• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Characterization of the Complete Mitochondrial Genome of Arius dispar (Siluriformes: Ariidae) and Phylogenetic Analysis Among Sea Catfishes

    2020-09-28 00:49:40CUILeiDONGYueleiCAORongboZHOUXiaoyuandLUSonghui
    Journal of Ocean University of China 2020年5期

    CUI Lei, DONG Yuelei, CAO Rongbo, ZHOU Xiaoyu, and LU Songhui

    Characterization of the Complete Mitochondrial Genome of(Siluriformes: Ariidae) and Phylogenetic Analysis Among Sea Catfishes

    CUI Lei1), 2), #, DONG Yuelei1), 2), #, CAO Rongbo1), 2), ZHOU Xiaoyu1), 2), and LU Songhui1), 2), 3), *

    1)Research Center of Harmful Algae and Marine Biology, Jinan University, Guangzhou 510632,China 2) Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institutes, Jinan University, Guangzhou 510632, China 3) Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China

    The mitochondrial genome (mitogenome) was 16792bp in length, containing 13 protein coding genes (PCGs), two rRNA genes (and), 22 tRNA genes, and two main non-coding regions. Among these 37 genes, 28 genes were encoded on the heavy strand, while 9 genes were transcribed on the light strand. The non-coding regions of.included a control region, a light strand replication and another 11 intergenic spacers. The CR ofcontained 8 conserved sequence blocks (CSBs), a termination-associated sequence (TAS) and a pyrimidine tract. Phylogenetic analysis based on 12 PCGs revealed that.was genetically closest to. The families Schilbeidae, Claroteidae, Mochokidae, and Ariidae formed a closely evolved clade. Molecular information from this research introduces mitogenomice data of.and suggests the phylogenetic relationships among Siluriformes.

    mitochondrial genome; Siluriformes; Ariidae;; phylogeny

    1 Introduction

    The mitochondrial genome (mitogenome), ranging from 14 to 20kb in length, has a smaller size compared to the complete nuclear genome sequence (Boore, 1999; Shi, 2013; Carvalho, 2016). It usually encodes protein-coding genes (PCGs), transfer RNA (tRNA) genes, and ribosomal RNA (rRNA) genes (Wolstenholme, 1992; Lashari, 2016). The control region (CR) in fish mitogenomes is a non-coding region that plays a vital role in gene transcription (Benson, 1999). Due to the stabilization of genetic recombination and high evolution rate, the sequence and structure of mitogenomes is widely used for the study of molecular evolution, phylogenetic analysis, and population genetics (Simon, 2006; Salvato, 2008).

    The growing research on the sequence of mitogenomes has accumulated a multitude of data over the last decade. To date, dozens of mitogenome sequences of the order Siluriformes are publicly available from NCBI. Each of these mitogenome sequences has a similar molecular size and a large quantity of overlaps. However, information regarding mitogenomes of the family Ariidae among Siluriformes has been lacking, and the available sequences showed genetic differentiation. Differences in gene content and special structures implicated the presence of varied among Ariidae.

    Forty families with about 490 genera and about 3730 species live in the waters worldwide so far (Nelson, 2016). Of these, 11 families with about 29 genera and about 113 species occur in Chinese waters (Chu, 1999). Most Ariidae are distributed in tropical and tempe- rate areas. They can be found in estuarine regions, coastal rivers and sea areas (Marceniuk and Menezes, 2007). The sea catfish,(Herre, 1926), is abundant in Southeast Asia, and shows economic advantage (Santos and Quilang, 2011). Most studies of.have been focused on morphological analysis.

    In this study, the complete mitogenome of.was first determined. We described the gene structure and composition including nucleotide composition, characteristics of PCGs, and characteristics of RNA secondary structure. The phylogenetic analysis was performed to provide information on the taxonomy and phylogeny ofspecies. We hope these studies will provide genetic information on species identification, molecular evolution, genetic diversity, and useful molecular data for future studies in Siluriformes.

    2 Materials and Methods

    2.1 Samples and DNA Extraction

    Specimens of sea catfishes,., were collected from Pearl River Estuary (21?57′N, 133?47′E), China, in April 2016. All collections were stored in 95% ethanol at room temperature in the field and then preserved at ?80 ℃ in the laboratory. Total genomic DNA was obtained from dorsal muscle tissue of the collected samples using an Animal Tissue Genomic DNA Extraction Kit (Sangon Biotech, China). Extracted DNA was used as a PCR template for sequencing reactions.

    Table 1 Primer pairs used for PCR amplification of A. dispar mitogenome

    Table 2 Summary of the base composition of the mitogenomes at each codon position of the concatenated the 13 PCGs across 17 Siluriformes species

    2.2 PCR Amplification and Sequencing

    Primer sets for PCR amplification were designed according to the conserved mitogenome sequences of(Sauvage & Dabry de Thiersant, 1874) (GenBank: KC822643.1) (Table 1). All PCR amplifications were performed using LA Taq DNA polymerase (Takara, China) with the following cycling conditions: an initial denaturation for 3min at 95℃, followed by 35 cycles of denaturation for 30s at 95℃, annealing for 30s at 55℃, and elongation for 1-5min at 72℃. All PCR products were confirmed on a 1.5% agarose gel and then sequenced using a 3730XL DNA Analyzer at the Beijing Genomics Institute.

    2.3 Sequence Analysis

    The complete sequences were checked manually after assembly using the Seqman program within Lasergene software (Burland, 2000a, 2000b). The location of the two rRNA and 13 PCGs were determined using DOGMA software (Wyman, 2004). All tRNA genes were recognized by tRNA Scan-SE 1.21 (Schattner, 2005). Tandem repeats within the control region were identified using Tandem Repeats Finder program (Benson, 1999). The codon usage of the 13 PCGs was summarized using MEGA 5 software (Tamura, 2011). Potential secondary structures of tRNA genes and the origin of light strand replication (OL) were analyzed using RNAstructure software (Reuter and Mathews, 2010). The differences of nucleotide composition in the complete mitogenome, PCGs, rRNAs, tRNAs and control regions were measured according to AT-skew [(A?T)/(A+T)] and GC-skew [(G?C)/(G+C)] values. The complete mitogenome of.was deposited in the GenBank database (GenBank accession number: MH460877.1).

