• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Stability of General Linear Dynamic Multi-Agent Systems under Switching Topologies with Positive Real Eigenvalues

    2020-09-05 07:40:26ShengoEenLiZhitoWngYngZhengDingeYngKeyouYou
    Engineering 2020年6期

    Shengo Een Li*, Zhito Wng Yng Zheng, Dinge Yng Keyou You

    a State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China

    b Department of Engineering Science, Balliol College, University of Oxford, Oxford OX1 3PJ, UK

    c Department of Automation, Tsinghua University, Beijing 100084, China

    Keywords:

    Stability Multi-agent system Switching topologies Common Lyapunov function

    A B S T R A C T

    The time-varying network topology can significantly affect the stability of multi-agent systems. This paper examines the stability of leader-follower multi-agent systems with general linear dynamics and switching network topologies, which have applications in the platooning of connected vehicles. The switching interaction topology is modeled as a class of directed graphs in order to describe the information exchange between multi-agent systems, where the eigenvalues of every associated matrix are required to be positive real. The Hurwitz criterion and the Riccati inequality are used to design a distributed control law and estimate the convergence speed of the closed-loop system.A sufficient condition is provided for the stability of multi-agent systems under switching topologies. A common Lyapunov function is formulated to prove closed-loop stability for the directed network with switching topologies.The result is applied to a typical cyber-physical system—that is, a connected vehicle platoon—which illustrates the effectiveness of the proposed method.

    1. Introduction

    In recent years, the coordination control of multi-agent-based cyber-physical systems has attracted considerable research attention due to theoretical breakthrough and wide-ranging engineering applications. Research topics in coordination control include consensus control[1],rendezvous control[2],flocking control,and formation control [3]. In addition, coordination control has a broad range of applications due to its efficiency and reliability, such as vehicle platooning, the formation of multiple unmanned aerial vehicles (UAVs), collaborative assembly systems [4], and sensor networks [5,6].

    One central topic is the design of a distributed control law to stabilize a multi-agent system or reach a certain consensus,where each agent only uses local information from its neighbors for feedback[7].Graph Laplacians play an important role in describing the interaction topologies and analyzing the stability of multi-agent systems [8,9]. The theoretical framework for proving the stability with graph Laplacians was introduced in the seminal work by Olfati-Saber et al.[10,11],where each agent of the multi-agent system is a single integrator. By extending this framework into double-integrator dynamics,Ren and colleagues[12,13]presented sufficient and necessary conditions for the stability of multi-agent systems from a graph-theoretic perspective,where the transformation of the Jordan normal form was applied to analyze the closedloop matrices. For high-order dynamics, Ni and Cheng [14]designed a stability algorithm based on the Riccati and Lyapunov inequality. Zheng et al. [15] proved the stability under interconnected topologies whose matrix has positive real eigenvalues using matrix decomposition and the Hurwitz criterion. Hong et al. [16]proposed a rigorous proof for the stability with an extension of LaSalle’s invariance principle.Beyond the abovementioned control law, Zheng et al. [17]also designed a distributed model predictive controller for multi-agent nonlinear systems and formulated a Lyapunov function to prove the asymptotic stability of a connected vehicle platoon.Wu et al.[18]presented a distributed sliding mode controller for multi-agent systems with positive definite topologies and exploited the asymptotic stability in the Lyapunov sense.Barooah et al. [19] introduced a mistuning-based control method to improve the stability margin of vehicular platoons.Ploeg et al.[20]developed an H-infinity control law to achieve the string stability of multi-agent systems.

    The variation of interaction topologies is quite common due to link failures/creations in networks or obstruction between interactional agents. The stability of multi-agent systems under switching topologies has also attracted considerable research attention. For example, Tanner et al. [21] proposed a control law in combination with the attractive and alignment forces,which could stabilize the flocking system under dynamic topology. Olfati-Saber et al. [10] introduced a common Lyapunov function that could ensure the stability of single-integrator linear systems based on matrix theory and algebraic graph theory. Ren[12] considered a multi-agent system with double-integrator dynamics and showed that a set of connected, undirected, or directed topologies could stabilize the switching system by proving that the Lyapunov function is locally Lipschitz continuous. Ni and Cheng [14] expanded this study into a high-order integrator dynamic system and discussed the problem under the jointly connected undirected graph using Cauchy’s convergence criteria.Theoretically, the stability analysis of directed graphs is more challenging than the case of an undirected graph [10]. The methods for undirected topologies cannot naturally be applied to problems with directed topologies due to the lack of a positive definite property in directed topologies. In addition, it is more challenging to find a common Lyapunov function for switching directed topologies. Some pioneering studies have focused on the stability analysis of multi-agent systems with special switching directed topologies. For example, Qin et al. [22] analyzed a Lyapunov function of switching directed topologies systems and proved that system stability can be achieved under balanced directed graphs.Dong et al. [23] explored an explicit expression of the timevarying formation reference function and showed that the stability can be maintained if the dwell time is greater than a positive threshold.

