quotient; B/A strain ratio (SR) represents the elastographic measurement of interest[11-13]. Leeet al[14]reported the DH effectiveness for diagnosing solid masses is 97.7%. The sensitivity (SR > 6.04 or elasticity < 0.05%) and specificity (SR > 15.41 or elasticity < 0.03%) of the SR is close to 100%. However, these results were not confirmed with the same high figures in subsequent studies[15-17].

    Although results are not consistent, knowledge of elasticity coefficient of digestive organs and lesions (cystic, semi-solid and solid) makes it possible to create more realistic models, due to the viscoelastic properties of PVA hydrogels. It is thus important to assess the modulus of elasticity or Young's modulus (E = stress/strain; KPa) of phantoms in order to construct them and compare them with tissues[18]. This work was designed to standardize the mechanical properties of PVA phantoms, employing endoscopic ultrasound images for the simulation of organs and digestive lesions and elastography to evaluate the degree of tissue stiffness.

    MATERIALS AND METHODS

    This experimental study was performed in the Unidad de Investigación y Desarrollo Tecnológico (its acronym in Spanish is Unidad de Investigación y Desarrollo Tecnológico) of Hospital General de México “Dr. Eduardo Liceaga”, Mexico City. PVA hydrogels (phantoms) with different densities (by changing molecular weight and concentration) were prepared. The study was exempt from approval by the Ethics Committee as there are no live specimens involved (human or animal tissue). Two molecular weights were used: MW1= 85000-124000 and MW2= 146000-186000 and a range of PVA concentrations: 3%, 5%, 7%, 9%, 12%, 15% and 20% (Sigma-Aldrich) with a 99.9% degree of hydrolysis.

    Preparation of PVA phantoms

    We used the following equation to obtain the desired concentrations of PVA phantoms (3%, 5%, 7%, 9%, 12%, 15% and 20%) for the two molecular weights, and to calculate the weight of PVA powder in 100 mL of Milli-Q ultrapure H2O (Merck). The PVA powder crystals were dissolved after heating the mixture to 90°C, while stirring continuously (magnetic bar) until a more homogeneous hydrogel was obtained. The hydrogel was cooled for 25 min at room temperature (25°C) and stored in stainless steel boxes (containers) to avoid contamination and ensure accuracy in terms of dimensions, as presented in Figure 1. The containers were subjected to four freezing cycles (-80°C/1.5 h; Freezer-Kaltis) and defrosting (25°C/4 h), until the phantoms showed stable mechanical properties. They were then submerged in ultrapure water for preservation (where they can last for years).

    Density and Young’s modulus

    The density (g/cm3) and Young's modulus (elasticity module, KPa) for each phantom (E = stress/strain) were calculated after trimming the films (1 cm × 1 cm × 0.2 cm) from the PVA phantoms.

    Endoscopic ultrasound images

    Images were obtained (Olympus GF-UM160 and Pentax Medical EUS 360o EG-3670URK), after submerging the phantom (Milli-Q ultrapure water at 25°C) and pressing one of its walls with a latex balloon, placed on the tip of the echoendoscope, as presented in Figure 2.

    The frequency used was 7.5 MHz. Images were contrasted to those of healthy organs (pancreas and liver) and pancreatic lesions (cysts and solid masses).

    Endoscopic ultrasound elastography images

    We evaluated phantoms in terms of stiffness/elasticity (Pentax EUS-Hitachi EUB900, Real-Time Tissue Elastography) with 2-panel images inBmode of conventional grayscale (right) and elastographic image (left). The frequency used was 7.5 MHz (5.0 to 10.0 MHz)[11]. The point of interest (A or B) was measured to determine the degree of normal deformity (SR) < 6.04 and the degree of normal elasticity (B/A ratio) > 0.05%. The “A” area comprises the largest area of the tumor and the “B” area the soft surface (red). The B/A ratio (strain ratio) was considered to represent an elastographic evaluation[12].

    Figure 1 Stainless steel mold used to obtain polyvinyl alcohol phantoms.

    Figure 2 Endoscopic ultrasound images with the echoendoscope placed inside the polyvinyl alcohol phantom.

    Observers

    Observer 1 had > 12 years of experience in EUS diagnosis, with formal training in Denmark and Venezuela, and was in charge of the area in the HGM; Observer 2 had > 8 years of experience in EUS diagnosis, with formal training in Mexico and the United States.

    Statistical analysis

    We calculated the inter-observer agreement (kappa index, intra-class correlation coefficient, and extent of agreement) between the two EUS experts. To compare their congruence, we conducted an independent and blind test of simulated/real images. Kappa values and degree of concordance were as follows: < 0.2 = Poor, 0.21-0.40 = Weak, 0.41-0.60 = Moderate, 0.61-0.80 = Good, and 0.81-1.00 = Very good.