    2.4 Phylogenetic Analysis

    A total of 42 Siluriformes mitogenomes were obtained from GenBank (Table 2). All of the 12 concatenated PCGs of mitogenomesexceptfrom these species were used to investigate phylogenetic relationships. Phylogenetic analysis was performed based on the Maximum Likelihood (ML) and Bayesian inference (BI) methods, which used raxmlGUI software and MrBayes v3.2.4 software, respectively (Ronquist, 2012; Silvestro and Michalak, 2012). The mitogenomes of Gymnotiformes species,(Linnaeus, 1766) (AB054132.1),(Regan, 1914) (AP011570.1)and(Linnaeus, 1758) (AP011979.1), were used as outgroups. The mitochondrial genes of.were aligned separately with Clustal X (Thompson, 2002). The model Modeltest 3.7 based on Akaike’s information criterion (AIC), was chosen to determine the evolution of nucleotide substitution (Nylander, 2004). According to results, GTR+I+G was selected as the best model for nucleotide sequences analysis. A total of 1000 generations were sampled in one million generations by four chains, and 25% of the initial trees were discarded as burn-in. In this study, the average standard deviation of split frequencies was kept below 0.01. ML analysis was run with 1000 replicatesa bootstrap test. The phylogenetic trees were constructed with FigTree v1.4.3.

    3 Results and Discussion

    3.1 Genome Organization and Composition

    The complete mitogenome of.was 16792bp in length. It encoded 13 PCGs, two rRNA genes (and), 22 tRNA genes, and two non-coding regions. The non-coding regions are identified as CR and the origin of light strand replication (OL) (Fig.1 and Table 3). Among these genes, 28 genes were encoded on the heavy strand (H-strand), whereas the other 9 genes were transcribed on the light strand (L-strand). These 9 genes included one PCG (ND6) and 8 tRNA genes (tRNA, tRNA,tRNA,tRNA,tRNA,tRNA,tRNAandtRNA). Similar distribution characteristics of the 37 encoded genes can also been found in other teleosts (Nakatani, 2011; Wang, 2016a).

    Table 3 Characteristic constituents of the mitochondrial genome of A. dispar

    Note: H and L refer to the heavy and light strand, respectively.

    A total of 33bp overlaps were found at 10 gene junc-tions. Most of them were below 5bp in length, except for-(10bp) and-(7bp). In addition to the CR, there were 12 intergenic spacers found in mitogenomes. Among them, the OLfragment was found to be the longest intergenic spacer sequence (31bp), located between tRNAAsnand tRNACys. In addition, the location of OLin other reported species of Silu- riformes was the same (Peng, 2006; Jondeung, 2007; Nakatani, 2011).

    The H-strand of the.mitogenome contained 29.60% A, 15.35% G, 29.68% C, and 25.37% T. The A+T content was 54.97%, which was higher than the C+T content (Table 2). This phenomenon of strand asymmetry was common in teleost fish (Yu, 2016; Cui, 2017). The length of the CR was determined to be 1078 bp and was located between tRNAandtRNA. It possessed the highest A+T content (62.89%).

    We measured the base-skew (AT-skew and GC-skew) of the H-strand in the mitogenome. The AT-skew value was 0.08 whereas the GC-skew value was ?0.32 (Table 2), revealing that the genome composition was A-skewed and strongly C-skewed. The other two Ariidae species ((Günther, 1864) and(Hamilton, 1822) showed similar AT-skew and GC-skew values. Additionally, the AT-skew values for the 17 reported Siluriformes mitogenomes were positive, whereas the GC-skew values were all negative, indicating more Ts and Cs existed within the whole mitogenomes of these 17 Siluriformes species (Rodiles-Hernandez, 2010; Wei, 2016).

    Fig.1 Circular map of the mitogenome of A. dispar. Transfer RNAs are designated by the IUPAC-IUB single letter amino acid codes (L1, trnLCUN; L2, trnLUUR; S1, trnSAGN; S2, trnSUCN). Labeling from the outside to inside circle: genes encoded on the heavy strand, genes encoded on the light strand, positive or negative AT skew[(A?T)/(A+T)], GC content (The peaks out/inside the circle indicate values higher or lower than average GC content, respectively.), GC skew [(G?C)/(G+C)], respectively.

    3.2 Transfer and Ribosomal RNA Genes

    The.mitogenome contained 22 tRNA and two rRNA, scattered throughout the mitogenome. The length of tRNA ranged from 66 bp (tRNA) to 75bp (tRNA). The secondary structures oftRNAlack the dihydrouridine (DHU) arm instead of a simple loop. This was commonly observed in many teleost fish mitogenomes (Roques, 2006; Wang, 2016a; Llera-Herrera, 2017). With the exception oftRNA, the other 21 tRNA genes could form the typical clover-leaf structures. The length of the anticodon loop was 7bp, with the exception oftRNA,tRNA, and tRNA(9bp). According to the secondary structures, a total of 37 unmatched base pairs were detected in 13 tRNAs. All of them were G-U pairs, appearing in the acceptor stems,TΨC stems, DHU stems, and anticodon stems.

    Among the total tRNAs, 14 of them were coded on the H-strand, and the remaining 8 tRNA were coded on the L-strand. The sequence of all the H-strand tRNA showed a high content of A+T, except fortRNA(48.48%),tRNA(47.89%), andtRNA(43.06%). The AT-skew value of total tRNA was positive (0.06), whereas the GC-skew value was negative (?0.02).

    The lengths of the two rRNAs,and, were 958bp and 1758bp, respectively. Both were located on the H-strand, but thewas located betweentRNAandtRNA, while thewas found between tRNAandtRNA. This pattern displayed the same locational trend as in other teleost fishes (Gong, 2015; Cui, 2017). The A+T content of the(55.58%) was a slightly higher than that of(50.73%). A similar phenomenon appeared in two other Ariidae species:.(55.14% inand 52.15% in 12S rRNA) and.(53.85% inand 50.73% in) (Wang, 2016a; Llera-Herrera., 2017). Similar to tRNA, the sequences of rRNA exhibit a positive AT-skew value (0.24) and a negative GC-skew value (?0.15).

    3.3 Protein-Coding Genes

    All but one PCG (), from the.mitogenome, were coded on the H-strand. The total length of 13 PCGs was 11407bp, ranging from 297bp () to 1827bp () and accounting for 67.93% of the entire mitogenome sequence. All of the PCGs had the same start codon (ATG), with the exception of(GTG). This special phenomenon existed in other teleost fishes (Mo- reira, 2016; Song, 2016; Wei, 2016). Most of the PCGs had the complete stop codons TAA (,,,and) or TAG (and). The incomplete stop codon (T) was utilized in other 4 PCGs (,,and). The incomplete stop codon was presumed to be completed after post-transcriptional polyadenylation, and it was commonly used in metazoan mitogenomes (Ojala, 1981; Wolstenholme, 1992).

