• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Constructing an Automation Table for an Image-Based Arabidopsis Resistance Assay

    2020-09-12 03:11:18GoldiMkhijDineshPujrInHyoukSongByoungHeeYouHongGuKng
    Engineering 2020年5期

    Goldi Mkhij, Dinesh S. Pujr, In-Hyouk Song, Byoung Hee You, Hong-Gu Kng

    a Department of Engineering Technology, Texas State University, San Marcos, TX 78666, USA

    b Department of Biology, Texas State University, San Marcos, TX 78666, USA

    c Caresoft Global Inc., Burr Ridge, IL 60527, USA

    1. Introduction

    Crop improvement is becoming critical for food security due to a continuously changing climate and increasing population[1].The management of plant diseases is one of the most important factors in food security. For example, wheat, a major crop plant, has been historically subject to periodic total devastation. In a recent instance, when a new strain of wheat stem rust spread from East Africa to the Middle East, the price of wheat spiked significantly,threatening livelihoods in developing countries [2]. This example highlights the importance of learning how plants fend off potential pathogens and pests, in order to secure food resources.

    Identification of resistance traits has been one of the main tools in plant disease management [3]. For example, a long list of R(resistance)genes effective against disease in plants has been characterized and utilized for crop protection [4]. While these R genes trigger strong defense responses in response to infection from a wide range of pathogens and pests, the underlying signaling network,although highly complicated, appears to involve many common players. Arabidopsis non-expressor of PR (NPR1) gene, for example, has been shown to be a receptor for salicylic acid (SA),a well-known defense hormone [5], and is required for a majority of R gene-mediated resistance mechanisms[6].Lack of NPR1 leads to susceptibility to pathogens in not only Arabidopsis but also diverse plant species [7]. Many defense signaling components in Arabidopsis also play an important role in crop plants,which highlights the importance of characterizing the resistance signaling pathways in Arabidopsis in detail[8].Unfortunately,as the number of these defense components increases, it becomes more difficult to characterize all the necessary genetic backgrounds due to the lack of affordable phenomics tools which can automate highthroughput plant resistance assays.

    The increasing number of genetics resources, including natural and artificial variations,presents a valuable opportunity to identify important agronomic traits [9]. While large-scale genotyping is now routinely performed thanks to advances in sequencing technology, high-throughput phenotyping assays are far from routine because there are no fixed procedures and very few affordable phenomics tools [10]. A resistance assay in plants is even more challenging in a high-throughput setup, since resistance traits are mostly assessed by quantitating infecting pathogens/pests through labor-intensive steps. To overcome these hurdles, a Pseudomonas syringae(P.syringae) strain was engineered to carry a luminescent reporter gene and used in the noninvasive imaging of infected leaves in order to quantitate resistance in plants[11].This reporter strain allowed the assessment of over 100 Arabidopsis ecotypes,which led to the identification of two quantitative trait loci linked to the variance of basal bacterial resistance in Arabidopsis [11].

    Automation is a critical element in high-throughput phenotyping, which is often accomplished by an automation table. Phenoscope and PHENOPSIS [12,13] are two commercial automation tables used in large-scale phenotyping. However, this type of automation tool is out of reach for traditional laboratories due to its high cost, which presents a major challenge for a large-scale study.To overcome this hurdle,we built an affordable automation table synchronized with a camera for large-scale image-based resistance analysis,which demonstrates the benefit of automation in one of the challenging areas in plant phenomics.

    2. Methodology

    2.1. Parts for the automation table

    The automation table was assembled using the parts listed in Tables 1 and 2.A step-by-step assembly is described in the results section.

    2.2. Programming code for synchronizing the automation table with an electron-multiplication charge-coupled device camera

    A programming code written in C++ that was used to synchronize the automation table with an electron-multiplication chargecoupled device (EMCCD) camera is provided in Supplementary data in Appendix A.

    Table 1 Mechanical parts used to make an assembly for the x-axis.

    Table 2 Electronic parts used to control the automation table.

    2.3. Plant growth, bacterial infection, and quantitation of bacterial growth

    Arabidopsis plants were grown in soil at 22 °C and 60% relative humidity, with a 16 h light period. Four-week-old plants were hand infiltrated using a needleless syringe at an indicated inoculum (in 10 mmol·L-1MgCl2) of P. syringae grown for 2 d at 28 °C in King’s B medium with appropriate antibiotics.Inoculated leaves were harvested at the given time points, and then used for bacterial titer determination, as previously described [14].