    A satisfaction survey was applied, consisting of nine questions regarding the simulated image (Likert-4 points: 0 = Not satisfied, 1 = Little satisfied, 2 = Quite satisfied and 3 = Very satisfied): (1) Normal pancreas; (2) Normal liver; (3) Homogeneous lesions; (4) Heterogeneous lesions; (5) Solid lesions; (6) Cystic lesions; (7) Semi-solid lesions; (8) Elastographic image contrast; and (9) Feasibility of measuring the degree of elasticity. For the analysis, the measurement was binary (22 table): Yes = Very satisfied/satisfiedvsNo = Moderately satisfied/not satisfied, and 20 images were evaluated. The correlation between density and degree of elasticity of tissues was calculated.

    RESULTS

    The density and Young’s modulus (M.Y.) of each PVA-phantom are summarized in Table 1. The stiffness of the phantom was correlated with higher MW and concentration (correlationr= 0.8,P= 0.01) and with the increase in density and M.Y. This depended on cross-linking the monomers by freeze/thaw cycles. Simulated lesions were visible using EUS. As shown in Figure 3, endoscopic ultrasound revealed differences between phantoms: C1vsC5(MW1= 85000-124000).

    Density was higher in homogeneous lesions (MW2= 146000–186000: C9= 15% and C10= 20%), (Figure 4) than in heterogeneous lesions (MW1= 85000–124000: C1= 7% and C2= 9%) (Figure 5). Concordance was 0.8 with a high degree of satisfaction.

    Cystic lesions were created with higher density phantoms: C6and C10(MW2= 146000–186000) (Figure 6). These cystic lesions were measured by EUS (E-EUS was never used for this). Concordance was 0.8 (kappa), with a high degree of satisfaction (Likert scale 4-points). Solid lesions were contrasted with soft areas (Figure 7). The color contrasts, RI: A and B, and SR: B/A of elastographic images are presented in Figure 8. We observed lower elasticity (dark blue area), in the case of a simulated solid lesion that contrasted with green areas (normal). SR values of > 6.04 or elasticity of < 0.05% corresponded to areas with less elasticity (rigid). The differences between the B/A ratios (65.6vs7.13) and point A (0.02vs0.07%) translated into greater tissue stiffness. Figure 9 and Table 2 show the relationship between points of interest and strain ratios with different PVA phantom densities.

    DISCUSSION

    Simulation by EUS/EUS-E of visible organs and lesions is feasible using PVA phantoms. The model had high inter-observer concordance and satisfaction. This simulation facilitates practice, while curtailing risk. The increase in the number of repetitions amplifies skills and reduces the learning curve[2,3]. However, the models lack the realism necessary to achieve competence[2]. The focus of our experiment was to build lesions and organs visible by EUS and EUS-E, but we did not evaluate whether the technique was the most appropriate tool for differentiating malignant lesions from normal tissue. We were able to create realistic ultrasonic images using PVA phantoms. However, knowledge of the elastographic parameters of different tissues allowed us to create simulated lesions due to the viscoelastic properties of the PVA hydrogel and to contrast these with normal structures. EUS-E enables a comparison between the target and normal tissue but a stiff lesion can be either benign or malignant; therefore, the elastic properties of a tumor area may be different to those in another area[15]. Currently, the effectiveness of the DH for diagnosing solid masses is a matter of debate and outcomes are controversial. However, the rationale for using EUS–E in chronic pancreatitis relates to the possibility of detecting the increased degree of fibrosis in diseased pancreas, compared to normal pancreas[19]. Despite the controversy, we selected the B/A ratio (strain ratio) to measure tissue stiffness[12]as well as the region of interest. A and B were marked in different colors (on a scale of 0-255)[19]. It is difficult to place the region of interest of the target at the same level; this is associated with low specificity and reproducibility, and great variability in cutoff for inflammatory pancreatic masses and pancreatic cancer[15]. In contrast, if the lesion appears soft, EUSE can rule out malignancy with a high level of certainty. However two negative fine needle aspirations (FNAs), using EUS, in the case of a soft and enhancing lesion can rule out the diagnosis of pancreatic adenocarcinoma in 95% of patients[15]. The accuracy of strain ratio to distinguish between normal pancreas and pancreatitis is greater, but depends on the cutoff (97.7%-ROC 0.98[19]and 91%[18]). However, one of the largest single-center studies reported a modest diagnostic utility by quantitative analysis (4.65 for SR and 0.27% for mass elasticity) for discriminating pancreatic masses[17]. One analysis of the qualitative pattern for diagnosing malignancy reported 94% accuracy (ROC curve 0.854,P< 0.0001)[20]with high interobserver coincidence (0.77 and 0.84,respectively)[20,21]. By using quantitative analysis, bias in selecting the target was diminished (accuracy 89.7%)[17].