    Among the 3792 codons of the entire set of PCGs, Leu 1 (14.03%) was the most commonly used amino acid. In addition, 8 amino acids (Ala, Arg, Gly, Leu1, Pro, Ser2, Thr and Val) were coded by four different codons, while the remainders were coded by two different codons. All 22 amino acids had relatively synonymous codon usage, which was summarized in Fig.2.

    Fig.2 The relative synonymous codon usage (RSCU) in the mitogenomes of A. dispar.

    Fig.3 Graphical illustration showing the AT and GC skew in the PCGs of the mitochondrial genome of A. dispar.

    The A+T content of the total set of PCGs in.was detected to be 54.80%. Among them, ATP8 (61.31%) had the highest A+T content. The AT-skew and GC-skew values of the PCGs ofmitogenome are shown in Fig.3. In addition to the 5 PCGs (,,,and), all the other PCGs had a positive AT- skew value. Different to AT-skew value, the GC-skew va- lues were all negative, indicating that Cs are more frequ- ently used against Gs in PCGs. The relatively stable values of AT- skew and GC-skew can be found in other two Ariidae species (.and.) (Wang, 2016a; Llera-Herrera, 2017).

    3.4 Non-Coding Regions

    The non-coding regions of.included the CR, OLand several intergenic spacers. Among the 11 intergenic spacers, the longest was located between tRNAAspand(14bp). The CR (1078bp) was highest in length, followed by the OL(48 bp). In., OLwas located between tRNAAsnand tRNACys, and can be folded into a hairpin secondary structure. The putative structural elements of OLare shown in Fig.4. Besides, the conserved motif, 5’-GCCGG-3’, was found at the base of the stem with the tRNACys, which was also found in other Siluriformes species except for(Tchang, 1935),(Rafinesque, 1820),(Valenciennes, 1840) and(Douglas, 1972). The 4 species had 5’-ACCGG-3’ motif. The conserved motif may be related with the transition from RNA synthesis to DNA synthesis (Hixson and Brown, 1986).

    Fig.4 The putative hairpin secondary structure of the OL found in the A. dispar mitogenome.

    Fig.5 Features present in the control regions of the A. dispar mitogenome. The conserved sequence blocks CSB-F, CSB-E, CSB-D, CSB-C, CSB-B, CSB-A, CSB-3, CSB-2 and TAS are shaded.

    Due to the relatively high content of A+T (62.89%) in the CR, it can also be considered an A+T rich region. In., the length of the CR was 1078bp, and it was located between tRNAProand tRNAPhe. Two other species of Ariidae (.and.) had a similar size and A+T content of CR to.. The CR functions in initial replication and is important in the vertebrates (Zhang, 1995; Fernandez-Silva, 2003). In, both the AT-skew and GC-skew were negative (?0.06 and ?0.23), revealing more Ts and Cs were used in the CR. In addition, the AT-skew values and GC-skew values in three other Ariidae species mentioned above were all negative. However, most of the AT-skew values of the CR across 21 other families were positive, indicating that the usage rate of A and T were different in the order Siluriformes.

    Based on the alignment of CR sequences of 42 Siluriformes species, 8 conserved sequence blocks (CSBs), a termination-associated sequence (TAS) and a pyrimidine tract were identified (Fig.5). which might play an important role in mitochondrial metabolism as is the case for other teleost fishes (Lee, 1995). The TAS.of contained a conserved motif (GTATA-TATGC), which was found in mitogenomes of other Siluriformes species. The 8 CSBs can be divided into two parts (Roques, 2006). The CSB-F, CSB-E, CSB-D, CSB-C, CSB-B and CSB-A were concentrated in the central conserved domain, whereas CSB-2 and CSB-3 were located in the con- served sequence block domain. These CSBs were thought to have an important role in mitogenome transcription and replication (Doda, 1981; Walberg and Clayton, 1981; Zhuang, 2013). The G-box (GTGGGGG) was found in the CSB-E, which was the most conservative in teleost fish. Additionally, a pyrimidine tract (TTCTCT TTTTTTTCGGGTCACTTTCATTT) was identified following the CSB-A, which was also contained in most of the Siluriformes species. Like(Valenciennes, 1840) (Claroteidae),.(Ictaluridae),.(Ictaluridae) and(Chevey, 1931) (Pangasiidae), some species of Siluriformes had tandem repeats within the CR (Jondeung, 2007; Rodiles-Hernandez, 2010; Nakatani, 2011; Yu, 2016). In contrast,.and two other Ariidae (.and.) all lacked tan- dem repeats. This result indicated that the difference in repeat clusters inSiluriformes appeared during the course of evolution.

    3.5 Phylogenetic Analysis

    To study higher phylogeny of the order Beloniformes, the mitogenomes 42 Siluriformes species were obtained from the GenBank and the mitogenomes of Gymnotiformes species,.(AB054132.1),.(AP011570.1)and.(AP011979.1) were used as outgroups (Fig.6). Phylogenetic analysis by using ML and BI analyses was constructed for the nucleotide sequences of 12 concatenated PCGs except. The phylogenetic tree included 22 families and 41 genera of order Siluri-formes. In this study, the families Schilbeidae, Claroteidae, Mochokidae, and Ariidae formed a closely evolved clade with bootstrap value (62) and Bayesian posterior probability values (0.77), which was consistent with previous researches (Wang, 2016a, 2016b; Llera-Her- rera, 2017). These researchesshowed that Ariidae shared a close ancestry with Ictaluridae or Siluridae, however, all the bootstrap values was lower than 55. Thus, the genetic relationship between Ariidae and other familes is still unclear, which need deeper study. Additionally, Callichthyidae was proposed to be one of the most basal taxa in the order of Siluriformes, which was similar to earlier study (Wang, 2016b).In other branches, Sisoridae, Amblycipitidae and Bagridae formed a distinct group(bootstrap value of 100 and Bayesian posterior pro- bability values of 1). Simultaneously, Ictaluridae+ (Pangasiidae+Auchenipteridae) was strongly supported by ML and BI. These phylogenetic positions were in agreement with the previous studies (Jondeung, 2007; Wang, 2016b). Besides, Jondeung(2007) found that some branches of basal catfish relationships received high support in terms of Bayesian posterior probability but not of bootstrap, which was similar to our results. Therefore, the phylogenetic relationships of Silu- riformes need to be demonstrated deeply based on a more comprehensive Siluriformes species in the future.

    Fig.6 Inferred phylogenetic relationships among Siluriformes by the BI and ML methods based on concatenated nucleotide sequences of the 12 PCGs, using Gymnotiformes species, A. albifrons (AB054132.1), B. occidentalis (AP011570.1)and Gcarapo (AP011979.1), as outgroups. The numbers along branches indicate ML bootstrap values and Bayesian posterior probability values, respectively.