    Fig.1. A depiction of the relationship between the discussed topologies. Positive real eigenvalues topology has the property of all the eigenvalues of matrix (L+P)being positive real. The followers in the forward-back topology can receive information from the same number of agents both forward and backward.It is clear that the forward-back type of topology is both a balanced graph and a positive real eigenvalues topology.

    The rest of this paper is organized as follows: Section 2 introduces the algebraic graph theory. In Section 3, a class of positive real eigenvalues topologies is introduced and a linear controller designed with a common Lyapunov function and Riccati inequality is proposed.In Section 4,the stability and convergence speed of the closed-loop systems under switching topologies are proved. Section 5 illustrates the method through numerical simulation, and Section 6 concludes this paper.

    2. Preliminaries and problem statement

    This paper considers a multi-agent system that consists of one leader and N followers. The dynamics of each agent are homogeneous and linear. It is assumed that all the eigenvalues of the matrices (L+P) describing the interaction topologies are positive and real numbers.

    2.1. Communication graph topology

    To represent the information flow between the leader and followers, a pinning matrix P is defined as P =diag{p1, p2, ..., pN},where pi=1 if the agent can obtain the information from the leader; otherwise, pi=0. Based on the pinning matrix P, a leaderreachable set could be defined as Pi= {0 } if pi=1; otherwise,Pi=?. Then, an information-reachable set is defined as Ii=Ni∪Pito represent the nodes from which agent i can obtain information.

    2.2. Agent dynamics

    The dynamics of each agent is:

    where xi(t )∈Rndenotes the state vector, ui(t )∈Rmis the control input, n and m are the dimension of state and control variable respectively,A ∈Rn×nand B ∈Rn×mare the system matrix and input matrix, respectively. The system is assumed to be stable by choosing an appropriate value of the pair (A, B).

    The leader has the following linear dynamic:

    where x0∈Rnis the state of the leader.

    2.3. Stability of multi-agent systems

    The objective of multi-agent consensus control is to make the state of each following agent consistent with that of the leader.For every agent i ∈ {1, ..., N}, a distributed controller ui(t ) is required to realize

    For the simplicity of the subsequent stability analysis, a new tracking error is defined as follows:

    The state space function of the tracking error is

    3. Design of the controller

    The interconnected topology of a multi-agent system varies with time due to some communication breakdown or obstacle between agents. In a switching topology problem, the information-reachable set of every agent varies with time. The notation (L+P)σ is used to describe the time-dependence of information flow,in which σ: [0, ∞)→∑is a switching signal at time t,and ∑is the index set of a group of graphs containing all the topologies. Consider an infinite sequence of nonempty time intervals [tk, tk+1), k=0, 1, ...with t0=0, tk+1-tk≤Tcfor some constant Tc. It is assumed that σ is constant in each interval and the graph can be denoted as Gσ.In order to ensure stability under varying topologies,an appropriate controller and the graph set {G∑}are designed in this section.

    3.1. Linear control law

    For each agent,the controller is distributed and can only use the information from its information-reachable set Ii. The following control law is used [24]:

    where K ∈Rm×nis a linear feedback gain.Substituting Eq.(6)to Eq.(5),the closed-loop dynamics of agent i can be obtained as follows:

    To describe the dynamic of the multi-agent system, the collective states of the system are defined as follows:

    Recall the definition of Laplacian matrix L and pinning matrix P; the closed-loop dynamics of the leader-follower multi-agent system are

    where INis the identity matrix and symbol ?is the Kronecker product. The overall closed-loop system matrix is defined as follows:

    For a linear system, the stability is associated with the eigenvalues of the closed-loop system matrix. From Eq. (10), it can be seen that the eigenvalues of Acdepend on (L+P). In other words, the interconnected topology influences the stability of the multi-agent system. In the following subsections, we will discuss a class of topologies that ensures that the eigenvalues of (L+P)are positive real numbers.

    3.2. Interconnected topologies with positive real eigenvalues

    The method proposed in this paper is suitable for a topology with positive real eigenvalues that lacks an exact uniform mathematic description. Therefore, a specific type of topology with a positive real property is particularly focused on in this paper.

    Lemma 1[15]: Let λi, i=1, 2, ..., N, be the eigenvalues of(L+P), then all the eigenvalues are positive real numbers; that is, λi>0, i=1, 2, ..., N, if there exists a directed spanning tree whose root is the leader and one of the following conditions holds:

    (1) The interconnected topology of the following agents is the forward type; that is, Ni= {i-hu, ..., i-hl}∩ {1, ..., N}, where huand hlare the upper and lower bound of forward communication range respectively.

    (2) The interconnected topology of the following agents is the forward-backward type; that is, Ni= {i-h, ..., i+h}∩{1, ..., N}/{i}, where h is the communication range.