    Table 1 Relationship between Young's Modulus and different densities of polyvinyl alcohol phantoms

    Table 2 Strain ratios (B/A) and regions of interest: A and B

    Figure 3 Comparison of endoscopic ultrasound images: A: Phantom concentration 1; B: Phantom concentration 5.

    Figure 4 Type of lesions: A: Real homogeneous; B: Simulated homogeneous that refers to the liquid component inside the polyvinyl alcohol (PVA) phantom (blue arrow), surrounded by 15% PVA (concentration 9) and 20% PVA (concentration 10).

    Figure 5 Type of lesions: A: Real heterogeneous lesion; B: Simulated heterogeneous lesion of hypoechoic predominance (concentration 1); C: Normal pancreatic tissue; and D: Simulated homogeneous image: phantom with 20% polyvinyl alcohol (concentration 10).

    Furthermore, multilayer perceptron neural networks can be trained to classify focal lesions as either benign or malignant (accuracy 95%)[21]. Our phantom was designed to distinguish lesions, increase the n (repetitions), and evaluate skills for selecting a target, while improving spatio-temporal and haptic skills. A great advantage of practice with our phantom is that there is no need to practice EUS/EUS-E exclusively on animals. Qualitative pattern analysis yielded a high accuracy of 92.9% (ROC: 0.95) for the differential diagnosis between benign and malignant lymph nodes (LNs)[22]. The accuracy for discriminating between these is of great importance for prognosis and selection of appropriate therapy[23]. Due to the characteristics of LNs, these can also be simulated using our phantom. Another study reported lower yield of EUS-E (strain ratio) in detecting LNs but prevalence was greater (61%) in 34 patients, and it showed great heterogeneity (large width of the 95% confidence intervals)[24]. Learning in clinical scenarios in order to acquire skills has ethical and legal implications. The low prevalence of cases is a severe limit to training, in addition to the fact that in most centers, it is the expert who performs the interventions[1]. Regarding biomaterials, these have been used to obtain acoustic, optical and elastographic images[8,11,12,18]. In order to have greater realism in our simulated lesions, we needed to assess the mechanical properties (elasticity/stiffness) of tissue. In our experiment, biomaterial concentration was inversely proportional to the degree of tissue elasticity. The retention of liquid within the fibers produces echogenic differences. If we increase the density of the biomaterial, it will tend to be more homogeneous and hyperechoic. Density disperses sound and modifies impedance[16].

    Figure 6 Cystic lesion: A: A hypoechoic image surrounded by a hyperechoic wall is visible, which produces a posterior reinforcement compatible with a pseudocyst of the pancreas (real image); and B: Endoscopic ultrasound contrast of the interior and exterior of the polyvinyl alcohol phantom (concentration 10): A hypoechoic image (inside) surrounded by a hyperechoic image (wall).

    Figure 7 Solid lesion: A: Real; and B: Simulated (concentration 10).

    In our study, density manipulation made it possible for us to build more realistic models. The presence of bubbles within the material increased the degree of realism. The degree of water retention within the phantoms enables the simulation of different injuries. The 20% concentrations (C5and C10) contain less water (solid lesions), in contrast to those at 7% (C1and C6), which contain a greater quantity (semi-solid). PVA characteristics are dynamic and differ when densities are compared. The area of least elasticity (> M.Y) is the point of greatest strength and cross-linking. The zone of least tension is the place where the transducer exerts pressure (deformity). The advantages of using PVA phantoms are as follows: (1) They do not require different equipment to that commonly used for patients, however, for the animal model they do; (2) Organs and lesions, whether hard or soft, can be simulated by modifying the molecular weight, concentration and freeze/thaw cycles of PVA; and (3) The simulators are inexpensive, this will vary depending on the size and sophistication of the phantom, for example depending on the completeness of an organ. In this work, as it only consisted of phantom characterization, each phantom costs approximately $15 to $20; 4) phantoms can be reused many times, provided they are kept immersed in water at room temperature (25-27°C) after use. Limitations in this study include: (1) It is necessary to submerge the PVA phantom in the water container; and (2) The main problem with EUS-E refers to difficulties in controlling tissue compression by the EUS transducer that may increase errors in measurement. Knowledge of the elasticity coefficient made it possible to create solid and semi-solid organs; both homo and heterogeneous, as well as more realistic cystic and solid lesions, due to the advantages of the viscoelastic properties of the phantom.