    4 Conclusions

    This study first investigated the complete mitogenome of, which was 16792bp in length. Similar to other Ariidae species, this mitogenome contained 13 PCGs, onegene, onegene, 22 tRNA genes, and two non-coding regions. There were 33bp overlaps in the mitogenome of.found at 10 gene junctions. The AT-skew value of this mitogenome was slightly negative, but the GC-skew value was strongly positive. All of the PCGs used ATG as the start codon, except for, which was initiated by GTG. In addition, Leu1 was the most commonly used amino acid of all the PCGs. The.mitogenome encoded 22 tRNA and two rRNA. With the exception oftRNA, the other 21 tRNA genes displayed typical clover-leaf structures.OLofcontained a conserved motif, 5’-GCC GG-3’, which was found at the base of the stem with the tRNACys. Besides, 8 conserved sequence blocks, a termination-associated sequence and a pyrimidine tract were identified in the CR of.Molecular phylogenomic analysis indicated thatwasgenetically closest to. The families Schilbeidae, Claroteidae, Mochokidae, and Ariidae formed a closely evolved clade. These genetic relationships will be valuable regarding the evolutionary biology and population genetic diversity of Siluriformes

    AcknowledgementS

    This work was supported by the National Natural Science Foundation of China (Nos.41806127 and 41906111) and the Natural Science Foundation of Guangdong Province (No.2018A030313956).

    Benson, G., 1999. Tandem repeats finder: A program to analyze DNA sequences., 27: 573-580, DOI: 10.1093/nar/27.2.573.

    Boore, J. L., 1999. Animal mitochondrial genomes., 27: 1767-1780

    Burland, T. G., 2000a. DNASTAR’s Lasergene sequence analysis software., 132: 71-91, DOI: 10.1385/1-59259-192-2:71.

    Burland, T. G., 2000b. DNASTAR’s Lasergene sequence analysis software., 132: 71-91

    Carvalho, D. C., Perini, V. D. R., Bastos, A. S., da Costa, I. R., Luz, R. K., Furtado, C., and Prosdocimi, F., 2016. The complete mitochondrial genome of the threatened neotropical catfish(Silurifomes: Pseudopimelo- didae) and phylogenomic analysis indicate monophyly of Pimelodoidea., 39: 674-677, DOI: 10.1590/1678-4685-gmb-2016-0007.

    Chu, X., Zheng, B., and Dai, D., 1999.. Science Press, Beijing, 1-22.

    Cui, L., Dong, Y., Liu, F., Gao, X., Zhang, H., Li, L., Cen, J., and Lu, S., 2017. The first two complete mitochondrial genomes for the family Triglidae and implications for the higher phylogeny of Scorpaeniformes., 7: 1553, DOI: 10.1038/s41598-017-01654-y.

    Doda, J. N., Wright, C. T., and Clayton, D. A., 1981. Elongation of displacement-loop strands in human and mouse mitochondrial DNA is arrested near specific template sequences., 78: 6116-6120, DOI: 10.1073/pnas.78.10. 6116.

    Fernandez-Silva, P., Enriquez, J. A., and Montoya, J., 2003. Replication and transcription of mammalian mitochondrial DNA.. 88: 41-56, DOI: 10.1113/ eph8802514.

    Gong, L., Shi, W., Si, L. Z., Wang, Z. M., and Kong, X. Y., 2015. The complete mitochondrial genome of peacock sole(Pleuronectiformes: Soleidae) and comparative analysis of the control region among 13 soles., 49: 408-417, DOI: 10.1134/s0026893315030061.

    Hixson, J. E., and Brown, W. M., 1986. A comparison of the small ribosomal RNA genes from the mitochondrial DNA of the great apes and humans: Sequence, structure, evolution, and phylogenetic implications., 3: 1-18, DOI: 10.1093/oxfordjournals.molbev.a040379.

    Jondeung, A., Sangthong, P., and Zardoya, R., 2007. The complete mitochondrial DNA sequence of the Mekong giant catfish (), and the phylogenetic relationships among Siluriformes., 387: 49-57, DOI: 10.1016/j. gene.2006.08.001.

    Lashari, P., Laghari, M. Y., Xu, P., Zhao, Z., Jiang, L., Narejo, N. T., Deng, Y., Sun, X., and Zhang, Y., 2016. Complete mitochondrial genome of catfish(Sykes, 1839) (Siluriformes, Bagridae) from Indus River Sindh, Pakistan., 27: 387-388, DOI: 10.3109/1940 1736.2014.895998.

    Lee, W. J., Conroy, J., Howell, W. H., and Kocher, T. D., 1995. Structure and evolution of teleost mitochondrial control regions., 41: 54-66, DOI: 10. 1007/BF00174041.

    Llera-Herrera, R., Ramirez-Perez, J. S., and Saavedra-Sotelo, N. C., 2017. Complete mitochondrial genome of Cominate sea catfish(Siluriformes: Ariidae).. 2: 337-338, DOI: 10. 1080/23802359.2017.1334516.

    Marceniuk, A. P., and Menezes, N. A., 2007. Systematics of the family Ariidae (Ostariophysi, Siluriformes), with a redefinition of the genera., 1416: 1-126, DOI: 10.11646/zootaxa. 1416.1.1.

    Moreira, D. A., Buckup, P. A., Britto, M. R., Magalhaes, M. G. P., de Andrade, P. C. C., Furtado, C., and Parente, T. E., 2016. The complete mitochondrial genome of(Callichthyidae: Corydoradinae)., 14 (1): e150167, DOI: 10.1590/1982-0224-20150167.

    Nakatani, M., Miya, M., Mabuchi, K., Saitoh, K., and Nishida, M., 2011. Evolutionary history of Otophysi (Teleostei), a major clade of the modern freshwater fishes: Pangaean origin and Mesozoic radiation., 11: 177, DOI: 10.1186/1471-2148-11-177.

    Nelson, J., Grande, T., and Wilson, M., 2016.. 5th edition. John Wiley & Sons, New Jersey, 209pp, DOI: 10.1002/9781119174844.

    Nylander, J. A. A., 2004. MrModeltest V2. Program Distributed by the author.

    Ojala, D., Montoya, J., and Attardi, G., 1981. tRNA punctuation model of RNA processing in human mitochondrial., 290: 470-474, DOI: 10.1038/290470a0.

    Peng, Z., Wang, J., and He, S., 2006. The complete mitochondrial genome of the helmet catfish(Silurifonnes: Cranoglanididae) and the phylogeny of otophysan fishes., 376: 290-297, DOI: 10.1016/j.gene.2006. 04.014.