    2.4. In planta NanoLuc reporter assay

    An EMCCD camera (C9100-23B, Hamamatsu, Japan) run by HCImageLive software (Hamamatsu, Japan) was used to capture chemiluminescence from infected plants.The external edge trigger mode feature was used to synchronize the automation table. Prior to imaging, plants were placed in the dark for 30 min to reduce background luminescence. Infected leaves were sprayed with NanoGlo reagent (Promega, USA) and images were captured; the camera was set at a binning of 4 and a sensitivity gain of 297,with the photon imaging mode (PIM) activated at 1 and an exposure time of 1 min.

    3. Assembly and a running example of the automation table

    Our automation table was designed to move a traditional Arabidopsis flat, also known as a 1020 greenhouse tray, which holds 18 pots of Arabidopsis plants. We describe the assembly of the automation table in two sections: ①the mechanical section and②the electronic section.

    3.1. Assembly of the automation table: The mechanical section

    High stiffness and thrust are necessary aspects of an automation table in order to support and move the weight of 18 pots.Precision is also crucial in order to consistently capture images.To achieve these requirements, a predesigned kit—the V-Slot?NEMA 23 linear actuator bundle (lead screw) with SKU number 1170-bundle and UPC number 819368022902—was used to provide a translation of the automation table along the x-axis. As shown in Fig. 1(a), the kit has a stepper motor, a lead screw, nuts,spacers, bearings, and a V-Slot?gantry plate. The movement is driven by the lead screw, and its motion is controlled by the stepper motor.

    Each plant on the flat was located directly under the camera in order to capture its image. This positioning required translational movements of the table along both the x- and y-directions. A replica of the previously described linear bundle was positioned inversely on top of the x-axis. The x- and y-axes were assembled using the V-Slot?gantry plates of each axis, as shown in Fig. 1(b). An Arabidopsis tray cannot be placed directly on the designed assembly shown in Fig. 1(b) because its own weight would cause misalignment between the camera and the plants.Two V-Slot?linear rails were therefore mounted on the top of the assembly,as shown in Fig.1(c),in order to keep the Arabidopsis tray stable and balanced during movement.

    Fig.1(d)shows a three-dimensional solid model of the automation table supporting 18 Arabidopsis pots.This table was capable of driving the plants smoothly,despite the considerable weight of the soil and water(see Supplementary video in Appendix A).A generic photo station was used to fix the camera, whose height could be manually adjusted (Fig. 1(e)). The automation table was placed under the camera.

    3.2. Assembly of the automation table: The electronic section

    Two NEMA 23 stepper motors were used to drive the x- and y-axes of the automation table. A micro-controller—the SainSmart computer numerical control (CNC) router single 1 axis 3.5 A TB6560 stepper stepping motor driver board—was used to provide electrical pulses to the motor,and the pulses were amplified using a direct-current (DC) power supply. A liquid crystal display (LCD)was included to indicate the live location of the plants on the flat.All components were electrically connected, as shown in Fig. 2.The Arduino controller stored the entire logic of the operation for image capturing, and provided the necessary sequences of electric pulses to the stepper motors accordingly.It also triggered the camera at the desired moment and controlled the LCD to display the location of the table.

    3.3. Image-based resistance assay facilitated by the automation table

    We have recently developed a P. syringae strain (manuscript under preparation) carrying one of the brightest luminescence reporters, NanoLuc Luciferase [15], for image-based resistance assay in plants. To test whether the automation table could facilitate this image-based assay, we infected Arabidopsis plants with the luminescent P. syringae and imaged them as they were mobilized by the automation table. An EMCCD camera imaged these infected plants nine consecutive times with no interruption.It should be noted that Arabidopsis plants that had been infected with the luminescent P. syringae for 1, 2, and 3 d were imaged(Fig.3).A representative picture from each different time is shown in Fig. 3(b). To ensure that this image-based resistance assay was as quantitative as its conventional counterpart, values from two methods were plotted, as shown in Fig. 3(b), which revealed a strong linear correlation. These outcomes suggest that the imagebased assay aided by the automation table produced highly quantitative data with minimum manual input.

