• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Experimental model standardizing polyvinyl alcohol hydrogel to simulate endoscopic ultrasound and endoscopic ultrasound-elastography

    2020-10-09 08:53:26ElymirGalvisGarciaSergioSobrinoCossioArturoRedingBernalYesicaContrerasMarinKarinaSolorzanoAcevedoPatriciaGonzalezZavalaRosaQuispeSiccha
    World Journal of Gastroenterology 2020年34期

    Elymir S Galvis-Garcia, Sergio Sobrino-Cossio, Arturo Reding-Bernal, Yesica Contreras-Marin, Karina Solorzano-Acevedo, Patricia Gonzalez -Zavala, Rosa M Quispe-Siccha

    Abstract

    Key Words: Endoscopic ultrasound simulators in endoscopy; Polyvinyl alcohol; Endoscopic ultrasound; Endoscopic ultrasound elastography; Strain; Elasticity

    INTRODUCTION

    According to the American Society for Gastrointestinal Endoscopy, before trainees can be certified in advanced endoscopic techniques, they must perform a minimum number of procedures to achieve competence[1]. Simulators may reduce the learning curve[1]; however, current models do not recreate reality, require considerable investment in terms of time and resources, and do not necessarily reproduce the haptic[2,3]. Biomaterials, compatible with human tissues make it possible to simulate lesions[4]. Natural (collagen, chitosan, fibrin,etc.) or synthetic hydrogels [polyethylene oxide, polyacrylic acid, polyvinyl pyrrolidone and polyvinyl alcohol (PVA)], absorb liquid without dissolving, due to their permeability and low friction coefficient[5,6]. Manipulation of the molecular weight (MW) and concentration of the PVA hydrogel results in contrasting densities (viscoelasticity), in order to simulate models more realistically[7-9]. These phantoms are compatible with magnetic resonance imaging and ultrasonography; which can produce acoustic, optical and elastographic images[10]. Elastography measures the degree of tissue stiffness illustrated in digital color distribution by means of the deformation histogram (DH) and strain ratio (SR). The classification system for EUS-elastography (EUS-E) is based on color patterns that measure the degree of tissue stiffness. EUS-E refers to the region of interest: A which comprises the tumor area and B the soft surface quotient; B/A strain ratio (SR) represents the elastographic measurement of interest[11-13]. Leeet al[14]reported the DH effectiveness for diagnosing solid masses is 97.7%. The sensitivity (SR > 6.04 or elasticity < 0.05%) and specificity (SR > 15.41 or elasticity < 0.03%) of the SR is close to 100%. However, these results were not confirmed with the same high figures in subsequent studies[15-17].

    Although results are not consistent, knowledge of elasticity coefficient of digestive organs and lesions (cystic, semi-solid and solid) makes it possible to create more realistic models, due to the viscoelastic properties of PVA hydrogels. It is thus important to assess the modulus of elasticity or Young's modulus (E = stress/strain; KPa) of phantoms in order to construct them and compare them with tissues[18]. This work was designed to standardize the mechanical properties of PVA phantoms, employing endoscopic ultrasound images for the simulation of organs and digestive lesions and elastography to evaluate the degree of tissue stiffness.

    MATERIALS AND METHODS

    This experimental study was performed in the Unidad de Investigación y Desarrollo Tecnológico (its acronym in Spanish is Unidad de Investigación y Desarrollo Tecnológico) of Hospital General de México “Dr. Eduardo Liceaga”, Mexico City. PVA hydrogels (phantoms) with different densities (by changing molecular weight and concentration) were prepared. The study was exempt from approval by the Ethics Committee as there are no live specimens involved (human or animal tissue). Two molecular weights were used: MW1= 85000-124000 and MW2= 146000-186000 and a range of PVA concentrations: 3%, 5%, 7%, 9%, 12%, 15% and 20% (Sigma-Aldrich) with a 99.9% degree of hydrolysis.

    Preparation of PVA phantoms

    We used the following equation to obtain the desired concentrations of PVA phantoms (3%, 5%, 7%, 9%, 12%, 15% and 20%) for the two molecular weights, and to calculate the weight of PVA powder in 100 mL of Milli-Q ultrapure H2O (Merck). The PVA powder crystals were dissolved after heating the mixture to 90°C, while stirring continuously (magnetic bar) until a more homogeneous hydrogel was obtained. The hydrogel was cooled for 25 min at room temperature (25°C) and stored in stainless steel boxes (containers) to avoid contamination and ensure accuracy in terms of dimensions, as presented in Figure 1. The containers were subjected to four freezing cycles (-80°C/1.5 h; Freezer-Kaltis) and defrosting (25°C/4 h), until the phantoms showed stable mechanical properties. They were then submerged in ultrapure water for preservation (where they can last for years).

    Density and Young’s modulus

    The density (g/cm3) and Young's modulus (elasticity module, KPa) for each phantom (E = stress/strain) were calculated after trimming the films (1 cm × 1 cm × 0.2 cm) from the PVA phantoms.