    Figure 8 Elastographic images. A: Diagram showing color distribution; B: Color scale (elastography) of phantom concentration (C) 6; and C: Contrast between phantom C6 (green hue) molecular weight 2 = 146000– 186000 vs phantom C5 (dark blue hue) with molecular weight 1 = 85000 – 124000.

    CONCLUSION

    In conclusion, the use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS-E.

    Figure 9 Relationship between the region of interest A and B and the (B/A) strain ratio.

    ARTICLE HIGHLIGHTS

    Research results

    The density of PVA phantoms depended on MW and C. The stiffness of these phantoms was correlated with higher MW and C (correlationr= 0.8,P= 0.01) as well as with increasing density and M.Y. All simulated lesions were visible using EUS. We calculated elasticity and deformation parameters of solid (blue) areas, contrasting with the norm (Kappa = 0.8; high degree of satisfaction)

    Research conclusions

    The use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS/EUS-E. Knowledge of the elasticity coefficient made it possible to create different lesions.

    Research perspectives

    Training in a clinical setting has medical and legal implications. Skill and abilities depend on shortening the learning curve. However, in order to achieve this, a model must be realistic. PVA phantoms were demonstrated to be feasible, economical and realistic models for EUS/EUS-E training.

    ACKNOWLEDGEMENTS

    To Dr. Jorge Cerecedo-Rodríguez (Hospital ángeles Acoxpa) for his contribution to the interpretation of the endosonographic images. Thanks to the engineers Yair Pacheco, Javier Márquez Cortez (Medical Scope) and Lilia Vázquez Romero (Endomédica, S.A. de C. V) for informing us about the technical aspects of obtaining EUS/elastography images.