    Fig. 1. Automation table assembly with a camera and its stand. Two motor-controlled rails were placed to control two-dimensional movements. Once (a) the first rail was assembled,(b)the second rail was placed on the top.(c)A mounting rail was used to support,(d)a plant growth flat.(e)The assembled table was placed under an electronmultiplying charged coupled device (EMCCD) camera.

    Fig. 2. The physical connection of each electronic component involved in moving the assembly.

    Fig.3. The image-based resistance assay coupled with the automation table produced quantitation data that was comparable to its conventional counterpart.(a)Correlation between the image-based (x-axis) and conventional (y-axis) assays. 3.5-week-old Arabidopsis plants were syringe infiltrated with 105 CFU·mL-1 of luminescence-tagged P.syringae.The infected plants at the indicated day post infection(dpi)were sprayed with the NanoGlo substrate and imaged using an EMCCD camera as shown in the x-axis.The same infected leaves were subject to a conventional leaf grinding assay in which a bacterial titer was measured as shown in the y-axis.(b)Representative pictures with and without light. Luminescence from infected plants, which was taken without light, is shown in pseudo-color for better differentiation. CFU: colony-forming unit; RLU:relative light unit.

    4. Concluding remarks and perspectives

    We have developed a custom-made automation table that facilitates high-throughput resistance assays. The table has two motor-controlled T-slot metal bars. The movement is synchronized with an EMCCD camera, which permits the uninterrupted imaging of plants. This automation tool, in combination with a recently developed luminescent P. syringae strain, allowed the resistance analysis of more than 30 infected Arabidopsis plants in less than 10 min. If performed manually, the same resistance assay would generally take several hours, as it involves several labor-intensive steps.

    Our image-based resistance analysis for plants utilizes an EMCCD camera, which captures images from dim luminance. This high-throughput-friendly method, when combined with the automation table, was performed at arguably the shortest time for plant resistance analysis to date(less than a few minutes versus several hours).In addition to its role in enhancing high throughput,this fast speed offers additional benefits to an EMCCD camera equipped with a highly sensitive imaging sensor that is designed to amplify a very dim light signal. The sensitivity of the EMCCD camera degrades over time, in a process known as gain aging,which leads to poor sensor sensitivity [16]. Severe gain aging makes an EMCCD camera unusable for image-based resistance assays, and it is very expensive to repair this aging issue based on our experience.Imaging with no interruption using an automation table provides the shortest possible running time, in addition to reducing unnecessary exposure to room lights due to occasional user errors,and will therefore help to maintain the high sensitivity of the camera for a longer time.

    Plant defense signaling has been intensively studied, resulting in the identification of many well-defined signaling pathways[17]. As more and more defense signaling components are characterized, the need to analyze a larger set of plants continues to grow. However, a conventional resistance assay, which relies on the manual counting of pathogens, is not generally conducive to a high-throughput experimental setting. The focus of individual studies has therefore been on changes in resistance in a few genetic backgrounds. For the same reason, the resistance trait distribution within a genetically homogeneous line has rarely been measured. It is increasingly apparent that the eukaryotic genome is highly dynamic, particularly under stress[18,19]. One of the contributing factors in this dynamicity is the increased activity of transposable elements, which can change the genome [20]. Thus, we envision that, once a largescale resistance study becomes the norm in the field of plant pathology, an interplay among the defense signaling factors and even resistance variance within a homologous genetic background would be uncovered.

    The automation table presented in this study accommodates a conventional Arabidopsis tray. This table can easily be upscalable by replacing a bar and a motor with others having adequate capacity. Most laboratories have limited options for automation when it comes to imaging plants on a large scale.Although advanced automation tools have great potential to enhance phenotyping capabilities, low-cost and/or do-it-yourself(DIY) phenotyping solutions such as the automation table presented in this study will reduce the entry barrier [21], which will further popularize a high-throughput approach. Therefore,we hope that our affordable automation table will encourage more laboratories to commit to large-scale resistance assays in order to better characterize ever-complicating plant defense signaling.

    Acknowledgements

    We thank Angela H. Kang for critical comments on this manuscript and John Word for feedback/help on designing the automation table. This work is supported by the National Science Foundation (IOS-1553613 to Hong-Gu Kang).

    Appendix A. Supplementary data

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.eng.2019.09.009.