    Reuter, J. S., and Mathews, D. H., 2010. RNAstructure: Software for RNA secondary structure prediction and analysis., 11: 129. DOI: 10.1186/1471-2105-11- 129.

    Rodiles-Hernandez, R., Lundberg, J. G., and Sullivan, J. P., 2010. Taxonomic discrimination and identification of extant blue catfishes (Siluriformes: Ictaluridae:Group)., 159: 67-82, DOI: 10.1635/053.159.0105.

    Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., Larget, B., Liu, L., Suchard, M. A., and Huelsenbeck, J. P., 2012. MrBayes 3.2: Efficient bayesian phylogenetic inference and model choice across a large model space., 61: 539-542, DOI: 10.1093/sysbio/ sys029.

    Roques, S., Fox, C. J., Villasana, M. I., and Rico, C., 2006. The complete mitochondrial genome of the whiting,and the haddock,: A detailed genomic comparison among closely related species of the Gadidae family., 383: 12-23, DOI: 10.1016/j. gene.2006.06.018.

    Salvato, P., Simonato, M., Battisti, A., and Negrisolo, E., 2008. The complete mitochondrial genome of the bag-shelter moth(Lepidoptera, Notodontidae)., 9pp, DOI: 10.1186/1471-2164-9-331.

    Santos, B. S., and Quilang, J. P., 2011. DNA barcoding ofspecies (Siluriformes: Ariidae) in Laguna de Bay, Philippines using the cytochrome C oxidase subunit I gene., 94: 205-210, DOI: 10.1016/j.njas.2011. 03.001.

    Schattner, P., Brooks, A. N., and Lowe, T. M., 2005. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs., 33: W686-W689, DOI: 10.1093/nar/gki366.

    Shi, W., Dong, X. L., Wang, Z. M., Miao, X. G., Wang, S. Y., and Kong, X. Y., 2013. Complete mitogenome sequences of four flatfishes (Pleuronectiformes) reveal a novel gene arrangement of L-strand coding genes., 13: 12, DOI: 10.1186/1471-2148-13-173.

    Silvestro, D., and Michalak, I., 2012. raxmlGUI: A graphical front-end for RAxML., 12: 335-337, DOI: 10.1007/s13127-011-0056-0.

    Simon, C., Buckley, T. R., Frati, F., Stewart, J. B., and Beckenbach, A. T., 2006. Incorporating molecular evolution into phylogenetic analysis, and a new compilation of conserved polymerase chain reaction primers for animal mitochondrial DNA., 37: 545-579, DOI: 10.1146/annurev.ecolsys.37.091305. 110018.

    Song, W., Li, L., Huang, H., Zhao, M., Jiang, K., Zhang, F., Zhao, M., Chen, X., and Ma, L., 2016. The complete mitochondrial genome sequence and gene organization of(Perciformes: Nototheniidae) with phylogenetic consideration.–, 1: 50-51, DOI: 10.1080/23802359.2015.1137818.

    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods., 28: 2731-2739, DOI: 10.1093/molbev/msr121.

    Thompson, J. D., Gibson, T. J., and Higgins, D. G., 2002. Multiple sequence alignment using ClustalW and ClustalX. In:, Chapter 2, Unit 2.3, DOI: 10. 1002/0471250953.bi0203s00.

    Walberg, M. W., and Clayton, D. A., 1981. Sequence and properties of the human KB cell and mouse L cell D-loop regions of mitochondrial DNA., 9: 5411-5421, DOI: 10.1093/nar/9.20.5411.

    Wang, P., Ou, Y., Wen, J., and Li, J., 2016a. The complete mitochondrial genome of(Siluriformes: Ariidae).–, 1: 551-552, DOI: 10. 1080/23802359.2016.1198999.

    Wang, R. Q., Wang, D. Z., Li, C. T., and Yang, X. R., 2016b. Mitochondrial genome of the shorthead catfish (): Structure, phylogeny, and intraspecific variation., 15 (2): 21-25, DOI: 10. 4238/gmr.15028634.

    Wei, H., Ma, H., Ma, C., Zhang, F., Wang, W., Chen, W., and Ma, L., 2016. The complete mitochondrial genome sequence and gene organization of(Gobiidae: Gobionellinae) with phylogenetic consideration., 27: 3725-3726, DOI: 10.3109/1940 1736.2015.1079876.

    Wolstenholme, D. R., 1992. Genetic novelties in mitochondrial genomes of multicellular animals., 2: 918-925, DOI: 10.1016/s0959-437x (05)80116-9.

    Wyman, S. K., Jansen, R. K., and Boore, J. L., 2004. Automatic annotation of organellar genomes with DOGMA., 20: 3252-3255, DOI: 10.1093/bioinformatics/bth352.

    Yu, F., Yu, J., Zhou, Y., Yan, J., Fang, Y., Wang, W., and Yang, Z., 2016. Phylogenetic study ofbased on complete mitochondrial DNA sequence., 27: 4706-4707, DOI: 10.3109/19401736.2015.1106 511.

    Zhang, D. X., Szymura, J. M., and Hewitt, G. M., 1995. Evolution and structural conservation of the control region of insect mitochondrial DNA., 40: 382-391, DOI: 10.1007/bf00164024.

    Zhuang, X., Qu, M., Zhang, X., and Ding, S., 2013. A comprehensive description and evolutionary analysis of 22 grouper (Perciformes, Epinephelidae) mitochondrial genomes with emphasis on two novel genome organizations., 8:e73561, DOI: 10.1371/journal.pone.0073561.

    # The two authors contributed equally to this work.

    . Tel: 0086-532-85222720

    E-mail:lusonghui1963@163.com

    December 8, 2019;

    May 1, 2020;

    June 3, 2020

    (Edited by Ji Dechun)