    Endoscopic ultrasound images

    Images were obtained (Olympus GF-UM160 and Pentax Medical EUS 360o EG-3670URK), after submerging the phantom (Milli-Q ultrapure water at 25°C) and pressing one of its walls with a latex balloon, placed on the tip of the echoendoscope, as presented in Figure 2.

    The frequency used was 7.5 MHz. Images were contrasted to those of healthy organs (pancreas and liver) and pancreatic lesions (cysts and solid masses).

    Endoscopic ultrasound elastography images

    We evaluated phantoms in terms of stiffness/elasticity (Pentax EUS-Hitachi EUB900, Real-Time Tissue Elastography) with 2-panel images inBmode of conventional grayscale (right) and elastographic image (left). The frequency used was 7.5 MHz (5.0 to 10.0 MHz)[11]. The point of interest (A or B) was measured to determine the degree of normal deformity (SR) < 6.04 and the degree of normal elasticity (B/A ratio) > 0.05%. The “A” area comprises the largest area of the tumor and the “B” area the soft surface (red). The B/A ratio (strain ratio) was considered to represent an elastographic evaluation[12].

    Figure 1 Stainless steel mold used to obtain polyvinyl alcohol phantoms.

    Figure 2 Endoscopic ultrasound images with the echoendoscope placed inside the polyvinyl alcohol phantom.

    Observers

    Observer 1 had > 12 years of experience in EUS diagnosis, with formal training in Denmark and Venezuela, and was in charge of the area in the HGM; Observer 2 had > 8 years of experience in EUS diagnosis, with formal training in Mexico and the United States.

    Statistical analysis

    We calculated the inter-observer agreement (kappa index, intra-class correlation coefficient, and extent of agreement) between the two EUS experts. To compare their congruence, we conducted an independent and blind test of simulated/real images. Kappa values and degree of concordance were as follows: < 0.2 = Poor, 0.21-0.40 = Weak, 0.41-0.60 = Moderate, 0.61-0.80 = Good, and 0.81-1.00 = Very good.

    A satisfaction survey was applied, consisting of nine questions regarding the simulated image (Likert-4 points: 0 = Not satisfied, 1 = Little satisfied, 2 = Quite satisfied and 3 = Very satisfied): (1) Normal pancreas; (2) Normal liver; (3) Homogeneous lesions; (4) Heterogeneous lesions; (5) Solid lesions; (6) Cystic lesions; (7) Semi-solid lesions; (8) Elastographic image contrast; and (9) Feasibility of measuring the degree of elasticity. For the analysis, the measurement was binary (22 table): Yes = Very satisfied/satisfiedvsNo = Moderately satisfied/not satisfied, and 20 images were evaluated. The correlation between density and degree of elasticity of tissues was calculated.

    RESULTS

    The density and Young’s modulus (M.Y.) of each PVA-phantom are summarized in Table 1. The stiffness of the phantom was correlated with higher MW and concentration (correlationr= 0.8,P= 0.01) and with the increase in density and M.Y. This depended on cross-linking the monomers by freeze/thaw cycles. Simulated lesions were visible using EUS. As shown in Figure 3, endoscopic ultrasound revealed differences between phantoms: C1vsC5(MW1= 85000-124000).

    Density was higher in homogeneous lesions (MW2= 146000–186000: C9= 15% and C10= 20%), (Figure 4) than in heterogeneous lesions (MW1= 85000–124000: C1= 7% and C2= 9%) (Figure 5). Concordance was 0.8 with a high degree of satisfaction.

    Cystic lesions were created with higher density phantoms: C6and C10(MW2= 146000–186000) (Figure 6). These cystic lesions were measured by EUS (E-EUS was never used for this). Concordance was 0.8 (kappa), with a high degree of satisfaction (Likert scale 4-points). Solid lesions were contrasted with soft areas (Figure 7). The color contrasts, RI: A and B, and SR: B/A of elastographic images are presented in Figure 8. We observed lower elasticity (dark blue area), in the case of a simulated solid lesion that contrasted with green areas (normal). SR values of > 6.04 or elasticity of < 0.05% corresponded to areas with less elasticity (rigid). The differences between the B/A ratios (65.6vs7.13) and point A (0.02vs0.07%) translated into greater tissue stiffness. Figure 9 and Table 2 show the relationship between points of interest and strain ratios with different PVA phantom densities.