    天天一区二区日本电影三级| 插阴视频在线观看视频| 内地一区二区视频在线| 一个人看视频在线观看www免费| 两个人的视频大全免费| 久久人人爽人人爽人人片va| 下体分泌物呈黄色| 成年女人在线观看亚洲视频 | 天天躁日日操中文字幕| 欧美丝袜亚洲另类| 欧美老熟妇乱子伦牲交| 国产极品天堂在线| 国产高清国产精品国产三级 | 80岁老熟妇乱子伦牲交| 在线看a的网站| 99热网站在线观看| 一区二区三区免费毛片| 国产大屁股一区二区在线视频| 99久久九九国产精品国产免费| 国产真实伦视频高清在线观看| av一本久久久久| 久久久久精品性色| 秋霞伦理黄片| 久久99精品国语久久久| 日韩强制内射视频| 免费看日本二区| 尾随美女入室| 五月伊人婷婷丁香| 国产免费视频播放在线视频| 中文字幕免费在线视频6| 国产精品99久久久久久久久| 国产 一区精品| 欧美性猛交╳xxx乱大交人| 国产精品99久久99久久久不卡 | 国产黄片视频在线免费观看| 国产91av在线免费观看| 成人亚洲欧美一区二区av| 精品国产乱码久久久久久小说| 校园人妻丝袜中文字幕| 一级av片app| 麻豆成人av视频| 亚洲真实伦在线观看| 国产视频首页在线观看| 婷婷色av中文字幕| 看十八女毛片水多多多| 丰满人妻一区二区三区视频av| 成人无遮挡网站| 久久精品国产a三级三级三级| 伦理电影大哥的女人| 在线观看一区二区三区| 一区二区三区乱码不卡18| 新久久久久国产一级毛片| 夫妻性生交免费视频一级片| 国产一区亚洲一区在线观看| 禁无遮挡网站| 波多野结衣巨乳人妻| 中文字幕av成人在线电影| 夫妻午夜视频| 久久精品综合一区二区三区| 国产中年淑女户外野战色| 秋霞伦理黄片| 欧美日韩视频精品一区| av卡一久久| 亚洲美女搞黄在线观看| 成年版毛片免费区| 亚洲美女视频黄频| 男人和女人高潮做爰伦理| 欧美97在线视频| 亚洲精品aⅴ在线观看| 一级a做视频免费观看| 亚洲欧美一区二区三区国产| 80岁老熟妇乱子伦牲交| 免费看a级黄色片| av一本久久久久| 99热全是精品| 免费看光身美女| 26uuu在线亚洲综合色| 丝袜美腿在线中文| 国产免费又黄又爽又色| 一区二区三区精品91| 深爱激情五月婷婷| 国产爽快片一区二区三区| 白带黄色成豆腐渣| 七月丁香在线播放| 丝袜脚勾引网站| 久热这里只有精品99| 天天躁夜夜躁狠狠久久av| 久久久久久久午夜电影| 中文字幕亚洲精品专区| 午夜福利在线观看免费完整高清在| 国产精品人妻久久久影院| 亚洲国产色片| 久久久久久久久久成人| 菩萨蛮人人尽说江南好唐韦庄| 亚洲精品国产av成人精品| 99热这里只有是精品50| 日韩人妻高清精品专区| 天美传媒精品一区二区| 蜜桃久久精品国产亚洲av| 欧美最新免费一区二区三区| 一边亲一边摸免费视频| 一级av片app| 精品酒店卫生间| 亚洲综合色惰| 色婷婷久久久亚洲欧美| 高清视频免费观看一区二区| 亚洲怡红院男人天堂| 欧美xxxx黑人xx丫x性爽| 真实男女啪啪啪动态图| 日产精品乱码卡一卡2卡三| 午夜亚洲福利在线播放| 亚洲天堂国产精品一区在线| 永久免费av网站大全| 国国产精品蜜臀av免费| 中文字幕免费在线视频6| 在线a可以看的网站| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 久久久久久久久久久免费av| 中文精品一卡2卡3卡4更新| 国产老妇伦熟女老妇高清| 日韩欧美一区视频在线观看 | 在线看a的网站| 久久久久久国产a免费观看| 