    (3) The communication topology of the following agents is the undirected type; that is, j ∈Ni??i ∈Nj.

    Remark 1:For single-integrator or double-integrator dynamics,it is proved that switching directed topologies with a directed spanning tree is sufficient to stabilize the system; for example,see Refs. [10,12].

    Remark 2:In Ref. [14], stability under the switching of jointly connected undirected topologies is discussed. Our paper considered directed topologies; disconnected conditions are not considered, and will be studied in further work.

    3.3. Design of the coefficient matrix

    Since the pair (A, B)is stabilizable,there exists a solution P >0 for the following Riccati inequality:

    where δ is a positive number, which can be designed to influence the convergence of the system [25], and I is the identity matrix.The feedback matrix K can be constructed as follows:

    where α is the scaling factor that satisfies the following:

    Lemma 2:is the well-known Gershgorin Disk Criterion.

    Theorem 1:For the topology described inLemma 1, (L+P) is transformed to a Jordan diagonal canonical form J. Then He(J ) is a positive definite matrix.

    Proof:For the topology defined as (2) and (3) inLemma 1,matrix (L+P)is real symmetric.It is obvious that He(J )is positive definite,since J is a diagonal matrix.For the topology defined as(1)inLemma 1,the eigenvalues of (L+P)are larger than or equal to 1. J can be written as follows:

    For each block of He(J ), it has the following form:

    Remark 4: Theorem 1shows that the minimum eigenvalue of He(J )can influence the stability margin of the multi-agent system.It can be seen from Table 1 that the stability margin of the PF and BD topologies will get worse as the size N of followers increases,while the stability margin of the PLF,TPF,TPLF,and BDL topologies is independent of size N.The information from the leader is important for the stability margin of the system,and a suitable selection of topology,such as PLF and BDL,can improve the stability margin of the system. The result of the undirected topologies BD and BDL is the same as shown in Ref. [27]. A strict theoretical analysis will be conducted in future.

    4. Stability under switching topologies

    It is obvious that for a finite switching system, stability can be realized if the final topology can stabilize the system with the control law proposed in Section 3.Under infinite switching conditions and under a class of topologies, the system will be stabilized with the control law shown in Eq.(6).The speed of convergence can also be ensured.

    Lemma 4[28]:Given a family fσ,σ ∈Σ of functions from Rnto Rn, where Σ is some index set. This can represent a family of systems x˙=fσ(x ),σ ∈Σ. If all systems in the family share a common Lyapunov function,then the switching system x˙=fσ (x )is globally uniform asymptotically stable.

    This theorem will be used to prove our main theoretical result. Before the proof, some lemmas in matrix theory will be introduced.

    Lemma 5:Consider a positive definite real matrix M, and a positive real number ξ <min{λ( M)}, where λ( M) denotes the eigenvalues of M. The matrix M-ξI is still positive definite.

    Proof:If λiis an eigenvalue of M, there exists an eigenvector xisatisfying Mxi=λixi. Then, we have (M-ξI)xi= (λi-ξ)xi. Since 0 <ξ <min{λ(M )}, all the eigenvalues of (M-ξI ) are positive. It is obvious that (M-ξI) remains symmetric. Therefore, M-ξI is a positive definite matrix.

    The main result of this paper is stated as follows.

    ?Number of followerPFPLFTPFTPLFBDBDL 5 0.26792220.16202 6 0.19812220.11622 7 0.15222220.08742 8 0.12062220.06812 9 0.09792220.05462 100.08102220.04472

    Proof:Following the control law in Eq.(12)and Inequality(13),the following inequality can be obtained:

    The closed-loop dynamics of the multi-agent system are

    For a positive real topology, (L+P)σ is transformed to a Jordan diagonal canonical form. The closed-loop dynamic matrix can also be transformed to a diagonal block matrix:

    Substituting Inequality (13) into Eq. (19), we have

    The matrix

    is still symmetric. He (Jσ) is a positive definite matrix, according to

    Theorem 1.

    According to the Lemma 5, the inequality can be derived as follows:

    The following inequality can be derived according toLemma 5:

    Remark 6:In practice, the switching topologies may be unknown, which makes the selection of α nontrivial. A larger α is helpful to stabilize the switching system in this situation. In fact,Inequality (13) is only a sufficient condition for the system stability, which ensures the stability in theory. In our simulation, an α inconsistent with this inequality can also stabilize the system.

    5. Simulation results

    The vehicle platoon is a typical multi-agent system, which has attracted increasing attention because of its benefit in traffic[24]. The (L+P) matrices of typical topologies that describe the information flow among the vehicles in a platoon have positive real eigenvalues [15]. We conducted simulations of a homogeneous platoon with six identical vehicles (one leader and five followers)in order to validate the effectiveness. For platoon control, a thirdorder state space model is derived for each vehicle [17]:

    Fig.2. Switching topologies and are all positive real eigenvalue topologies. and are the forward type and is the forward-back type. In the simulations, the topology switches among these three topologies.