    人人妻人人澡人人看| 国产无遮挡羞羞视频在线观看| 国产精品久久久久成人av| 一二三四社区在线视频社区8| netflix在线观看网站| 久久热在线av| 色综合欧美亚洲国产小说| 最新在线观看一区二区三区| 色婷婷av一区二区三区视频| 99在线视频只有这里精品首页| 亚洲人成电影观看| 69av精品久久久久久| 天天添夜夜摸| 亚洲狠狠婷婷综合久久图片| 亚洲成av片中文字幕在线观看| 99精品欧美一区二区三区四区| 亚洲久久久国产精品| 在线免费观看的www视频| 91麻豆精品激情在线观看国产 | 成人国语在线视频| 国产国语露脸激情在线看| 如日韩欧美国产精品一区二区三区| 51午夜福利影视在线观看| 亚洲七黄色美女视频| 亚洲黑人精品在线| 亚洲五月婷婷丁香| 后天国语完整版免费观看| 欧美日韩视频精品一区| 久久久国产成人免费| 男人的好看免费观看在线视频 | 日韩大码丰满熟妇| 久久天躁狠狠躁夜夜2o2o| 日日干狠狠操夜夜爽| 亚洲国产精品一区二区三区在线| 国产成人精品久久二区二区91| 日韩av在线大香蕉| 麻豆av在线久日| 久久精品成人免费网站| 精品福利永久在线观看| 亚洲黑人精品在线| 18禁裸乳无遮挡免费网站照片 | av国产精品久久久久影院| 丝袜美足系列| 成人永久免费在线观看视频| 亚洲一区中文字幕在线| 麻豆成人av在线观看| 欧美亚洲日本最大视频资源| 神马国产精品三级电影在线观看 | 亚洲视频免费观看视频| 午夜福利,免费看| 久久久国产精品麻豆| 99国产精品一区二区蜜桃av| 亚洲av电影在线进入| 免费高清在线观看日韩| 俄罗斯特黄特色一大片| 久久天躁狠狠躁夜夜2o2o| 三级毛片av免费| 99久久综合精品五月天人人| 国产成人av激情在线播放| 欧美日韩国产mv在线观看视频| 激情在线观看视频在线高清| 水蜜桃什么品种好| 日韩中文字幕欧美一区二区| 国产高清视频在线播放一区| 在线视频色国产色| 宅男免费午夜| av有码第一页| 久久精品国产亚洲av高清一级| 电影成人av| 在线观看日韩欧美| 欧美中文日本在线观看视频| 精品久久久久久久久久免费视频 | 日日摸夜夜添夜夜添小说| 久久伊人香网站| 欧美一级毛片孕妇| 91老司机精品| 日韩免费高清中文字幕av| 精品福利观看| 亚洲一区二区三区色噜噜 | 国产一区二区激情短视频| 日日干狠狠操夜夜爽| 桃红色精品国产亚洲av| aaaaa片日本免费| √禁漫天堂资源中文www| 国产在线精品亚洲第一网站| 亚洲中文日韩欧美视频| 91九色精品人成在线观看| 欧美不卡视频在线免费观看 | 12—13女人毛片做爰片一| 国产av在哪里看| 亚洲国产毛片av蜜桃av| 免费av毛片视频| 国产精品九九99| 在线看a的网站| 后天国语完整版免费观看| 亚洲五月婷婷丁香| 亚洲aⅴ乱码一区二区在线播放 | 成人亚洲精品一区在线观看| 欧美成人性av电影在线观看| 国产黄色免费在线视频| 黄色片一级片一级黄色片| 精品久久蜜臀av无| 日日摸夜夜添夜夜添小说| 亚洲va日本ⅴa欧美va伊人久久| 一边摸一边做爽爽视频免费| 91字幕亚洲| 久久精品国产亚洲av香蕉五月| 中文字幕人妻丝袜一区二区| 日韩欧美免费精品| 99riav亚洲国产免费| 成人国语在线视频| 亚洲在线自拍视频| 日韩免费高清中文字幕av| 少妇 在线观看| 午夜影院日韩av| 精品国产美女av久久久久小说| 国产精品九九99| 亚洲黑人精品在线| 成人黄色视频免费在线看| 欧美丝袜亚洲另类 | 麻豆久久精品国产亚洲av | 久久久久久亚洲精品国产蜜桃av| 日本三级黄在线观看| 丝袜美足系列| 欧美成人午夜精品| 国产男靠女视频免费网站| 午夜福利,免费看| 叶爱在线成人免费视频播放| tocl精华| www.熟女人妻精品国产| 精品久久久精品久久久| 国产99白浆流出| 久久人人精品亚洲av| a级片在线免费高清观看视频| 叶爱在线成人免费视频播放| 久久精品亚洲av国产电影网| 久久久久国产一级毛片高清牌| av网站在线播放免费| 日日夜夜操网爽| 欧美激情久久久久久爽电影 | 18禁观看日本| 久热这里只有精品99| 亚洲精品美女久久久久99蜜臀| 国产亚洲精品久久久久5区| 午夜免费激情av| 久9热在线精品视频| 可以免费在线观看a视频的电影网站| 人人澡人人妻人| 超碰成人久久| 麻豆成人av在线观看| 欧美+亚洲+日韩+国产| 久久精品国产清高在天天线| 亚洲欧美一区二区三区黑人| 