麻豆精品久久久久久蜜桃| 国产一区二区三区综合在线观看 | 插阴视频在线观看视频| kizo精华| 精品国产三级普通话版| 在线免费十八禁| 欧美老熟妇乱子伦牲交| 国产精品久久久久久精品电影| 男插女下体视频免费在线播放| 亚洲丝袜综合中文字幕| 街头女战士在线观看网站| 91久久精品国产一区二区成人| 亚洲av在线观看美女高潮| 亚洲欧美精品自产自拍| 听说在线观看完整版免费高清| 久久久久久久大尺度免费视频| 亚洲av二区三区四区| 成人国产av品久久久| 插逼视频在线观看| 嫩草影院精品99| 中文字幕亚洲精品专区| 欧美精品一区二区大全| 久久99热这里只频精品6学生| 99久久人妻综合| av在线蜜桃| 中国国产av一级| 熟妇人妻不卡中文字幕| 国产爱豆传媒在线观看| 色视频在线一区二区三区| 亚洲精品乱码久久久v下载方式| 欧美三级亚洲精品| 狂野欧美激情性xxxx在线观看| 如何舔出高潮| 91久久精品电影网| 日韩成人av中文字幕在线观看| 国产在线一区二区三区精| 寂寞人妻少妇视频99o| 国产精品精品国产色婷婷| 亚洲精品国产av蜜桃| 天堂中文最新版在线下载 | 精品一区二区三卡| 在线观看一区二区三区| 午夜激情福利司机影院| 你懂的网址亚洲精品在线观看| 色哟哟·www| 热re99久久精品国产66热6| 人人妻人人澡人人爽人人夜夜| 国产男人的电影天堂91| 欧美高清性xxxxhd video| 日本-黄色视频高清免费观看| 国产亚洲最大av| 熟妇人妻不卡中文字幕| 国产极品天堂在线| 99久久精品国产国产毛片| 亚洲精品一二三| 九九久久精品国产亚洲av麻豆| 亚洲精品日本国产第一区| 色5月婷婷丁香| 免费av毛片视频| 国产黄色视频一区二区在线观看| 国产老妇女一区| 丰满乱子伦码专区| 最近最新中文字幕大全电影3| 午夜福利高清视频| 美女内射精品一级片tv| 尾随美女入室| 大片电影免费在线观看免费| 国产精品久久久久久久久免| 国产永久视频网站| 欧美成人a在线观看| 男女无遮挡免费网站观看| 亚洲精品日韩av片在线观看| 在线 av 中文字幕| 国产探花极品一区二区| 国产黄片视频在线免费观看| 青春草视频在线免费观看| 国产 一区精品| 国产亚洲精品久久久com| 高清视频免费观看一区二区| 大码成人一级视频| 久久久久久久久久久丰满| 在线观看av片永久免费下载| 丰满少妇做爰视频| 免费大片黄手机在线观看| 五月玫瑰六月丁香| 亚洲精品国产av蜜桃| 久久久久久九九精品二区国产| 国精品久久久久久国模美| 日韩视频在线欧美| 久久久成人免费电影| 亚洲成人久久爱视频| 看十八女毛片水多多多| 欧美日韩视频高清一区二区三区二| 亚洲美女搞黄在线观看| 亚洲成人精品中文字幕电影| 午夜福利视频1000在线观看| h日本视频在线播放| 欧美少妇被猛烈插入视频| 亚洲美女搞黄在线观看| 日日啪夜夜撸| 中文乱码字字幕精品一区二区三区| 内射极品少妇av片p| 国产男人的电影天堂91| 新久久久久国产一级毛片| 一区二区三区精品91| 大香蕉97超碰在线| 色网站视频免费| 国产高清国产精品国产三级 | 国产成人精品久久久久久| 嫩草影院新地址| 日韩视频在线欧美| 高清日韩中文字幕在线| 18禁动态无遮挡网站| 午夜福利高清视频| 热99国产精品久久久久久7| 日韩,欧美,国产一区二区三区| 亚洲av福利一区| 亚洲人成网站在线播| 亚洲精品乱码久久久久久按摩| 欧美日韩国产mv在线观看视频 | 美女主播在线视频| 国产视频内射| 寂寞人妻少妇视频99o| 