    DISCUSSION

    Simulation by EUS/EUS-E of visible organs and lesions is feasible using PVA phantoms. The model had high inter-observer concordance and satisfaction. This simulation facilitates practice, while curtailing risk. The increase in the number of repetitions amplifies skills and reduces the learning curve[2,3]. However, the models lack the realism necessary to achieve competence[2]. The focus of our experiment was to build lesions and organs visible by EUS and EUS-E, but we did not evaluate whether the technique was the most appropriate tool for differentiating malignant lesions from normal tissue. We were able to create realistic ultrasonic images using PVA phantoms. However, knowledge of the elastographic parameters of different tissues allowed us to create simulated lesions due to the viscoelastic properties of the PVA hydrogel and to contrast these with normal structures. EUS-E enables a comparison between the target and normal tissue but a stiff lesion can be either benign or malignant; therefore, the elastic properties of a tumor area may be different to those in another area[15]. Currently, the effectiveness of the DH for diagnosing solid masses is a matter of debate and outcomes are controversial. However, the rationale for using EUS–E in chronic pancreatitis relates to the possibility of detecting the increased degree of fibrosis in diseased pancreas, compared to normal pancreas[19]. Despite the controversy, we selected the B/A ratio (strain ratio) to measure tissue stiffness[12]as well as the region of interest. A and B were marked in different colors (on a scale of 0-255)[19]. It is difficult to place the region of interest of the target at the same level; this is associated with low specificity and reproducibility, and great variability in cutoff for inflammatory pancreatic masses and pancreatic cancer[15]. In contrast, if the lesion appears soft, EUSE can rule out malignancy with a high level of certainty. However two negative fine needle aspirations (FNAs), using EUS, in the case of a soft and enhancing lesion can rule out the diagnosis of pancreatic adenocarcinoma in 95% of patients[15]. The accuracy of strain ratio to distinguish between normal pancreas and pancreatitis is greater, but depends on the cutoff (97.7%-ROC 0.98[19]and 91%[18]). However, one of the largest single-center studies reported a modest diagnostic utility by quantitative analysis (4.65 for SR and 0.27% for mass elasticity) for discriminating pancreatic masses[17]. One analysis of the qualitative pattern for diagnosing malignancy reported 94% accuracy (ROC curve 0.854,P< 0.0001)[20]with high interobserver coincidence (0.77 and 0.84,respectively)[20,21]. By using quantitative analysis, bias in selecting the target was diminished (accuracy 89.7%)[17].

    Table 1 Relationship between Young's Modulus and different densities of polyvinyl alcohol phantoms

    Table 2 Strain ratios (B/A) and regions of interest: A and B

    Figure 3 Comparison of endoscopic ultrasound images: A: Phantom concentration 1; B: Phantom concentration 5.

    Figure 4 Type of lesions: A: Real homogeneous; B: Simulated homogeneous that refers to the liquid component inside the polyvinyl alcohol (PVA) phantom (blue arrow), surrounded by 15% PVA (concentration 9) and 20% PVA (concentration 10).

    Figure 5 Type of lesions: A: Real heterogeneous lesion; B: Simulated heterogeneous lesion of hypoechoic predominance (concentration 1); C: Normal pancreatic tissue; and D: Simulated homogeneous image: phantom with 20% polyvinyl alcohol (concentration 10).

    Furthermore, multilayer perceptron neural networks can be trained to classify focal lesions as either benign or malignant (accuracy 95%)[21]. Our phantom was designed to distinguish lesions, increase the n (repetitions), and evaluate skills for selecting a target, while improving spatio-temporal and haptic skills. A great advantage of practice with our phantom is that there is no need to practice EUS/EUS-E exclusively on animals. Qualitative pattern analysis yielded a high accuracy of 92.9% (ROC: 0.95) for the differential diagnosis between benign and malignant lymph nodes (LNs)[22]. The accuracy for discriminating between these is of great importance for prognosis and selection of appropriate therapy[23]. Due to the characteristics of LNs, these can also be simulated using our phantom. Another study reported lower yield of EUS-E (strain ratio) in detecting LNs but prevalence was greater (61%) in 34 patients, and it showed great heterogeneity (large width of the 95% confidence intervals)[24]. Learning in clinical scenarios in order to acquire skills has ethical and legal implications. The low prevalence of cases is a severe limit to training, in addition to the fact that in most centers, it is the expert who performs the interventions[1]. Regarding biomaterials, these have been used to obtain acoustic, optical and elastographic images[8,11,12,18]. In order to have greater realism in our simulated lesions, we needed to assess the mechanical properties (elasticity/stiffness) of tissue. In our experiment, biomaterial concentration was inversely proportional to the degree of tissue elasticity. The retention of liquid within the fibers produces echogenic differences. If we increase the density of the biomaterial, it will tend to be more homogeneous and hyperechoic. Density disperses sound and modifies impedance[16].

    Figure 6 Cystic lesion: A: A hypoechoic image surrounded by a hyperechoic wall is visible, which produces a posterior reinforcement compatible with a pseudocyst of the pancreas (real image); and B: Endoscopic ultrasound contrast of the interior and exterior of the polyvinyl alcohol phantom (concentration 10): A hypoechoic image (inside) surrounded by a hyperechoic image (wall).

    Figure 7 Solid lesion: A: Real; and B: Simulated (concentration 10).