    The eigenvalues of He(J ) for the three topologies are listed in Table 2.All the eigenvalues are positive real and,considering their minimum value,the scaling factor α can be chosen to be 10.Three scenarios have been simulated,with two stable scenarios of different response coefficients δ and one unstable scenario.The controller parameters in Scenarios 1 and 2 are designed as in Theorem 2.However,the parameters in Scenario 3 do not satisfy the stability condition in Ref.[15].All the parameters are listed in Table 3.

    Fig.4 shows the state error of the vehicle platoon under the switching topologies.The simulation result shows that the control law designed according to Eq.(12)and Inequality(13)can stabilize the vehicle platoon. Compared with Fig.5, it demonstrates that a larger δ tends to make the system converge to the stable state more quickly. Fig.6 illustrates the performance of a controller whose parameters are chosen as the unstable region criterion in Ref.[15], which can show the effectiveness of our controller design method.It should be noted thatTheorem 2is only a sufficient condition for the system stability, which means that the selection of controller parameters—that is, if α does not meet the condition of Inequality (13)—may also stabilize the switching system.

    6. Conclusions

    This paper examines the stability of multi-agent systems under a class of switching topologies,where all the eigenvalues of(L+P)matrices are positive real numbers. Graph theory is used to describe the interconnected topology. The Hurwitz criterion andRiccati inequality are applied to design the control law in order to stabilize the multi-agent system and adjust the convergence speed of the system. By using the common Lyapunov function theorem,the stability of switching topology systems is proved. We have shown that stability can be achieved if the (L+P)matrices’eigenvalues of all the topologies are positive real numbers and present a sufficient condition for the switching system.The exponential stability and convergence speed can be influenced by the response coefficients δ in our controller.

    ?Switching topologyEigenvalue of He J( )~G10.27, 1.00, 2.00, 3.00, and 3.73~G20.59, 1.00, 2.00, 3.00, and 3.41~G30.16, 1.38, 3.43, 5.66, and 7.37

    ?ParametersScenario 1Scenario 2Scenario 3 K 10.071.6010.00 24.008.642.10 8.003.204.00 α 10.0010.00—δ 0.500.20—

    Fig.3. Switching signal. The dwell time is set as 2 s.

    Fig.4. Stability performance under switching topologies with δ = 0.5. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively. The switching system achieved stability in 15 s.

    Fig.5. Stability performance under switching topologies with δ = 0.2. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration, respectively.Compared with the controller in Scenario 1, this controller tends to have a longer convergence time of about 25 s.

    Fig.6. Stability performance under switching topologies with an unstable controller. (a), (b), and (c) show the tracking error of the position, velocity, and acceleration,respectively. The parameters are designed from the unstable region presented in Ref. [15]. This illustrates the effectiveness of our controller design method.

    Acknowledgements

    This work is supported by International Science and Technology Cooperation Program of China (2019YFE0100200) and Beijing Natural Science Foundation(JQ18010).It is also partially supported by Tsinghua University-Didi Joint Research Center for Future Mobility.

    Compliance with ethics guidelines

    Shengbo Eben Li, Zhitao Wang, Yang Zheng, Diange Yang, and Keyou You declare that they have no conflict of interest or financial conflicts to disclose.