99在线视频只有这里精品首页| 精品久久久久久成人av| 色综合婷婷激情| 侵犯人妻中文字幕一二三四区| 亚洲国产欧美日韩在线播放| 日韩 欧美 亚洲 中文字幕| 国产精品日韩av在线免费观看 | 男女之事视频高清在线观看| 欧美色视频一区免费| 高清av免费在线| 精品高清国产在线一区| 变态另类成人亚洲欧美熟女 | 精品国产一区二区三区四区第35| 长腿黑丝高跟| 大型av网站在线播放| tocl精华| 国产av一区在线观看免费| 中文字幕精品免费在线观看视频| 亚洲精品在线美女| 一a级毛片在线观看| 欧美日韩中文字幕国产精品一区二区三区 | 久久这里只有精品19| 欧美大码av| 亚洲国产精品合色在线| 午夜免费成人在线视频| 亚洲中文av在线| 又大又爽又粗| 欧美日韩亚洲国产一区二区在线观看| 精品国产国语对白av| 久热爱精品视频在线9| 一级a爱片免费观看的视频| 51午夜福利影视在线观看| 久久久久久亚洲精品国产蜜桃av| 日日摸夜夜添夜夜添小说| 热re99久久精品国产66热6| 男女做爰动态图高潮gif福利片 | 欧美日本亚洲视频在线播放| 国产欧美日韩精品亚洲av| 最近最新免费中文字幕在线| 久久精品国产99精品国产亚洲性色 | 亚洲熟妇熟女久久| 亚洲国产欧美一区二区综合| e午夜精品久久久久久久| 国产黄色免费在线视频| 人人妻人人澡人人看| 黑人欧美特级aaaaaa片| 亚洲人成网站在线播放欧美日韩| 男人舔女人下体高潮全视频| 国产av精品麻豆| 制服诱惑二区| 久久伊人香网站| 亚洲国产毛片av蜜桃av| 深夜精品福利| 亚洲久久久国产精品| 麻豆av在线久日| 人妻久久中文字幕网| 人人妻人人添人人爽欧美一区卜| 国产99白浆流出| 国产精品二区激情视频| 久久精品亚洲av国产电影网| 最近最新中文字幕大全电影3 | 午夜影院日韩av| 国产精品爽爽va在线观看网站 | 可以在线观看毛片的网站| 色婷婷久久久亚洲欧美| 好男人电影高清在线观看| 国产主播在线观看一区二区| 亚洲一码二码三码区别大吗| 性欧美人与动物交配| 久久精品国产综合久久久| 纯流量卡能插随身wifi吗| 日韩欧美三级三区| 久久人妻福利社区极品人妻图片| 免费在线观看黄色视频的| 级片在线观看| 欧美精品亚洲一区二区| 亚洲第一av免费看| 91成年电影在线观看| 男人操女人黄网站| svipshipincom国产片| 一级毛片高清免费大全| 热re99久久精品国产66热6| 在线免费观看的www视频| 午夜免费激情av| www.熟女人妻精品国产| 曰老女人黄片| 亚洲自拍偷在线| 少妇裸体淫交视频免费看高清 | 18美女黄网站色大片免费观看| 精品日产1卡2卡| 精品卡一卡二卡四卡免费| 乱人伦中国视频| 久久香蕉国产精品| 日本一区二区免费在线视频| 免费在线观看日本一区| 欧美日韩亚洲高清精品| www.999成人在线观看| 亚洲精华国产精华精| www.熟女人妻精品国产| 一二三四在线观看免费中文在| 欧美av亚洲av综合av国产av| 免费高清在线观看日韩| 色婷婷av一区二区三区视频| 69精品国产乱码久久久| 黑人巨大精品欧美一区二区蜜桃| 国产一区二区三区在线臀色熟女 | 少妇粗大呻吟视频| 男女下面进入的视频免费午夜 | 脱女人内裤的视频| ponron亚洲| 露出奶头的视频| 夜夜夜夜夜久久久久| 久久青草综合色| 国产精品综合久久久久久久免费 | av在线播放免费不卡| 精品福利永久在线观看| 精品久久久久久成人av| 在线观看66精品国产| 久热这里只有精品99| 这个男人来自地球电影免费观看| av天堂久久9| 亚洲 欧美 日韩 在线 免费| 亚洲成av片中文字幕在线观看| 欧美日韩视频精品一区| 午夜免费鲁丝| 亚洲五月色婷婷综合| 精品人妻在线不人妻| 日韩人妻精品一区2区三区| 大香蕉久久成人网| 免费av中文字幕在线| 女同久久另类99精品国产91| 男女做爰动态图高潮gif福利片 | 久久精品aⅴ一区二区三区四区| 人成视频在线观看免费观看| 首页视频小说图片口味搜索| 老司机深夜福利视频在线观看| av在线播放免费不卡| a在线观看视频网站| 午夜免费鲁丝| 91字幕亚洲| 久久中文字幕一级| 中文字幕色久视频| 亚洲va日本ⅴa欧美va伊人久久| 国产男靠女视频免费网站| 黑丝袜美女国产一区| 国产av又大| 黄色毛片三级朝国网站| www.自偷自拍.com| 香蕉丝袜av| 亚洲国产中文字幕在线视频| 国产精品1区2区在线观看.