李培華
與特殊四邊形有關(guān)的折疊問(wèn)題是中考的熱點(diǎn),中考數(shù)學(xué)倒數(shù)第二題中屢屢能見(jiàn)到此類(lèi)問(wèn)題的身影. 此類(lèi)問(wèn)題變化多、綜合性強(qiáng),因此難度較大. 下面舉例介紹如何活用類(lèi)比猜想來(lái)解決此類(lèi)問(wèn)題.
例(2019·湖北·襄陽(yáng))(1)證明推斷:如圖1①,在正方形ABCD中,點(diǎn)E,Q分別在邊BC,AB上,DQ⊥AE于點(diǎn)O,點(diǎn)G,F(xiàn)分別在邊CD,AB上,GF⊥AE.
①求證:DQ = AE;
②推斷:的值為 .
(2)類(lèi)比探究:如圖1②,在矩形ABCD中, = k(k為常數(shù)). 將矩形ABCD沿GF折疊,使點(diǎn)A落在BC邊上的點(diǎn)E處,得到四邊形FEPG,EP交CD于點(diǎn)H,連接AE交GF于點(diǎn)O. 試探究GF與AE之間的數(shù)量關(guān)系,并說(shuō)明理由.
(3)拓展應(yīng)用:在(2)的條件下,連接CP,當(dāng)k = 時(shí),若tan∠CGP = ,GF = 2,求CP的長(zhǎng).
分析:(1)①由正方形的性質(zhì)易得∠QAO = ∠ADO,進(jìn)而有△ABE≌△DAQ,可得DQ = AE;②證明四邊形DQFG是平行四邊形即可解決問(wèn)題. (2)結(jié)論: = k. 如圖2,作GM⊥AB于M,證明△ABE∽△GMF即可解決問(wèn)題. (3)如圖3,作PM⊥BC交BC的延長(zhǎng)線(xiàn)于M. 利用相似三角形的性質(zhì)求出PM,CM即可解決問(wèn)題.
解:(1)①∵四邊形ABCD是正方形,∴DA = AB,∠DAQ = 90° = ∠ABE. ∴∠QAO + ∠OAD = 90°.
∵AE⊥DQ,∴∠ADO + ∠OAD = 90°. ∴∠ADO = ∠QAO.
∴△DAQ≌△ABE(ASA),∴DQ = AE.
②結(jié)論: = 1. 理由:∵DQ⊥AE,F(xiàn)G⊥AE,∴DQ∥FG,
∵FQ∥DG,∴四邊形DQFG是平行四邊形,∴FG = DQ,
∵AE = DQ,∴FG = AE,∴ = 1.
(2)結(jié)論: = k. 理由:如圖2,作GM⊥AB于M.
∵AE⊥GF,∴∠AOF = ∠GMF = ∠ABE = 90°,
∴∠BAE + ∠AFO = 90°,∠AFO + ∠FGM = 90°,
∴∠BAE = ∠FGM,
∴△ABE∽△GMF,∴ = ,
∵∠AMG = ∠D = ∠DAM = 90°,
∴四邊形AMGD是矩形,∴GM = AD,
∴ =? =? = k.
(3)如圖3,作PM⊥BC交BC的延長(zhǎng)線(xiàn)于M.
∵FB∥GC,F(xiàn)E∥GP,∴∠CGP = ∠BFE,
∴tan∠BFE = tan∠CGP =? = ,
∴設(shè)BE = 3k,BF = 4k,則EF = AF = 5k,AB = AF + BF = 9k,
∵ = ,F(xiàn)G = 2,∴AE = 3,
∴(3k)2 + (9k)2 = (3)2,
∴k = 1或-1(舍棄),∴BE = 3,AB = 9,
∵ = ,∴BC = 6,
∴BE = CE = 3,AD = PE = BC = 6,
∵∠FBE = ∠FEP = ∠PME = 90°,
∴∠FEB + ∠PEM = 90°,∠PEM + ∠EPM = 90°,
∴∠FEB = ∠EPM,∴△FBE∽△EMP,∴ =? = ,
∴ =? = ,∴EM = ,PM = ,
∴CM = EM - EC =? - 3 = ,∴PC =? = .
點(diǎn)評(píng):解決(2)(3)問(wèn)的關(guān)鍵是類(lèi)比其與第(1)問(wèn)的相似之處,遷移第(1)問(wèn)的思路進(jìn)行合理猜想.