丝袜美腿在线中文| 国产探花极品一区二区| 听说在线观看完整版免费高清| 亚洲av成人精品一区久久| 欧美日韩精品成人综合77777| 午夜爱爱视频在线播放| 永久网站在线| 18禁裸乳无遮挡免费网站照片| 特级一级黄色大片| 中国国产av一级| 精品久久久噜噜| 日韩精品有码人妻一区| 国产精品久久久久久久久免| 亚洲精品视频女| 高清欧美精品videossex| 内射极品少妇av片p| 日本猛色少妇xxxxx猛交久久| 日日啪夜夜爽| 国产精品av视频在线免费观看| 久久99热6这里只有精品| 亚洲第一区二区三区不卡| 欧美激情在线99| 午夜免费男女啪啪视频观看| 一边亲一边摸免费视频| 午夜精品一区二区三区免费看| 日韩不卡一区二区三区视频在线| 极品教师在线视频| 亚洲欧美日韩无卡精品| 99热全是精品| 亚洲精品日韩在线中文字幕| 国产黄色视频一区二区在线观看| 两个人的视频大全免费| 日本欧美国产在线视频| 国产有黄有色有爽视频| 精品久久久久久久末码| 色综合色国产| 国精品久久久久久国模美| 免费av观看视频| 国产成人精品婷婷| 免费黄频网站在线观看国产| 高清日韩中文字幕在线| av黄色大香蕉| 日日撸夜夜添| 精品人妻一区二区三区麻豆| 日韩制服骚丝袜av| 欧美高清性xxxxhd video| 国产精品无大码| 狂野欧美白嫩少妇大欣赏| 国产成人精品久久久久久| 美女内射精品一级片tv| 人人妻人人澡人人爽人人夜夜| 天美传媒精品一区二区| 亚洲在久久综合| 国产亚洲最大av| 成人综合一区亚洲| 国产亚洲91精品色在线| 夜夜爽夜夜爽视频| 欧美精品国产亚洲| 日韩视频在线欧美| 大片电影免费在线观看免费| 男女那种视频在线观看| 黑人高潮一二区| 又爽又黄a免费视频| 又大又黄又爽视频免费| 成人亚洲精品av一区二区| 亚洲自拍偷在线| 亚洲欧美日韩另类电影网站 | 精品久久久久久久久亚洲| 三级国产精品片| 午夜福利高清视频| 日韩 亚洲 欧美在线| 国产精品一区二区性色av| 日韩欧美精品免费久久| 人体艺术视频欧美日本| 亚洲综合精品二区| 一级毛片黄色毛片免费观看视频| 插阴视频在线观看视频| 免费观看av网站的网址| 国内精品宾馆在线| 身体一侧抽搐| 春色校园在线视频观看| 欧美xxⅹ黑人| 成年人午夜在线观看视频| 亚洲电影在线观看av| 男男h啪啪无遮挡| 国产欧美亚洲国产| 久久6这里有精品| 国产一区二区三区综合在线观看 | 在线亚洲精品国产二区图片欧美 | 99热这里只有是精品50| 国产男人的电影天堂91| 成年女人在线观看亚洲视频 | 一个人看视频在线观看www免费| 青春草亚洲视频在线观看| 国产午夜精品一二区理论片| 国产高清国产精品国产三级 | 亚洲真实伦在线观看| 少妇人妻精品综合一区二区| 蜜臀久久99精品久久宅男| 免费黄色在线免费观看| 亚洲精品自拍成人| 青春草国产在线视频| 久久久午夜欧美精品| 免费黄色在线免费观看| 亚洲精品,欧美精品| 日韩一区二区三区影片| 神马国产精品三级电影在线观看| 久久99热6这里只有精品| 日产精品乱码卡一卡2卡三| 久久精品夜色国产| 汤姆久久久久久久影院中文字幕| 色视频www国产| 日本与韩国留学比较| 久久久久九九精品影院| 欧美高清成人免费视频www| 亚洲av成人精品一二三区| 男人和女人高潮做爰伦理| 日韩一区二区视频免费看| 一区二区三区精品91| 免费观看无遮挡的男女| 99热这里只有是精品在线观看| 欧美激情久久久久久爽电影| 一区二区三区乱码不卡18| 久久亚洲国产成人精品v| 