    In our study, density manipulation made it possible for us to build more realistic models. The presence of bubbles within the material increased the degree of realism. The degree of water retention within the phantoms enables the simulation of different injuries. The 20% concentrations (C5and C10) contain less water (solid lesions), in contrast to those at 7% (C1and C6), which contain a greater quantity (semi-solid). PVA characteristics are dynamic and differ when densities are compared. The area of least elasticity (> M.Y) is the point of greatest strength and cross-linking. The zone of least tension is the place where the transducer exerts pressure (deformity). The advantages of using PVA phantoms are as follows: (1) They do not require different equipment to that commonly used for patients, however, for the animal model they do; (2) Organs and lesions, whether hard or soft, can be simulated by modifying the molecular weight, concentration and freeze/thaw cycles of PVA; and (3) The simulators are inexpensive, this will vary depending on the size and sophistication of the phantom, for example depending on the completeness of an organ. In this work, as it only consisted of phantom characterization, each phantom costs approximately $15 to $20; 4) phantoms can be reused many times, provided they are kept immersed in water at room temperature (25-27°C) after use. Limitations in this study include: (1) It is necessary to submerge the PVA phantom in the water container; and (2) The main problem with EUS-E refers to difficulties in controlling tissue compression by the EUS transducer that may increase errors in measurement. Knowledge of the elasticity coefficient made it possible to create solid and semi-solid organs; both homo and heterogeneous, as well as more realistic cystic and solid lesions, due to the advantages of the viscoelastic properties of the phantom.

    Figure 8 Elastographic images. A: Diagram showing color distribution; B: Color scale (elastography) of phantom concentration (C) 6; and C: Contrast between phantom C6 (green hue) molecular weight 2 = 146000– 186000 vs phantom C5 (dark blue hue) with molecular weight 1 = 85000 – 124000.

    CONCLUSION

    In conclusion, the use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS-E.

    Figure 9 Relationship between the region of interest A and B and the (B/A) strain ratio.

    ARTICLE HIGHLIGHTS

    Research results

    The density of PVA phantoms depended on MW and C. The stiffness of these phantoms was correlated with higher MW and C (correlationr= 0.8,P= 0.01) as well as with increasing density and M.Y. All simulated lesions were visible using EUS. We calculated elasticity and deformation parameters of solid (blue) areas, contrasting with the norm (Kappa = 0.8; high degree of satisfaction)

    Research conclusions

    The use of PVA phantoms with different densities allowed adequate and consistent simulation of organs and digestive lesions, visible by EUS/EUS-E. Knowledge of the elasticity coefficient made it possible to create different lesions.

    Research perspectives

    Training in a clinical setting has medical and legal implications. Skill and abilities depend on shortening the learning curve. However, in order to achieve this, a model must be realistic. PVA phantoms were demonstrated to be feasible, economical and realistic models for EUS/EUS-E training.

    ACKNOWLEDGEMENTS

    To Dr. Jorge Cerecedo-Rodríguez (Hospital ángeles Acoxpa) for his contribution to the interpretation of the endosonographic images. Thanks to the engineers Yair Pacheco, Javier Márquez Cortez (Medical Scope) and Lilia Vázquez Romero (Endomédica, S.A. de C. V) for informing us about the technical aspects of obtaining EUS/elastography images.