    最近最新中文字幕免费大全7| 亚洲国产精品一区二区三区在线| 欧美日韩亚洲高清精品| 日本欧美国产在线视频| 日韩免费高清中文字幕av| 亚洲婷婷狠狠爱综合网| 国精品久久久久久国模美| 国产精品久久久久久av不卡| 91精品国产国语对白视频| 国产成人a∨麻豆精品| 午夜91福利影院| 性色avwww在线观看| 亚洲欧美清纯卡通| 最近2019中文字幕mv第一页| 国产精品久久久久久久久免| 国产爽快片一区二区三区| 色5月婷婷丁香| 久久热精品热| 中国国产av一级| 最近的中文字幕免费完整| 中文在线观看免费www的网站| 国产在线免费精品| 一区在线观看完整版| 狂野欧美激情性xxxx在线观看| 国产老妇伦熟女老妇高清| 97在线人人人人妻| 国产精品久久久久久久电影| 日韩中文字幕视频在线看片| 国产片特级美女逼逼视频| 老女人水多毛片| 看十八女毛片水多多多| www.色视频.com| 国产成人a∨麻豆精品| 中文字幕制服av| 久久久久久久久久成人| 又大又黄又爽视频免费| 中文字幕av电影在线播放| 国产无遮挡羞羞视频在线观看| 国产伦精品一区二区三区四那| 亚洲欧美精品自产自拍| 国产国拍精品亚洲av在线观看| 春色校园在线视频观看| 日韩精品免费视频一区二区三区 | 国产无遮挡羞羞视频在线观看| 蜜桃在线观看..| av网站免费在线观看视频| 大片电影免费在线观看免费| 亚洲人与动物交配视频| 国产伦理片在线播放av一区| 久久国产乱子免费精品| 久久韩国三级中文字幕| 中文在线观看免费www的网站| 久久国产精品大桥未久av | 在线观看一区二区三区激情| 亚洲成色77777| 日韩精品有码人妻一区| 亚洲真实伦在线观看| 日日啪夜夜爽| 十分钟在线观看高清视频www | 国产欧美另类精品又又久久亚洲欧美| 亚洲欧洲日产国产| 校园人妻丝袜中文字幕| 男男h啪啪无遮挡| 黄色视频在线播放观看不卡| 国产一级毛片在线| 精品人妻一区二区三区麻豆| 国产伦精品一区二区三区四那| 黄色一级大片看看| 国产免费福利视频在线观看| 欧美bdsm另类| 色婷婷av一区二区三区视频| 少妇被粗大猛烈的视频| 成人毛片60女人毛片免费| 夜夜看夜夜爽夜夜摸| 免费播放大片免费观看视频在线观看| 免费观看的影片在线观看| 免费黄频网站在线观看国产| 欧美精品人与动牲交sv欧美| 偷拍熟女少妇极品色| 欧美丝袜亚洲另类| 免费av不卡在线播放| 亚洲国产av新网站| av不卡在线播放| 免费少妇av软件| 国产免费一级a男人的天堂| 亚洲内射少妇av| 简卡轻食公司| 少妇的逼水好多| 久久99精品国语久久久| 久久韩国三级中文字幕| 久久99热6这里只有精品| 国产黄色视频一区二区在线观看| 寂寞人妻少妇视频99o| 久久久精品免费免费高清| 夜夜爽夜夜爽视频| 日韩视频在线欧美| 97超碰精品成人国产| av天堂中文字幕网| 日日啪夜夜撸| 少妇人妻久久综合中文| 综合色丁香网| 一本一本综合久久| 熟妇人妻不卡中文字幕| 在线播放无遮挡| 亚洲第一区二区三区不卡| 哪个播放器可以免费观看大片| 国产男人的电影天堂91| 99久久综合免费| 最近2019中文字幕mv第一页| 岛国毛片在线播放| 免费不卡的大黄色大毛片视频在线观看| 大香蕉97超碰在线| 亚洲欧美成人精品一区二区| 国产真实伦视频高清在线观看| 国产av国产精品国产| 亚洲国产精品国产精品| av网站免费在线观看视频| 99九九线精品视频在线观看视频| 自线自在国产av| 夫妻性生交免费视频一级片| 国产亚洲午夜精品一区二区久久| 久热久热在线精品观看| 久久女婷五月综合色啪小说| 国国产精品蜜臀av免费| 18禁动态无遮挡网站| 人妻制服诱惑在线中文字幕| 日韩大片免费观看网站| 久久99热6这里只有精品| 久久久久国产网址| 在线观看三级黄色| 国产无遮挡羞羞视频在线观看| 女性生殖器流出的白浆| 多毛熟女@视频| 成人二区视频| 日本黄大片高清| 成人特级av手机在线观看| 婷婷色av中文字幕| 夜夜看夜夜爽夜夜摸| 欧美少妇被猛烈插入视频| 亚洲成人一二三区av| .