    亚洲色图综合在线观看| 一区二区三区四区激情视频| 2018国产大陆天天弄谢| 亚洲av.av天堂| 国产一区亚洲一区在线观看| 成人18禁高潮啪啪吃奶动态图 | 伊人亚洲综合成人网| 蜜桃在线观看..| 久久久精品免费免费高清| 秋霞伦理黄片| 一级av片app| 日本猛色少妇xxxxx猛交久久| 久久精品熟女亚洲av麻豆精品| tube8黄色片| 欧美丝袜亚洲另类| 91在线精品国自产拍蜜月| 十分钟在线观看高清视频www | 欧美最新免费一区二区三区| 久久婷婷青草| 麻豆成人av视频| 中国美白少妇内射xxxbb| 亚洲成色77777| 国产成人精品无人区| 欧美日韩在线观看h| 草草在线视频免费看| 欧美精品高潮呻吟av久久| 在线观看免费日韩欧美大片 | 看十八女毛片水多多多| 久久人人爽人人爽人人片va| 午夜老司机福利剧场| 女性生殖器流出的白浆| 国产高清有码在线观看视频| 大香蕉久久网| 在现免费观看毛片| 亚洲av欧美aⅴ国产| 最近的中文字幕免费完整| 久久久亚洲精品成人影院| 乱系列少妇在线播放| 秋霞伦理黄片| 少妇被粗大猛烈的视频| 国产欧美日韩精品一区二区| 少妇 在线观看| 自拍欧美九色日韩亚洲蝌蚪91 | 22中文网久久字幕| 国产午夜精品一二区理论片| 内地一区二区视频在线| 春色校园在线视频观看| 日本猛色少妇xxxxx猛交久久| 91午夜精品亚洲一区二区三区| 人妻 亚洲 视频| 99热6这里只有精品| 免费av中文字幕在线| 街头女战士在线观看网站| 国产成人午夜福利电影在线观看| 嘟嘟电影网在线观看| 亚洲,一卡二卡三卡| 久久久国产一区二区| 亚洲av成人精品一二三区| 只有这里有精品99| 亚洲av二区三区四区| 夜夜爽夜夜爽视频| 婷婷色av中文字幕| 欧美 亚洲 国产 日韩一| 亚洲欧洲精品一区二区精品久久久 | 激情五月婷婷亚洲| 99热网站在线观看| 亚洲天堂av无毛| 欧美日韩一区二区视频在线观看视频在线| 一个人免费看片子| 一级av片app| 狂野欧美白嫩少妇大欣赏| 丰满迷人的少妇在线观看| 又大又黄又爽视频免费| 永久免费av网站大全| 人人妻人人澡人人爽人人夜夜| 久久国产精品男人的天堂亚洲 | 免费av不卡在线播放| 午夜免费男女啪啪视频观看| 国产乱来视频区| 久久综合国产亚洲精品| 日本wwww免费看| 欧美日韩一区二区视频在线观看视频在线| 男人添女人高潮全过程视频| 香蕉精品网在线| 女性被躁到高潮视频| 青青草视频在线视频观看| av播播在线观看一区| 亚洲人成网站在线观看播放| 女的被弄到高潮叫床怎么办| 欧美日韩av久久| 亚洲婷婷狠狠爱综合网| 欧美日韩视频高清一区二区三区二| 久久久久久伊人网av| 精品熟女少妇av免费看| 秋霞伦理黄片| 熟妇人妻不卡中文字幕| 性色avwww在线观看| a级毛片免费高清观看在线播放| 久久久久久伊人网av| av福利片在线| 亚洲一区二区三区欧美精品| 精品国产露脸久久av麻豆| 国产伦在线观看视频一区| 性高湖久久久久久久久免费观看| 亚洲成色77777| 国内少妇人妻偷人精品xxx网站| freevideosex欧美| 欧美老熟妇乱子伦牲交| 久久人人爽人人片av| 日韩 亚洲 欧美在线| 五月天丁香电影| 涩涩av久久男人的天堂| 成年女人在线观看亚洲视频| 国产白丝娇喘喷水9色精品| 亚洲av国产av综合av卡| 亚洲精品乱久久久久久| 99国产精品免费福利视频| 成人午夜精彩视频在线观看| 老女人水多毛片| 一个人免费看片子| 少妇高潮的动态图| 高清黄色对白视频在线免费看 | 人妻系列 视频| 亚洲国产成人一精品久久久| 国产午夜精品一二区理论片| 全区人妻精品视频| 久久国产乱子免费精品| 国产亚洲午夜精品一区二区久久| 精品少妇久久久久久888优播| 天美传媒精品一区二区| 我要看黄色一级片免费的| 欧美 日韩 精品 国产| 欧美一级a爱片免费观看看| 岛国毛片在线播放| 成人毛片60女人毛片免费| av免费观看日本| 国产亚洲91精品色在线| 久久ye,这里只有精品| 一区二区三区免费毛片| 国产日韩欧美视频二区| 一个人免费看片子| 国产一区二区三区综合在线观看 | 国产亚洲一区二区精品| 免费黄频网站在线观看国产| 国产伦理片在线播放av一区| 国产有黄有色有爽视频| 亚洲av国产av综合av卡| 中文精品一卡2卡3卡4更新| 黑人高潮一二区| 亚洲国产最新在线播放| 亚洲av综合色区一区| 一个人免费看片子| 人人妻人人澡人人爽人人夜夜| 日韩av不卡免费在线播放| 99热国产这里只有精品6| 国产视频首页在线观看| 亚洲四区av| av线在线观看网站| 色5月婷婷丁香| 国内少妇人妻偷人精品xxx网站| 日本wwww免费看| 视频中文字幕在线观看| 99久国产av精品国产电影| 三上悠亚av全集在线观看 | 精品一区二区免费观看| 国产精品一区二区在线不卡| 99久久精品国产国产毛片| 极品教师在线视频| 国产精品国产av在线观看| 欧美区成人在线视频| 国产熟女午夜一区二区三区 | 91久久精品国产一区二区三区| av国产久精品久网站免费入址| 丝袜在线中文字幕| 精品久久久噜噜| 亚洲中文av在线| 欧美精品一区二区免费开放| 国产精品三级大全| 国内精品宾馆在线| 又爽又黄a免费视频| 亚洲中文av在线| 国产黄色免费在线视频| 国产国拍精品亚洲av在线观看| 国产免费视频播放在线视频| 97精品久久久久久久久久精品| 麻豆精品久久久久久蜜桃| 国产色爽女视频免费观看| 精品酒店卫生间| a级毛片在线看网站| 国产精品免费大片| 国产亚洲精品久久久com| 99久久人妻综合| 久久av网站| a级毛片在线看网站| 丰满人妻一区二区三区视频av| 男女国产视频网站| 插阴视频在线观看视频| 免费看日本二区| 另类亚洲欧美激情| 亚洲av二区三区四区| 日韩欧美 国产精品| 亚洲一级一片aⅴ在线观看| 