    日本黄色视频三级网站网址| 99精品欧美一区二区三区四区| 国产午夜福利久久久久久| 久久精品亚洲精品国产色婷小说| 色av中文字幕| bbb黄色大片| 1024视频免费在线观看| 亚洲国产精品999在线| 国产精品亚洲一级av第二区| 国产人伦9x9x在线观看| 老司机午夜十八禁免费视频| 久久精品成人免费网站| 国产黄a三级三级三级人| 动漫黄色视频在线观看| 国产激情偷乱视频一区二区| 精品熟女少妇八av免费久了| 亚洲性夜色夜夜综合| 国产不卡一卡二| 国产精品1区2区在线观看.| xxx96com| av片东京热男人的天堂| 国产成人精品久久二区二区91| 欧美午夜高清在线| 日韩欧美 国产精品| 国产伦一二天堂av在线观看| 亚洲第一欧美日韩一区二区三区| 亚洲五月天丁香| 亚洲熟妇中文字幕五十中出| av中文乱码字幕在线| 亚洲精品一卡2卡三卡4卡5卡| 久久青草综合色| 首页视频小说图片口味搜索| 久久久久久久精品吃奶| 亚洲国产看品久久| 国产视频一区二区在线看| 男女那种视频在线观看| 在线观看免费午夜福利视频| 日韩大码丰满熟妇| 久久人妻福利社区极品人妻图片| 欧美黄色片欧美黄色片| 无遮挡黄片免费观看| 伊人久久大香线蕉亚洲五| 免费观看精品视频网站| 国产精品亚洲av一区麻豆| 久久久精品国产亚洲av高清涩受| 丝袜美腿诱惑在线| 国产成人系列免费观看| 麻豆久久精品国产亚洲av| 国产精品一区二区精品视频观看| 色综合婷婷激情| 成年免费大片在线观看| 操出白浆在线播放| 麻豆av在线久日| 夜夜爽天天搞| 久久亚洲真实| 叶爱在线成人免费视频播放| 99热只有精品国产| 亚洲一区二区三区色噜噜| 日韩大码丰满熟妇| 午夜福利在线观看吧| 啪啪无遮挡十八禁网站| 啦啦啦 在线观看视频| www日本黄色视频网| 免费在线观看影片大全网站| 欧美国产精品va在线观看不卡| 久久午夜综合久久蜜桃| 国产亚洲欧美98| 嫁个100分男人电影在线观看| 亚洲性夜色夜夜综合| 在线免费观看的www视频| 日本五十路高清| 亚洲中文字幕日韩| 99国产精品一区二区三区| 免费在线观看日本一区| 成人亚洲精品av一区二区| 国产极品粉嫩免费观看在线| 麻豆av在线久日| 亚洲黑人精品在线| 国产精品av久久久久免费| 极品教师在线免费播放| 丝袜美腿诱惑在线| 欧美zozozo另类| cao死你这个sao货| 国产精品 国内视频| 视频在线观看一区二区三区| 叶爱在线成人免费视频播放| 狠狠狠狠99中文字幕| 成人亚洲精品一区在线观看| 成人亚洲精品一区在线观看| 国产精品自产拍在线观看55亚洲| 国产私拍福利视频在线观看| 国产成人系列免费观看| av中文乱码字幕在线| 亚洲精品国产区一区二| 中文亚洲av片在线观看爽| 一区二区三区国产精品乱码| 热re99久久国产66热| 99精品在免费线老司机午夜| 正在播放国产对白刺激| 成人国语在线视频| 免费看十八禁软件| 免费女性裸体啪啪无遮挡网站| 亚洲av日韩精品久久久久久密| 视频区欧美日本亚洲| www日本黄色视频网| 大型黄色视频在线免费观看| 欧美精品亚洲一区二区| 亚洲午夜理论影院| 日韩大尺度精品在线看网址| 老司机午夜福利在线观看视频| 中文字幕人妻熟女乱码| 99国产精品一区二区蜜桃av| 亚洲无线在线观看| 久久中文看片网| 午夜影院日韩av| 男人舔女人的私密视频| 动漫黄色视频在线观看| 久久久久国产精品人妻aⅴ院| 国产激情偷乱视频一区二区| 制服人妻中文乱码| 亚洲成国产人片在线观看| tocl精华| 69av精品久久久久久| 久久久久久久久久黄片| 亚洲真实伦在线观看| 黄色 视频免费看| 日韩欧美 国产精品| 午夜福利高清视频| 波多野结衣高清无吗| 99国产极品粉嫩在线观看| av免费在线观看网站| 欧美 亚洲 国产 日韩一| 国产精品乱码一区二三区的特点| 757午夜福利合集在线观看| 久久热在线av| 日韩欧美在线二视频| 国产成人欧美在线观看| √禁漫天堂资源中文www| 久久久久国产一级毛片高清牌| 久久这里只有精品19| 在线看三级毛片| 国产亚洲欧美98| 一本久久中文字幕| 国产精华一区二区三区| 亚洲性夜色夜夜综合| 淫秽高清视频在线观看| 国产黄色小视频在线观看| 免费女性裸体啪啪无遮挡网站| 极品教师在线免费播放| 欧美黑人精品巨大| 亚洲成人精品中文字幕电影| 99久久久亚洲精品蜜臀av| 亚洲中文字幕一区二区三区有码在线看 | 国产精品 国内视频| 日韩高清综合在线| 