| 国产欧美日韩一区二区三| 制服诱惑二区| 最近最新中文字幕大全电影3 | 亚洲av第一区精品v没综合| 美女扒开内裤让男人捅视频| 国产精品免费视频内射| 亚洲熟妇中文字幕五十中出 | 亚洲欧美日韩另类电影网站| 宅男免费午夜| 午夜精品在线福利| 一级毛片精品| 亚洲成人免费av在线播放| 一边摸一边抽搐一进一小说| 国产精品一区二区免费欧美| 欧美成人午夜精品| 五月开心婷婷网| 两人在一起打扑克的视频| 又黄又爽又免费观看的视频| 国产主播在线观看一区二区| 嫁个100分男人电影在线观看| 精品久久久久久久久久免费视频 | 99国产精品免费福利视频| 99久久国产精品久久久| 欧美乱色亚洲激情| 国产野战对白在线观看| 亚洲国产精品一区二区三区在线| 国产精品 欧美亚洲| 999久久久国产精品视频| 久久人妻福利社区极品人妻图片| 91麻豆av在线| 亚洲精品成人av观看孕妇| 免费av毛片视频| 欧美成狂野欧美在线观看| 日韩免费高清中文字幕av| 宅男免费午夜| 黄色片一级片一级黄色片| 亚洲专区字幕在线| 黄色女人牲交| 午夜精品久久久久久毛片777| 精品久久久精品久久久| 午夜福利一区二区在线看| 午夜精品在线福利| 亚洲精品av麻豆狂野| 嫩草影视91久久| 久久中文字幕人妻熟女| 自拍欧美九色日韩亚洲蝌蚪91| 亚洲专区国产一区二区| 深夜精品福利| 女人被狂操c到高潮| 欧美日韩av久久| 亚洲久久久国产精品| 精品久久久久久电影网| 女性被躁到高潮视频| 久久天堂一区二区三区四区| 国产成人影院久久av| 黄色毛片三级朝国网站| 欧美av亚洲av综合av国产av| 成人手机av| 在线观看免费高清a一片| 国产亚洲精品第一综合不卡| 老鸭窝网址在线观看| 国产精品一区二区免费欧美| 亚洲 国产 在线| 51午夜福利影视在线观看| 两个人看的免费小视频| 人人妻,人人澡人人爽秒播| 69av精品久久久久久| 欧美久久黑人一区二区| 波多野结衣高清无吗| 99国产精品一区二区蜜桃av| 我的亚洲天堂| 日本五十路高清| 一级,二级,三级黄色视频| 窝窝影院91人妻| 亚洲第一av免费看| 99riav亚洲国产免费| 制服诱惑二区| 丝袜美足系列| 亚洲视频免费观看视频| 免费在线观看黄色视频的| av电影中文网址| 精品国产美女av久久久久小说| 午夜老司机福利片| 欧美日韩瑟瑟在线播放| 91精品三级在线观看| 日本一区二区免费在线视频| 老司机深夜福利视频在线观看| 新久久久久国产一级毛片| 欧美日韩亚洲综合一区二区三区_| 黑人猛操日本美女一级片| 99久久久亚洲精品蜜臀av| 天堂√8在线中文| 日韩大码丰满熟妇| 免费日韩欧美在线观看| 欧美av亚洲av综合av国产av| 久久精品国产亚洲av高清一级| 精品一区二区三区av网在线观看| 国产三级在线视频| 嫁个100分男人电影在线观看| 国产亚洲精品一区二区www| 美女高潮喷水抽搐中文字幕| 可以免费在线观看a视频的电影网站| 悠悠久久av| 久久天躁狠狠躁夜夜2o2o| 国产亚洲精品综合一区在线观看 | 五月开心婷婷网| 久久久久精品国产欧美久久久| 韩国精品一区二区三区| 中国美女看黄片| 国产伦一二天堂av在线观看| 国产一卡二卡三卡精品| 国产精品亚洲av一区麻豆| 日韩免费av在线播放| 18禁观看日本| 日韩av在线大香蕉| 亚洲中文日韩欧美视频| 午夜福利,免费看| 精品日产1卡2卡| 嫩草影视91久久| 午夜免费激情av| 亚洲色图av天堂| 成年人免费黄色播放视频| 夫妻午夜视频| av天堂在线播放| 制服诱惑二区| 国产精品99久久99久久久不卡| 亚洲av日韩精品久久久久久密| 国产片内射在线| 男女午夜视频在线观看| 国产精品偷伦视频观看了| 国产伦一二天堂av在线观看| 国产成年人精品一区二区 | 男女午夜视频在线观看| 黄片大片在线免费观看| 国产成+人综合+亚洲专区| 老汉色av国产亚洲站长工具| 亚洲男人的天堂狠狠| 国产av在哪里看| 中文欧美无线码| 欧美+亚洲+日韩+国产| av免费在线观看网站| 老汉色av国产亚洲站长工具| av网站在线播放免费| 国产深夜福利视频在线观看| 黄频高清免费视频| 国产精品电影一区二区三区| 日韩欧美一区视频在线观看| 夜夜夜夜夜久久久久| 午夜视频精品福利| 亚洲国产欧美一区二区综合| 国产成人精品久久二区二区免费| 91麻豆精品激情在线观看国产 | 乱人伦中国视频| 久久精品亚洲av国产电影网| 757午夜福利合集在线观看| 女性生殖器流出的白浆| 