亚洲一级一片aⅴ在线观看| 久久精品久久久久久久性| 肉色欧美久久久久久久蜜桃 | 中文资源天堂在线| 免费不卡的大黄色大毛片视频在线观看| 久久精品久久久久久久性| 国产午夜福利久久久久久| av国产精品久久久久影院| 99久久精品一区二区三区| 七月丁香在线播放| 国产精品蜜桃在线观看| 国产黄色免费在线视频| 美女cb高潮喷水在线观看| 尾随美女入室| 日韩av免费高清视频| 国产色婷婷99| av一本久久久久| 在线播放无遮挡| 久久综合国产亚洲精品| 岛国毛片在线播放| 午夜老司机福利剧场| 99视频精品全部免费 在线| 能在线免费看毛片的网站| 夜夜看夜夜爽夜夜摸| 亚洲精品国产av成人精品| 成年女人看的毛片在线观看| 黄色视频在线播放观看不卡| 只有这里有精品99| 亚洲精品456在线播放app| 少妇被粗大猛烈的视频| 伊人久久国产一区二区| 777米奇影视久久| 欧美潮喷喷水| 偷拍熟女少妇极品色| 天天一区二区日本电影三级| 欧美xxxx黑人xx丫x性爽| 国产精品久久久久久久电影| 国产精品久久久久久精品电影小说 | 熟女电影av网| 在现免费观看毛片| 亚洲av中文av极速乱| 性色av一级| 婷婷色综合大香蕉| 新久久久久国产一级毛片| 黑人高潮一二区| 亚洲丝袜综合中文字幕| 偷拍熟女少妇极品色| 看免费成人av毛片| 国语对白做爰xxxⅹ性视频网站| 成年女人看的毛片在线观看| 久久久久国产精品人妻一区二区| 亚洲熟女精品中文字幕| 日本三级黄在线观看| 一本—道久久a久久精品蜜桃钙片 精品乱码久久久久久99久播 | 国内揄拍国产精品人妻在线| 国产亚洲av片在线观看秒播厂| 777米奇影视久久| 80岁老熟妇乱子伦牲交| 亚洲精品久久午夜乱码| 人体艺术视频欧美日本| 国产精品一区www在线观看| 亚洲精品视频女| 婷婷色av中文字幕| www.色视频.com| 夜夜爽夜夜爽视频| 国产精品精品国产色婷婷| 日韩,欧美,国产一区二区三区| 亚洲精品影视一区二区三区av| 夜夜看夜夜爽夜夜摸| 午夜爱爱视频在线播放| 精品人妻视频免费看| 丝瓜视频免费看黄片| 18禁裸乳无遮挡动漫免费视频 | 啦啦啦中文免费视频观看日本| 看十八女毛片水多多多| 久久久色成人| 国产精品福利在线免费观看| 亚洲图色成人| 亚洲内射少妇av| 国产毛片在线视频| 精品久久久久久久末码| 免费黄网站久久成人精品| 哪个播放器可以免费观看大片| 99久久人妻综合| 中文精品一卡2卡3卡4更新| 国产又色又爽无遮挡免| 国精品久久久久久国模美| 欧美区成人在线视频| av女优亚洲男人天堂| 日本与韩国留学比较| 99热这里只有精品一区| 在线观看三级黄色| 中国美白少妇内射xxxbb| 卡戴珊不雅视频在线播放| 亚洲第一区二区三区不卡| 少妇人妻精品综合一区二区| 精品国产乱码久久久久久小说| 最近最新中文字幕大全电影3| 色哟哟·www| 搞女人的毛片| 亚洲欧美清纯卡通| 午夜日本视频在线| 亚洲美女搞黄在线观看| 2018国产大陆天天弄谢| 久久精品国产亚洲av涩爱| 亚洲国产最新在线播放| 日韩人妻高清精品专区| 欧美极品一区二区三区四区| 自拍欧美九色日韩亚洲蝌蚪91 | 日韩电影二区| 综合色丁香网| 亚洲成人av在线免费| 五月天丁香电影| 日本与韩国留学比较| 亚洲精品一区蜜桃| 夫妻午夜视频| 少妇高潮的动态图| 国产淫片久久久久久久久| av在线观看视频网站免费| 熟妇人妻不卡中文字幕| 国产男女内射视频| 黄色配什么色好看| 国产老妇伦熟女老妇高清| 亚洲欧美精品专区久久| 