国产精品女同一区二区软件| 亚洲四区av| 亚洲国产精品国产精品| 久久久久国产网址| 亚洲av国产av综合av卡| 黑人高潮一二区| 女性被躁到高潮视频| 免费少妇av软件| 纵有疾风起免费观看全集完整版| xxx大片免费视频| 一本大道久久a久久精品| 日日啪夜夜爽| 寂寞人妻少妇视频99o| 各种免费的搞黄视频| 午夜福利影视在线免费观看| 成人综合一区亚洲| 在线观看av片永久免费下载| 日韩精品有码人妻一区| 久久97久久精品| 久久精品久久久久久久性| 日日摸夜夜添夜夜添av毛片| a级毛片在线看网站| 亚洲av福利一区| 国产老妇伦熟女老妇高清| 国产色婷婷99| 在线天堂最新版资源| 我的女老师完整版在线观看| 日日摸夜夜添夜夜爱| 韩国高清视频一区二区三区| 赤兔流量卡办理| 精品人妻偷拍中文字幕| 久久久国产一区二区| 国产老妇伦熟女老妇高清| 一级毛片aaaaaa免费看小| 国内少妇人妻偷人精品xxx网站| 欧美另类一区| 老司机影院成人| 夜夜爽夜夜爽视频| 久久人妻熟女aⅴ| 中文精品一卡2卡3卡4更新| 大香蕉97超碰在线| 中文在线观看免费www的网站| 免费观看在线日韩| 国产极品粉嫩免费观看在线 | 哪个播放器可以免费观看大片| 国产精品欧美亚洲77777| 亚洲欧美中文字幕日韩二区| 一级爰片在线观看| 亚洲成人av在线免费| 亚洲怡红院男人天堂| 欧美日韩国产mv在线观看视频| 涩涩av久久男人的天堂| 免费观看在线日韩| 国产亚洲欧美精品永久| 国产 精品1| 亚洲精品一二三| 亚洲精品视频女| 激情五月婷婷亚洲| 建设人人有责人人尽责人人享有的| 亚洲性久久影院| av免费观看日本| 久久国产亚洲av麻豆专区| tube8黄色片| 国产成人精品无人区| 午夜激情久久久久久久| 麻豆精品久久久久久蜜桃| 国产成人freesex在线| 一区二区av电影网| 99久久综合免费| 中文在线观看免费www的网站| 久久99一区二区三区| 精品一区在线观看国产| 妹子高潮喷水视频| 久久久久国产网址| 精品一区二区免费观看| 亚洲四区av| 成年av动漫网址| 寂寞人妻少妇视频99o| 偷拍熟女少妇极品色| 麻豆乱淫一区二区| 人妻一区二区av| 国产熟女午夜一区二区三区 | 国产免费视频播放在线视频| 乱码一卡2卡4卡精品| 久久99一区二区三区| 在线观看国产h片| 国产无遮挡羞羞视频在线观看| 女性生殖器流出的白浆| 各种免费的搞黄视频| 曰老女人黄片| 国产伦理片在线播放av一区| 看非洲黑人一级黄片| av国产精品久久久久影院| 国产在线一区二区三区精| 两个人的视频大全免费| 我要看日韩黄色一级片| 99热全是精品| 国产一区二区三区综合在线观看 | 中国美白少妇内射xxxbb| 天天躁夜夜躁狠狠久久av| av天堂久久9| 久久久久久人妻| 高清午夜精品一区二区三区| 中文精品一卡2卡3卡4更新| 人妻系列 视频| 国产在线免费精品| 国产欧美另类精品又又久久亚洲欧美| 国产精品久久久久成人av| 精品久久久久久久久av| 免费av中文字幕在线| 晚上一个人看的免费电影| 三级经典国产精品| 九色成人免费人妻av| 国产无遮挡羞羞视频在线观看| 亚洲成色77777| 97在线视频观看| 欧美成人午夜免费资源| 制服丝袜香蕉在线| 国产日韩一区二区三区精品不卡 | 下体分泌物呈黄色| 欧美+日韩+精品| 亚洲欧洲国产日韩| 国产精品久久久久久精品电影小说| 中文资源天堂在线| 亚洲怡红院男人天堂| 性色avwww在线观看| 久久这里有精品视频免费| 69精品国产乱码久久久| 免费观看的影片在线观看| 欧美人与善性xxx| 日韩三级伦理在线观看| 天堂俺去俺来也www色官网| av福利片在线观看| 大片电影免费在线观看免费| 亚洲四区av| 亚洲国产精品999| 少妇人妻 视频| 久久国内精品自在自线图片| 日韩视频在线欧美| 蜜臀久久99精品久久宅男| 男人添女人高潮全过程视频| av天堂中文字幕网| 大码成人一级视频| 国产日韩欧美视频二区| 亚洲成色77777| 亚洲欧洲日产国产| 亚洲av不卡在线观看| 国产精品不卡视频一区二区| 欧美日韩精品成人综合77777| 亚洲国产色片| 欧美激情极品国产一区二区三区 | www.av在线官网国产| 一本色道久久久久久精品综合| 麻豆精品久久久久久蜜桃| 久久女婷五月综合色啪小说| 欧美少妇被猛烈插入视频| 亚洲精品中文字幕在线视频 | 成人国产av品久久久| 国产视频内射| 国产高清不卡午夜福利| 多毛熟女@视频| 乱人伦中国视频| 国产黄色免费在线视频| 99久久综合免费| 蜜桃在线观看..| 亚洲欧美成人综合另类久久久| 狂野欧美激情性bbbbbb| 久久久久久久久久久免费av| 亚洲精品国产色婷婷电影| 国产乱人偷精品视频| 免费人妻精品一区二区三区视频| 毛片一级片免费看久久久久| 少妇的逼水好多| www.色视频.com| 国产乱来视频区| 亚洲av二区三区四区| 国产精品欧美亚洲77777| 亚洲不卡免费看| 亚洲精品亚洲一区二区| 久久久久久久精品精品| 日韩一区二区视频免费看| 久久99精品国语久久久| 最近手机中文字幕大全| 国产成人一区二区在线| 日韩制服骚丝袜av| 欧美日韩国产mv在线观看视频| 国产又色又爽无遮挡免| 99久久精品热视频| 免费黄色在线免费观看| 国产成人一区二区在线| xxx大片免费视频| 国产无遮挡羞羞视频在线观看| 免费观看av网站的网址| 日本爱情动作片www.