成人手机av| 别揉我奶头~嗯~啊~动态视频| 十分钟在线观看高清视频www| 中亚洲国语对白在线视频| 听说在线观看完整版免费高清| 亚洲精品国产精品久久久不卡| 国产精品爽爽va在线观看网站 | 天堂√8在线中文| 天堂√8在线中文| 日本精品一区二区三区蜜桃| 亚洲熟妇熟女久久| 欧美性猛交黑人性爽| 精品久久久久久久毛片微露脸| 国产精品爽爽va在线观看网站 | 亚洲无线在线观看| 国产精品自产拍在线观看55亚洲| 亚洲国产欧洲综合997久久, | 99热6这里只有精品| 国产区一区二久久| 中文字幕精品亚洲无线码一区 | 免费在线观看亚洲国产| 亚洲人成电影免费在线| 在线观看免费日韩欧美大片| 日日干狠狠操夜夜爽| 男女之事视频高清在线观看| 香蕉丝袜av| 露出奶头的视频| 男女之事视频高清在线观看| 日韩av在线大香蕉| 1024手机看黄色片| 精品一区二区三区四区五区乱码| 国产v大片淫在线免费观看| 中文字幕精品亚洲无线码一区 | 久久精品国产99精品国产亚洲性色| 熟女少妇亚洲综合色aaa.| 午夜久久久久精精品| 99久久精品国产亚洲精品| 免费在线观看黄色视频的| 精品欧美国产一区二区三| av片东京热男人的天堂| 99久久精品国产亚洲精品| 可以在线观看的亚洲视频| 国产单亲对白刺激| 50天的宝宝边吃奶边哭怎么回事| 脱女人内裤的视频| 免费一级毛片在线播放高清视频| 人人妻人人看人人澡| 老司机深夜福利视频在线观看| 熟妇人妻久久中文字幕3abv| 亚洲五月色婷婷综合| 国内少妇人妻偷人精品xxx网站 | 成人免费观看视频高清| 亚洲国产欧洲综合997久久, | 99热这里只有精品一区 | 看免费av毛片| 啦啦啦观看免费观看视频高清| 我的亚洲天堂| 可以在线观看毛片的网站| 精品国产乱子伦一区二区三区| 国产激情偷乱视频一区二区| 久久久久久久久中文| 又黄又粗又硬又大视频| 亚洲av五月六月丁香网| 欧美三级亚洲精品| 国产三级在线视频| 亚洲第一青青草原| 久久久久久大精品| 变态另类丝袜制服| 少妇裸体淫交视频免费看高清 | 老熟妇仑乱视频hdxx| 亚洲精品中文字幕在线视频| 每晚都被弄得嗷嗷叫到高潮| 久久久久亚洲av毛片大全| 久久国产乱子伦精品免费另类| 99热只有精品国产| 色综合站精品国产| 国产精品久久视频播放| 国产精品美女特级片免费视频播放器 | 在线av久久热| 亚洲avbb在线观看| 丰满人妻熟妇乱又伦精品不卡| 亚洲午夜理论影院| 又黄又爽又免费观看的视频| 午夜视频精品福利| 搡老岳熟女国产| 黄色视频,在线免费观看| 黑丝袜美女国产一区| 性色av乱码一区二区三区2| 母亲3免费完整高清在线观看| 十八禁人妻一区二区| 久久久国产成人免费| 三级毛片av免费| 精品欧美一区二区三区在线| 日本在线视频免费播放| 精品一区二区三区av网在线观看| 成人一区二区视频在线观看| 看黄色毛片网站| 亚洲va日本ⅴa欧美va伊人久久| 国产精品1区2区在线观看.| 国产午夜福利久久久久久| 好男人电影高清在线观看| 97碰自拍视频| 午夜福利欧美成人| 一区二区日韩欧美中文字幕| 亚洲av美国av| 免费搜索国产男女视频| 国产av又大| 美女扒开内裤让男人捅视频| 亚洲av中文字字幕乱码综合 | 国产精品二区激情视频| 精品免费久久久久久久清纯| 99久久国产精品久久久| 国产高清videossex| 成人欧美大片| 国产成+人综合+亚洲专区| 一边摸一边做爽爽视频免费| 波多野结衣av一区二区av| 亚洲熟妇熟女久久| 免费看美女性在线毛片视频| 又大又爽又粗| 99久久精品国产亚洲精品| 伦理电影免费视频| 一本综合久久免费| 成人av一区二区三区在线看| 一级a爱片免费观看的视频| 长腿黑丝高跟| 成人手机av| www国产在线视频色| 精品国内亚洲2022精品成人| 色老头精品视频在线观看| 999久久久国产精品视频| 久热这里只有精品99| 一个人免费在线观看的高清视频| www.www免费av| 亚洲avbb在线观看| 看免费av毛片| 天天一区二区日本电影三级| 夜夜看夜夜爽夜夜摸| 国产av在哪里看| 一进一出好大好爽视频| 久久久精品欧美日韩精品| 久久精品成人免费网站| aaaaa片日本免费| 观看免费一级毛片| 91九色精品人成在线观看| 757午夜福利合集在线观看| 欧美亚洲日本最大视频资源| 欧美av亚洲av综合av国产av| 免费在线观看完整版高清| 精品免费久久久久久久清纯| 91国产中文字幕| 