国产精品永久免费网站| 亚洲国产毛片av蜜桃av| 国产极品粉嫩免费观看在线| 激情视频va一区二区三区| 久久亚洲真实| 日日摸夜夜添夜夜添小说| 亚洲视频免费观看视频| 精品午夜福利视频在线观看一区| 欧美+亚洲+日韩+国产| 两性夫妻黄色片| 午夜激情av网站| 中文字幕人妻丝袜制服| 国产1区2区3区精品| 18禁国产床啪视频网站| av网站在线播放免费| 涩涩av久久男人的天堂| 69精品国产乱码久久久| 亚洲欧美精品综合一区二区三区| 久久人妻福利社区极品人妻图片| 亚洲色图综合在线观看| 国产精品久久久av美女十八| 性少妇av在线| 日本免费一区二区三区高清不卡 | 国产一区二区三区在线臀色熟女 | 欧美日韩亚洲高清精品| www.999成人在线观看| 亚洲色图 男人天堂 中文字幕| 9色porny在线观看| 亚洲精品中文字幕在线视频| 欧美日本中文国产一区发布| 成人黄色视频免费在线看| 欧美日韩亚洲国产一区二区在线观看| 国产乱人伦免费视频| 性色av乱码一区二区三区2| 色播在线永久视频| 长腿黑丝高跟| 亚洲在线自拍视频| 亚洲第一青青草原| 日本三级黄在线观看| 日本欧美视频一区| 操美女的视频在线观看| 女人被躁到高潮嗷嗷叫费观| 中文欧美无线码| 亚洲熟女毛片儿| 国产黄色免费在线视频| 欧美精品亚洲一区二区| 免费搜索国产男女视频| 高清欧美精品videossex| 黑丝袜美女国产一区| 免费一级毛片在线播放高清视频 | 女生性感内裤真人,穿戴方法视频| 久久人人爽av亚洲精品天堂| 男女做爰动态图高潮gif福利片 | 成熟少妇高潮喷水视频| 无限看片的www在线观看| 村上凉子中文字幕在线| 老司机午夜十八禁免费视频| 欧美日韩亚洲高清精品| 欧美人与性动交α欧美精品济南到| 亚洲人成网站在线播放欧美日韩| 国产精品 国内视频| 精品福利观看| 欧美在线一区亚洲| 欧美日韩av久久| 一个人观看的视频www高清免费观看 | 国产精品亚洲av一区麻豆| 午夜免费成人在线视频| 美女 人体艺术 gogo| 欧美+亚洲+日韩+国产| 国产国语露脸激情在线看| 亚洲全国av大片| 午夜老司机福利片| www.自偷自拍.com| 免费在线观看黄色视频的| 亚洲成人久久性| 麻豆国产av国片精品| 999精品在线视频| 国产精品成人在线| 久久久久久免费高清国产稀缺| 高清毛片免费观看视频网站 | 一进一出好大好爽视频| 黑人猛操日本美女一级片| 久热这里只有精品99| 色综合欧美亚洲国产小说| 在线观看一区二区三区| 午夜成年电影在线免费观看| 久久亚洲精品不卡| 欧美中文综合在线视频| 国产精品国产av在线观看| 色尼玛亚洲综合影院| 午夜a级毛片| 久久伊人香网站| 一a级毛片在线观看| 校园春色视频在线观看| 亚洲片人在线观看| 黑人猛操日本美女一级片| 亚洲精品一二三| 怎么达到女性高潮| 亚洲熟妇熟女久久| 免费一级毛片在线播放高清视频 | 51午夜福利影视在线观看| 日韩国内少妇激情av| 狠狠狠狠99中文字幕| 日韩精品中文字幕看吧| 亚洲国产欧美一区二区综合| 日韩中文字幕欧美一区二区| 如日韩欧美国产精品一区二区三区| 在线观看www视频免费| 欧美日韩视频精品一区| 18禁观看日本| 色婷婷av一区二区三区视频| 欧美av亚洲av综合av国产av| 国产激情久久老熟女| 国产91精品成人一区二区三区| 国产人伦9x9x在线观看| 午夜福利,免费看| 一级毛片精品| 国产精品自产拍在线观看55亚洲| 亚洲自偷自拍图片 自拍| 欧美在线一区亚洲| 国产精品亚洲一级av第二区| 制服诱惑二区| 久久欧美精品欧美久久欧美| 国产97色在线日韩免费| 一a级毛片在线观看| 伦理电影免费视频| 老汉色av国产亚洲站长工具| 久久久久久久久中文| 中文字幕人妻丝袜制服| 欧美激情久久久久久爽电影 | 国产av又大| 99久久人妻综合| 91麻豆av在线| 亚洲精品一二三| 窝窝影院91人妻| 国产精品爽爽va在线观看网站 | 天堂动漫精品| 亚洲国产欧美网| 交换朋友夫妻互换小说| 变态另类成人亚洲欧美熟女 | av片东京热男人的天堂| 午夜福利欧美成人| 久久热在线av| videosex国产| 色老头精品视频在线观看| 一区二区三区精品91| www.自偷自拍.com| av网站在线播放免费| 人人妻人人爽人人添夜夜欢视频| 看黄色毛片网站| 国产成人精品无人区| 天堂俺去俺来也www色官网| 成年人黄色毛片网站| 男人舔女人的私密视频| 狂野欧美激情性xxxx|