国产精品久久| 午夜激情久久久久久久| 中文字幕亚洲精品专区| 国产精品久久久久久久电影| 欧美日韩视频高清一区二区三区二| 中文字幕制服av| 高清午夜精品一区二区三区| 久久影院123| 欧美成人精品欧美一级黄| 免费av不卡在线播放| 国产亚洲91精品色在线| 在线观看www视频免费| 亚洲经典国产精华液单| 欧美另类一区| 老熟女久久久| 2022亚洲国产成人精品| 久久韩国三级中文字幕| 精品一品国产午夜福利视频| 少妇丰满av| 夜夜骑夜夜射夜夜干| 久久这里有精品视频免费| 中文欧美无线码| 亚洲国产最新在线播放| 日韩成人伦理影院| 免费不卡的大黄色大毛片视频在线观看| 免费黄色在线免费观看| 夫妻性生交免费视频一级片| 18禁在线播放成人免费| 黄色欧美视频在线观看| 欧美日韩精品成人综合77777| 夜夜骑夜夜射夜夜干| 亚洲精华国产精华液的使用体验| 少妇人妻久久综合中文| 热re99久久精品国产66热6| .国产精品久久| 亚洲欧洲日产国产| 中文字幕免费在线视频6| 在线看a的网站| 9色porny在线观看| 国产色爽女视频免费观看| 亚洲精品自拍成人| 黄色毛片三级朝国网站 | 久久韩国三级中文字幕| 精品熟女少妇av免费看| 久久久亚洲精品成人影院| 天天操日日干夜夜撸| 亚洲精品亚洲一区二区| 欧美精品国产亚洲| 最后的刺客免费高清国语| 久久久久久久久久久丰满| 岛国毛片在线播放| 欧美bdsm另类| 亚洲,一卡二卡三卡| 如何舔出高潮| a级片在线免费高清观看视频| 午夜福利在线观看免费完整高清在| 有码 亚洲区| 一级av片app| 夜夜看夜夜爽夜夜摸| 丰满迷人的少妇在线观看| 国产深夜福利视频在线观看| 亚洲av二区三区四区| 在线观看免费日韩欧美大片 | 精品熟女少妇av免费看| 精品久久久久久久久亚洲| 欧美国产精品一级二级三级 | 岛国毛片在线播放| 免费人妻精品一区二区三区视频| 97在线视频观看| 国产美女午夜福利| 久久精品熟女亚洲av麻豆精品| 国产免费福利视频在线观看| 国产男女内射视频| 国产成人aa在线观看| 欧美变态另类bdsm刘玥| 国内少妇人妻偷人精品xxx网站| 国产男女内射视频| 少妇 在线观看| kizo精华| 亚洲精品久久久久久婷婷小说| 中国国产av一级| 亚洲国产欧美日韩在线播放 | 国产成人免费无遮挡视频| 18禁动态无遮挡网站| 国产成人精品福利久久| 永久网站在线| 国产亚洲91精品色在线| 99久国产av精品国产电影| 亚洲国产毛片av蜜桃av| 国产成人精品久久久久久| 欧美精品国产亚洲| 成年人午夜在线观看视频| 中文字幕久久专区| 91午夜精品亚洲一区二区三区| 国产亚洲最大av| 国产69精品久久久久777片| 岛国毛片在线播放| 国产一区二区在线观看av| 精品久久久精品久久久| 观看免费一级毛片| 国产免费福利视频在线观看| 国产精品三级大全| 麻豆乱淫一区二区| 99re6热这里在线精品视频| 少妇丰满av| 人妻人人澡人人爽人人| 国产免费又黄又爽又色| 看非洲黑人一级黄片| 国产精品一区www在线观看| 久久女婷五月综合色啪小说| 日本爱情动作片www.在线观看| 国产欧美日韩精品一区二区| 97超视频在线观看视频| 久久精品国产亚洲av天美| 自拍偷自拍亚洲精品老妇| 高清欧美精品videossex| 不卡视频在线观看欧美| 久久午夜综合久久蜜桃| 国产欧美日韩精品一区二区| 777米奇影视久久| 国产欧美日韩一区二区三区在线 | 久久久久人妻精品一区果冻| 国产色婷婷99| 日韩中文字幕视频在线看片| 精品人妻一区二区三区麻豆| 亚洲美女视频黄频| 女的被弄到高潮叫床怎么办| 一区二区三区精品91| 热99国产精品久久久久久7| www.av在线官网国产| 久久午夜综合久久蜜桃| 晚上一个人看的免费电影| 国产伦精品一区二区三区四那| 性色avwww在线观看| 蜜桃久久精品国产亚洲av| 国产精品.久久久| 黑人高潮一二区| 国产精品国产三级国产专区5o| 一个人看视频在线观看www免费| 一区二区av电影网| 亚洲综合精品二区| 国产伦精品一区二区三区四那| 欧美精品一区二区免费开放| 丰满少妇做爰视频| 成人美女网站在线观看视频| 国产白丝娇喘喷水9色精品| 亚洲美女视频黄频| 一区二区三区免费毛片| 精品久久久噜噜| a级毛片在线看网站| 少妇裸体淫交视频免费看高清| 国产爽快片一区二区三区| 天堂中文最新版在线下载| 国产男女内射视频| 在线观看www视频免费| 国产av精品麻豆| a级毛片免费高清观看在线播放| 欧美 日韩 精品 国产| 一级毛片黄色毛片免费观看视频| 午夜久久久在线观看| 晚上一个人看的免费电影| 你懂的网址亚洲精品在线观看| 欧美国产精品一级二级三级 | 成年美女黄网站色视频大全免费 | 高清不卡的av网站| 