亚洲成国产人片在线观看| 精品久久久久久久久久免费视频| 99国产精品一区二区三区| 不卡一级毛片| 日韩精品免费视频一区二区三区| 亚洲熟妇中文字幕五十中出| 亚洲aⅴ乱码一区二区在线播放 | 欧美性猛交╳xxx乱大交人| 99riav亚洲国产免费| 性欧美人与动物交配| 99精品在免费线老司机午夜| 国产精品国产高清国产av| 国产成人欧美| avwww免费| 国产精品爽爽va在线观看网站 | 亚洲欧美精品综合久久99| 啦啦啦韩国在线观看视频| 日本熟妇午夜| 97碰自拍视频| 婷婷六月久久综合丁香| 免费高清在线观看日韩| 中文字幕人妻熟女乱码| 怎么达到女性高潮| 欧美日韩黄片免| 精品乱码久久久久久99久播| 久久天躁狠狠躁夜夜2o2o| 国产av一区在线观看免费| 激情在线观看视频在线高清| 亚洲av成人不卡在线观看播放网| 两个人免费观看高清视频| 69av精品久久久久久| 少妇的丰满在线观看| 国产成+人综合+亚洲专区| 好男人电影高清在线观看| 一进一出好大好爽视频| 久久精品国产亚洲av高清一级| 黄色片一级片一级黄色片| 我的亚洲天堂| 国产一区二区三区视频了| 久久精品夜夜夜夜夜久久蜜豆 | 国产精品99久久99久久久不卡| 午夜福利欧美成人| а√天堂www在线а√下载| 免费在线观看成人毛片| 亚洲av中文字字幕乱码综合 | 久久中文字幕人妻熟女| 亚洲五月天丁香| 精品熟女少妇八av免费久了| 欧美大码av| 欧美三级亚洲精品| 日韩欧美一区二区三区在线观看| 91av网站免费观看| 亚洲人成电影免费在线| 九色国产91popny在线| 一级a爱视频在线免费观看| 一级a爱片免费观看的视频| 淫秽高清视频在线观看| 1024手机看黄色片| 国产激情久久老熟女| 黑人操中国人逼视频| 每晚都被弄得嗷嗷叫到高潮| 色综合亚洲欧美另类图片| 最近最新中文字幕大全免费视频| 免费在线观看成人毛片| 日日夜夜操网爽| 精品国产亚洲在线| 久久亚洲精品不卡| 久久久久久久午夜电影| 国产av又大| 久久人妻av系列| 亚洲五月色婷婷综合| 99re在线观看精品视频| 欧美日韩亚洲综合一区二区三区_| 在线观看免费午夜福利视频| 人人澡人人妻人| 一级a爱视频在线免费观看| www日本黄色视频网| 欧美日韩亚洲综合一区二区三区_| 亚洲成人久久爱视频| 日韩大尺度精品在线看网址| 日韩中文字幕欧美一区二区| 国产av一区二区精品久久| 一本久久中文字幕| 中文在线观看免费www的网站 | 国产精品一区二区免费欧美| 国产一级毛片七仙女欲春2 | 亚洲avbb在线观看| 午夜激情av网站| 日本 av在线| 午夜精品在线福利| 怎么达到女性高潮| 老汉色∧v一级毛片| 国产一卡二卡三卡精品| 1024手机看黄色片| 中文字幕高清在线视频| 好男人电影高清在线观看| 亚洲中文av在线| 久99久视频精品免费| 男女那种视频在线观看| 亚洲中文字幕日韩| 欧美午夜高清在线| 男人操女人黄网站| 99精品在免费线老司机午夜| 999久久久国产精品视频| 免费高清在线观看日韩| 可以免费在线观看a视频的电影网站| 欧美激情久久久久久爽电影| 国产亚洲精品第一综合不卡| 免费看美女性在线毛片视频| 老司机午夜福利在线观看视频| 777久久人妻少妇嫩草av网站| 国产野战对白在线观看| а√天堂www在线а√下载| 法律面前人人平等表现在哪些方面| 国产精品国产高清国产av| 久久婷婷人人爽人人干人人爱| 久久精品91无色码中文字幕| 男女那种视频在线观看| 身体一侧抽搐| 成人亚洲精品一区在线观看| 亚洲成国产人片在线观看| 又黄又爽又免费观看的视频| 欧美黑人精品巨大| 一本久久中文字幕| 免费在线观看日本一区| 日韩精品青青久久久久久| 亚洲性夜色夜夜综合| 久久久久国产一级毛片高清牌| 色老头精品视频在线观看| 久久中文看片网| 国产真实乱freesex| 亚洲国产欧美网| 丁香欧美五月| 国产精品久久视频播放| 人人澡人人妻人| 天天躁夜夜躁狠狠躁躁| 国产精品av久久久久免费| 色av中文字幕| 国产视频一区二区在线看| 国产欧美日韩精品亚洲av| xxxwww97欧美| 欧美成人午夜精品| 一级片免费观看大全| 18禁黄网站禁片午夜丰满| 曰老女人黄片| 国产三级黄色录像| 亚洲国产精品久久男人天堂| 国产高清视频在线播放一区| 免费女性裸体啪啪无遮挡网站| 久久久久精品国产欧美久久久| 伊人久久大香线蕉亚洲五| 母亲3免费完整高清在线观看| 中文字幕久久专区| 亚洲国产看品久久| 