国产亚洲av片在线观看秒播厂| 男女国产视频网站| 一个人看的www免费观看视频| 中文乱码字字幕精品一区二区三区| 久久99蜜桃精品久久| 高清在线视频一区二区三区| 欧美少妇被猛烈插入视频| 国产精品一区二区三区四区免费观看| 日韩亚洲欧美综合| 欧美日韩视频精品一区| 久久久久久久亚洲中文字幕| 美女xxoo啪啪120秒动态图| 大陆偷拍与自拍| 少妇人妻精品综合一区二区| 日本wwww免费看| 男女无遮挡免费网站观看| 亚洲精品久久午夜乱码| 国产免费福利视频在线观看| 嘟嘟电影网在线观看| 国产成年人精品一区二区| 亚洲性久久影院| 久久久久九九精品影院| 一区二区三区精品91| 国产日韩欧美亚洲二区| 国产精品精品国产色婷婷| 色网站视频免费| 久久精品夜色国产| 精品一区二区免费观看| 免费av观看视频| videossex国产| 亚洲av国产av综合av卡| 又爽又黄a免费视频| 狂野欧美激情性xxxx在线观看| 人人妻人人澡人人爽人人夜夜| 国产黄色视频一区二区在线观看| 亚洲欧洲国产日韩| 成人午夜精彩视频在线观看| 美女内射精品一级片tv| 日日啪夜夜撸| 在线观看人妻少妇| 欧美日韩视频高清一区二区三区二| 夜夜看夜夜爽夜夜摸| 美女高潮的动态| 爱豆传媒免费全集在线观看| 不卡视频在线观看欧美| 国产片特级美女逼逼视频| 亚洲精品日韩av片在线观看| 大又大粗又爽又黄少妇毛片口| 一区二区三区四区激情视频| 欧美精品一区二区大全| 内地一区二区视频在线| 综合色av麻豆| 三级男女做爰猛烈吃奶摸视频| 免费在线观看成人毛片| 最近最新中文字幕免费大全7| 国产毛片在线视频| 亚洲av免费高清在线观看| 亚洲精品日韩av片在线观看| 日韩电影二区| 久久韩国三级中文字幕| 久久精品人妻少妇| 又爽又黄a免费视频| 99九九线精品视频在线观看视频| 精品熟女少妇av免费看| 晚上一个人看的免费电影| 国产黄a三级三级三级人| 成人亚洲精品一区在线观看 | 亚洲国产精品国产精品| 我要看日韩黄色一级片| 成年女人看的毛片在线观看| 特大巨黑吊av在线直播| 欧美另类一区| 在线a可以看的网站| 性色av一级| 自拍欧美九色日韩亚洲蝌蚪91 | 麻豆成人av视频| 色婷婷久久久亚洲欧美| 最新中文字幕久久久久| 国产午夜精品一二区理论片| 日韩免费高清中文字幕av| 国产一区二区三区av在线| 亚洲三级黄色毛片| 91精品伊人久久大香线蕉| 日日啪夜夜撸| 日本一本二区三区精品| 精品少妇久久久久久888优播| 少妇猛男粗大的猛烈进出视频 | 亚洲av在线观看美女高潮| 亚洲av电影在线观看一区二区三区 | 啦啦啦中文免费视频观看日本| 亚洲av欧美aⅴ国产| 亚洲精品一区蜜桃| 亚洲av一区综合| 午夜福利网站1000一区二区三区| 亚洲精品乱码久久久v下载方式| 青春草亚洲视频在线观看| 国产免费福利视频在线观看| 九九爱精品视频在线观看| 欧美性猛交╳xxx乱大交人| 身体一侧抽搐| 别揉我奶头 嗯啊视频| 深爱激情五月婷婷| 纵有疾风起免费观看全集完整版| 亚洲国产精品国产精品| 综合色丁香网| 在线观看av片永久免费下载| 涩涩av久久男人的天堂| 嫩草影院新地址| 亚洲精品视频女| 99热这里只有是精品50| 一个人观看的视频www高清免费观看| 国产极品天堂在线| 夜夜爽夜夜爽视频| 美女内射精品一级片tv| 国产真实伦视频高清在线观看| 久久这里有精品视频免费| 一级毛片我不卡| 国产一区二区在线观看日韩| 久久久欧美国产精品| 久久久色成人| 亚洲伊人久久精品综合|