一个人免费看片子| 一级毛片 在线播放| 自线自在国产av| 日本午夜av视频| 久久99热6这里只有精品| 久久久亚洲精品成人影院| 男人和女人高潮做爰伦理| 欧美区成人在线视频| 中文字幕av电影在线播放| 欧美+日韩+精品| 久久久国产一区二区| 特大巨黑吊av在线直播| 日韩电影二区| 国产无遮挡羞羞视频在线观看| 秋霞伦理黄片| 男的添女的下面高潮视频| 成人18禁高潮啪啪吃奶动态图 | 久久久久久久久久成人| 精品久久久久久久久亚洲| av不卡在线播放| 午夜福利,免费看| 国产一区二区在线观看av| 在现免费观看毛片| 亚洲无线观看免费| 最新中文字幕久久久久| 国产精品嫩草影院av在线观看| 亚洲精品一二三| 日本色播在线视频| 秋霞在线观看毛片| 在线观看免费日韩欧美大片 | 日韩成人伦理影院| 在线观看美女被高潮喷水网站| 国产又色又爽无遮挡免| 一边亲一边摸免费视频| 国产伦精品一区二区三区四那| 午夜激情久久久久久久| 国产伦精品一区二区三区四那| 久久久国产一区二区| 在线观看一区二区三区激情| 一级片'在线观看视频| 精品久久久噜噜| 国产一区亚洲一区在线观看| 成人美女网站在线观看视频| 亚洲内射少妇av| 精品视频人人做人人爽| 日韩av免费高清视频| 精品一区二区三卡| 日韩av免费高清视频| 久久精品熟女亚洲av麻豆精品| 一级片'在线观看视频| 日韩视频在线欧美| 有码 亚洲区| av专区在线播放| 色哟哟·www| 成人美女网站在线观看视频| 一级a做视频免费观看| 国产欧美日韩精品一区二区| 男女国产视频网站| 熟女av电影| 成人漫画全彩无遮挡| 午夜福利,免费看| 久久人人爽av亚洲精品天堂| 精品人妻熟女毛片av久久网站| 一级二级三级毛片免费看| 蜜桃在线观看..| 久久影院123| 久久av网站| 一级二级三级毛片免费看| 人妻一区二区av| 中国国产av一级| 亚洲无线观看免费| 久久6这里有精品| 九草在线视频观看| 国模一区二区三区四区视频| 制服丝袜香蕉在线| 狂野欧美白嫩少妇大欣赏| 亚洲一区二区三区欧美精品| 国产视频内射| 国产熟女午夜一区二区三区 | 久久国产精品男人的天堂亚洲 | 国产一区二区在线观看av| 亚洲国产精品国产精品| 日韩中文字幕视频在线看片| 日韩欧美一区视频在线观看 | 大香蕉久久网| 性色avwww在线观看| 中文字幕人妻丝袜制服| 亚洲精品日本国产第一区| 两个人的视频大全免费| 99热全是精品| 观看av在线不卡| 中文字幕亚洲精品专区| 日日撸夜夜添| 国产色婷婷99| 久久午夜综合久久蜜桃| 黄色配什么色好看| 啦啦啦视频在线资源免费观看| 欧美日本中文国产一区发布| 毛片一级片免费看久久久久| 亚洲电影在线观看av| 一本一本综合久久| 婷婷色麻豆天堂久久| 久久99热6这里只有精品| 欧美日韩视频精品一区| 久久精品国产亚洲av天美| av免费在线看不卡| 大又大粗又爽又黄少妇毛片口| 黑人猛操日本美女一级片| 亚洲欧美成人精品一区二区| 亚洲欧美日韩卡通动漫| 免费av不卡在线播放| 免费观看的影片在线观看| 亚洲精品aⅴ在线观看| 午夜激情福利司机影院| 亚洲欧美精品专区久久| 内地一区二区视频在线| 日韩三级伦理在线观看| 日韩电影二区| 亚洲欧洲日产国产| 伦精品一区二区三区| 一二三四中文在线观看免费高清| 最近中文字幕2019免费版| 日韩亚洲欧美综合| 汤姆久久久久久久影院中文字幕| 亚洲av不卡在线观看| 成人国产麻豆网| 日本91视频免费播放| 99热网站在线观看| 亚洲丝袜综合中文字幕| 在线观看美女被高潮喷水网站| 久久鲁丝午夜福利片| 精品国产国语对白av| av.在线天堂| 国产精品99久久99久久久不卡 | 18禁在线播放成人免费| 亚洲经典国产精华液单| 老司机影院成人| 成人毛片60女人毛片免费| 国产黄色视频一区二区在线观看| 亚洲天堂av无毛| 如何舔出高潮| 爱豆传媒免费全集在线观看| 成人午夜精彩视频在线观看| av国产精品久久久久影院| 欧美日韩综合久久久久久| 好男人视频免费观看在线| 日日摸夜夜添夜夜添av毛片| 日韩三级伦理在线观看| 久久久久久久久久久丰满| av免费观看日本| 亚洲精品第二区| 全区人妻精品视频| 少妇猛男粗大的猛烈进出视频| 大又大粗又爽又黄少妇毛片口| 色吧在线观看| 欧美日韩亚洲高清精品| 日本与韩国留学比较| 最近2019中文字幕mv第一页| 在线看a的网站| 