日本一区二区免费在线视频| 亚洲av五月六月丁香网| 久久久水蜜桃国产精品网| 人妻久久中文字幕网| 国内少妇人妻偷人精品xxx网站 | 日日夜夜操网爽| 黄色女人牲交| 女人被狂操c到高潮| 欧美三级亚洲精品| 99久久无色码亚洲精品果冻| 午夜久久久久精精品| 999久久久国产精品视频| 日日干狠狠操夜夜爽| 亚洲av中文字字幕乱码综合 | 亚洲无线在线观看| 性欧美人与动物交配| 欧美一区二区精品小视频在线| 欧美日韩乱码在线| 成人18禁高潮啪啪吃奶动态图| 国产精品久久久久久亚洲av鲁大| 满18在线观看网站| 日日夜夜操网爽| 午夜福利欧美成人| 一级作爱视频免费观看| 欧美日韩瑟瑟在线播放| 长腿黑丝高跟| 色av中文字幕| 日本免费一区二区三区高清不卡| 欧美在线一区亚洲| 啦啦啦观看免费观看视频高清| 18禁黄网站禁片免费观看直播| 国产av又大| 两性午夜刺激爽爽歪歪视频在线观看 | av天堂在线播放| 制服人妻中文乱码| 91成人精品电影| 夜夜夜夜夜久久久久| 韩国精品一区二区三区| 大香蕉久久成人网| 欧美三级亚洲精品| 深夜精品福利| 级片在线观看| 亚洲男人天堂网一区| 国产久久久一区二区三区| 日韩欧美三级三区| 国产单亲对白刺激| 亚洲第一av免费看| 国产精品 欧美亚洲| 久热这里只有精品99| 国产精品一区二区免费欧美| 亚洲成人国产一区在线观看| 人人妻人人看人人澡| 啦啦啦 在线观看视频| 韩国av一区二区三区四区| 中文字幕另类日韩欧美亚洲嫩草| 岛国在线观看网站| 亚洲成av人片免费观看| 不卡一级毛片| 99久久精品国产亚洲精品| 精品国产一区二区三区四区第35| www.熟女人妻精品国产| 女生性感内裤真人,穿戴方法视频| 一级毛片精品| 大型av网站在线播放| 女同久久另类99精品国产91| 午夜激情福利司机影院| 日韩精品免费视频一区二区三区| 高清在线国产一区| videosex国产| 久久青草综合色| 日本免费a在线| 侵犯人妻中文字幕一二三四区| 这个男人来自地球电影免费观看| 久久久久久九九精品二区国产 | 免费在线观看亚洲国产| 亚洲精品久久成人aⅴ小说| 久久青草综合色| 亚洲性夜色夜夜综合| 亚洲专区国产一区二区| 一进一出抽搐动态| 村上凉子中文字幕在线| 观看免费一级毛片| 国产成年人精品一区二区| 精品国产国语对白av| 久久天躁狠狠躁夜夜2o2o| 亚洲 欧美 日韩 在线 免费| 桃色一区二区三区在线观看| 午夜福利欧美成人| 99精品在免费线老司机午夜| 亚洲七黄色美女视频| av免费在线观看网站| 18禁黄网站禁片午夜丰满| 大型黄色视频在线免费观看| 精品久久蜜臀av无| 亚洲熟妇中文字幕五十中出| 黄色丝袜av网址大全| 亚洲人成77777在线视频| 国产精品一区二区精品视频观看| 给我免费播放毛片高清在线观看| 精品电影一区二区在线| 久久久国产成人精品二区| 日韩精品免费视频一区二区三区| 亚洲国产精品久久男人天堂| 天堂动漫精品| 757午夜福利合集在线观看| 男人操女人黄网站| 亚洲真实伦在线观看| 久久午夜综合久久蜜桃| 国产午夜精品久久久久久| 欧美不卡视频在线免费观看 | 99久久国产精品久久久| 色在线成人网| 淫妇啪啪啪对白视频| 亚洲av第一区精品v没综合| 在线观看66精品国产| 国内精品久久久久久久电影| 亚洲国产毛片av蜜桃av| 国内精品久久久久精免费| 国产高清有码在线观看视频 | 婷婷精品国产亚洲av| 国产极品粉嫩免费观看在线| 日韩欧美一区二区三区在线观看| 久久久久国产一级毛片高清牌| 久久精品国产清高在天天线| 国产精品久久电影中文字幕| 波多野结衣高清作品| 亚洲国产精品合色在线| 精品欧美国产一区二区三| 2021天堂中文幕一二区在线观 | 国产成年人精品一区二区| www日本在线高清视频| 国产真实乱freesex| av中文乱码字幕在线| xxx96com| 久久香蕉国产精品| 少妇 在线观看| 桃色一区二区三区在线观看| 男女做爰动态图高潮gif福利片| 亚洲国产欧美网| 午夜免费激情av| 免费看a级黄色片| 亚洲在线自拍视频| 亚洲一码二码三码区别大吗| 在线观看www视频免费| 亚洲精品国产一区二区精华液| 亚洲av日韩精品久久久久久密| 欧美不卡视频在线免费观看 | 亚洲精品国产一区二区精华液| 午夜福利免费观看在线| 又黄又爽又免费观看的视频| 国内精品久久久久久久电影| 中文字幕人妻丝袜一区二区| 搡老熟女国产l中国老女人| 久久午夜亚洲精品久久| 美女大奶头视频|