在线观看| 亚洲第一av免费看| 又大又黄又爽视频免费| 国产黄色视频一区二区在线观看| 日本黄色日本黄色录像| 国产男人的电影天堂91| 中文字幕制服av| 男女边摸边吃奶| 六月丁香七月| 国产精品不卡视频一区二区| 亚洲精品乱久久久久久| 中文字幕亚洲精品专区| 成人毛片a级毛片在线播放| 一二三四中文在线观看免费高清| 人妻 亚洲 视频| 桃花免费在线播放| 婷婷色av中文字幕| 天天操日日干夜夜撸| 观看美女的网站| 精品视频人人做人人爽| 亚洲欧美成人综合另类久久久| 少妇熟女欧美另类| 大陆偷拍与自拍| 免费观看性生交大片5| kizo精华| 亚洲av福利一区| 蜜桃久久精品国产亚洲av| 日产精品乱码卡一卡2卡三| 亚洲精品国产av成人精品| 久久久国产精品麻豆| 少妇裸体淫交视频免费看高清| 日韩欧美一区视频在线观看 | 国产日韩欧美亚洲二区| 日韩伦理黄色片| 免费在线观看成人毛片| 日本黄大片高清| 国产免费一区二区三区四区乱码| 人妻一区二区av| 有码 亚洲区| 涩涩av久久男人的天堂| 精华霜和精华液先用哪个| 最近的中文字幕免费完整| 女性生殖器流出的白浆| 哪个播放器可以免费观看大片| 水蜜桃什么品种好| 精品熟女少妇av免费看| 国产高清有码在线观看视频| 国产在线男女| 777米奇影视久久| 成年av动漫网址| 一区在线观看完整版| 曰老女人黄片| 亚洲电影在线观看av| 亚洲高清免费不卡视频| 在线精品无人区一区二区三| 一级a做视频免费观看| 日本91视频免费播放| 看非洲黑人一级黄片| 国产乱来视频区| 边亲边吃奶的免费视频| 亚洲va在线va天堂va国产| 女人久久www免费人成看片| 精品久久久久久久久av| 超碰97精品在线观看| 交换朋友夫妻互换小说| av不卡在线播放| 黄色一级大片看看| 天堂8中文在线网| 国产成人午夜福利电影在线观看| 日韩大片免费观看网站| 免费黄网站久久成人精品| 99热国产这里只有精品6| 亚洲av综合色区一区| 亚洲av中文av极速乱| 亚洲四区av| 欧美日韩综合久久久久久| 黄色怎么调成土黄色| 在线播放无遮挡| 国产视频首页在线观看| 亚洲丝袜综合中文字幕| 日韩熟女老妇一区二区性免费视频| 2021少妇久久久久久久久久久| 亚洲国产精品999| 国产男人的电影天堂91| 乱码一卡2卡4卡精品| 亚洲av.av天堂| 久久精品国产a三级三级三级| 99热国产这里只有精品6| 妹子高潮喷水视频| 国产黄频视频在线观看| 99热全是精品| 亚洲av中文av极速乱| 亚洲欧美一区二区三区国产| 亚洲av欧美aⅴ国产| 国产精品一区www在线观看| 国产免费福利视频在线观看| 日韩免费高清中文字幕av| 黑丝袜美女国产一区| 国模一区二区三区四区视频| 久久久久久久久久久免费av| 黄色毛片三级朝国网站 | 国内揄拍国产精品人妻在线| 亚洲av综合色区一区| 久久国产乱子免费精品| 三上悠亚av全集在线观看 | 在线亚洲精品国产二区图片欧美 | 亚州av有码| videos熟女内射| 日韩大片免费观看网站| 涩涩av久久男人的天堂| 七月丁香在线播放| 中文在线观看免费www的网站| av免费在线看不卡| 中文字幕人妻熟人妻熟丝袜美| 我的女老师完整版在线观看| 国产亚洲av片在线观看秒播厂| 亚洲国产精品专区欧美| 久久久久久久久久久丰满| 女人精品久久久久毛片| 中文字幕人妻熟人妻熟丝袜美| 十分钟在线观看高清视频www | 国产免费福利视频在线观看| 春色校园在线视频观看| 永久网站在线| 午夜福利影视在线免费观看| .国产精品久久| 卡戴珊不雅视频在线播放| 国产成人精品福利久久| 日日爽夜夜爽网站| 伦精品一区二区三区| 亚洲情色 制服丝袜| 国产av一区二区精品久久| 搡老乐熟女国产| 亚洲精华国产精华液的使用体验| 搡老乐熟女国产| 内射极品少妇av片p| 高清不卡的av网站| 亚洲av二区三区四区| 性色avwww在线观看| 国产成人精品无人区| 久久人人爽人人片av| 在线观看免费日韩欧美大片 | 国产高清三级在线| xxx大片免费视频| 成人综合一区亚洲| 一级毛片电影观看| 色5月婷婷丁香| 91在线精品国自产拍蜜月| 人妻制服诱惑在线中文字幕| 六月丁香七月| 肉色欧美久久久久久久蜜桃| 中文乱码字字幕精品一区二区三区| 纵有疾风起免费观看全集完整版| 精品人妻熟女av久视频| 日产精品乱码卡一卡2卡三| 美女视频免费永久观看网站| 又大又黄又爽视频免费| 91成人精品电影| 亚洲内射少妇av| a级片在线免费高清观看视频| 偷拍熟女少妇极品色| 午夜免费男女啪啪视频观看| 人人妻人人添人人爽欧美一区卜| 五月开心婷婷网| 久久国内精品自在自线图片| 成人毛片60女人毛片免费| 欧美精品亚洲一区二区| 2022亚洲国产成人精品| 少妇熟女欧美另类| 五月伊人婷婷丁香| 99热这里只有是精品在线观看| 免费观看a级毛片全部| 熟妇人妻不卡中文字幕| 爱豆传媒免费全集在线观看| 午夜免费观看性视频| 搡老乐熟女国产| 九草在线视频观看| 少妇猛男粗大的猛烈进出视频| av天堂中文字幕网| 色婷婷久久久亚洲欧美| 在线观看av片永久免费下载| 午夜福利影视在线免费观看| 男的添女的下面高潮视频| 天堂俺去俺来也www色官网| 99热国产这里只有精品6| 乱码一卡2卡4卡精品| 日韩av免费高清视频| 久久久欧美国产精品| 青春草亚洲视频在线观看| 免费看光身美女| 久久6这里有精品| 国产精品一区二区在线观看99| 春色校园在线视频观看| 亚洲欧美一区二区三区黑人 | 日韩欧美 国产精品| 欧美日韩av久久| 亚洲av国产av综合av卡| 亚洲国产欧美日韩在线播放 | 少妇裸体淫交视频免费看高清| 亚洲欧美日韩东京热| 色哟哟·www| 久久久久久久亚洲中文字幕| 亚洲一级一片aⅴ在线观看| 亚洲人成网站在线观看播放| av一本久久久久| 国产精品一区二区三区四区免费观看| 亚洲欧美清纯卡通| 91午夜精品亚洲一区二区三区| 久热久热在线精品观看| 七月丁香在线播放| 国产精品人妻久久久久久| 91精品国产国语对白视频| 国产av精品麻豆| 国产精品99久久99久久久不卡 | 国产精品三级大全| 国产午夜精品一二区理论片| 免费久久久久久久精品成人欧美视频 | 亚洲欧美日韩卡通动漫| 最近中文字幕2019免费版| 下体分泌物呈黄色|