国产亚洲精品久久久com| 九九在线视频观看精品| 午夜福利视频精品| 大香蕉久久网| 亚洲欧美日韩卡通动漫| 内射极品少妇av片p| 在线观看美女被高潮喷水网站| 18+在线观看网站| 18禁裸乳无遮挡动漫免费视频| 中文字幕人妻熟人妻熟丝袜美| 一级片'在线观看视频| 中国美白少妇内射xxxbb| 91精品国产国语对白视频| 永久网站在线| 热re99久久精品国产66热6| 菩萨蛮人人尽说江南好唐韦庄| 黄色欧美视频在线观看| 观看美女的网站| 欧美区成人在线视频| 狂野欧美白嫩少妇大欣赏| 哪个播放器可以免费观看大片| 欧美3d第一页| av播播在线观看一区| 国产成人aa在线观看| 黑丝袜美女国产一区| 国产成人免费无遮挡视频| 99国产精品免费福利视频| 国产精品一区二区在线不卡| av专区在线播放| 日本猛色少妇xxxxx猛交久久| h视频一区二区三区| 大片电影免费在线观看免费| 日本欧美视频一区| av又黄又爽大尺度在线免费看| 又黄又爽又刺激的免费视频.| 女人精品久久久久毛片| 乱人伦中国视频| 极品人妻少妇av视频| 日日啪夜夜爽| 桃花免费在线播放| 观看免费一级毛片| 国产欧美另类精品又又久久亚洲欧美| 国产一区有黄有色的免费视频| 亚州av有码| 黄色欧美视频在线观看| 一级片'在线观看视频| 成人午夜精彩视频在线观看| 久久久精品94久久精品| 蜜桃在线观看..| 中国国产av一级| 亚洲av成人精品一区久久| 欧美激情极品国产一区二区三区 | 午夜福利网站1000一区二区三区| 国精品久久久久久国模美| 欧美最新免费一区二区三区| 国语对白做爰xxxⅹ性视频网站| 国产精品国产av在线观看| 成人18禁高潮啪啪吃奶动态图 | 久久这里有精品视频免费| 久久ye,这里只有精品| 尾随美女入室| 国产免费视频播放在线视频| 久久精品国产亚洲av涩爱| 久久ye,这里只有精品| 高清视频免费观看一区二区| 中文字幕av电影在线播放| 国产探花极品一区二区| 丰满迷人的少妇在线观看| 久久久欧美国产精品| 人人妻人人添人人爽欧美一区卜| 欧美激情极品国产一区二区三区 | 精品国产乱码久久久久久小说| 九九爱精品视频在线观看| 美女国产视频在线观看| 又黄又爽又刺激的免费视频.| 国国产精品蜜臀av免费| 尾随美女入室| 午夜福利视频精品| 国产高清不卡午夜福利| 高清欧美精品videossex| 永久免费av网站大全| 最近2019中文字幕mv第一页| 免费人妻精品一区二区三区视频| 国产精品久久久久久精品古装| 亚洲美女视频黄频| 成人美女网站在线观看视频| 国国产精品蜜臀av免费| 久久精品国产鲁丝片午夜精品| 九九久久精品国产亚洲av麻豆| 久久精品国产亚洲av天美| 草草在线视频免费看| 丝瓜视频免费看黄片| 国内揄拍国产精品人妻在线| 久久久久久人妻| 少妇人妻 视频| 欧美成人午夜免费资源| 亚洲美女视频黄频| 久久精品国产鲁丝片午夜精品| 少妇人妻久久综合中文| 新久久久久国产一级毛片| 十分钟在线观看高清视频www | 日本免费在线观看一区| 一级毛片我不卡| 亚洲欧美精品自产自拍| 最近的中文字幕免费完整| 国产黄频视频在线观看| 18禁动态无遮挡网站| 日韩制服骚丝袜av| 亚洲av成人精品一区久久| 午夜久久久在线观看| 亚洲,欧美,日韩| 啦啦啦中文免费视频观看日本| .国产精品久久| 下体分泌物呈黄色| 男的添女的下面高潮视频| 免费在线观看成人毛片| 欧美bdsm另类| 久久久a久久爽久久v久久| 高清av免费在线| 人人妻人人看人人澡| 少妇裸体淫交视频免费看高清| h日本视频在线播放| 美女cb高潮喷水在线观看| 日韩一本色道免费dvd| 亚洲成人一二三区av| 日韩制服骚丝袜av| 精品一区二区三卡| 久久综合国产亚洲精品| 色94色欧美一区二区| 亚洲av免费高清在线观看| 汤姆久久久久久久影院中文字幕| 中文字幕制服av| 爱豆传媒免费全集在线观看| 久久毛片免费看一区二区三区| 嫩草影院新地址| 美女脱内裤让男人舔精品视频| 久久久久网色| 黄片无遮挡物在线观看| 免费黄网站久久成人精品| 亚洲国产欧美在线一区| 国产又色又爽无遮挡免| 黄色毛片三级朝国网站 | 欧美精品亚洲一区二区| 亚洲av.av天堂| www.av在线官网国产| 日韩一区二区三区影片| 一级片'在线观看视频| 亚洲成人av在线免费| 晚上一个人看的免费电影| 亚洲欧洲精品一区二区精品久久久 | 国产美女午夜福利|