• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    Data Hiding in DNA for Authentication of Plant Variety Rights

    2013-07-29 09:43:08WeiLiangTaiCharlesWangPhillipSheuandJeffreyTsai

    Wei-Liang Tai,Charles C.N.Wang,Phillip C.Y.Sheu,and Jeffrey J.P.Tsai

    1.Introduction

    Living organisms have been excluded from patent laws for over two hundred years.Living organism forms were always considered as a product of nature and not a human invention in the past.Before 1930,plant breeders who created new types of plants had no claim to the marketing rights or sales of their plants,even though they have taken a lot of time and effort to breed a new plant.The non-patentable status of plants changed with the Plant Patent Act of 1930.According to the U.S.Department of Agriculture(USDA),the Plant Patent Act was enacted in 1930 and provided,for the first time,patent protection for new and distinct varieties of asexually reproduced plants[1].Now plant breeders have a financial incentive to perform plant breeding experiments and exercise control over their discoveries.

    Although more than 68 countries protect new plant varieties by the plant breeder’s right,a few countries such as USA,European Union,Japan,and Australia do not exclude plant varieties from the patent right.The use of plant patents is becoming more and more common.In theory,molecular markers provide a method for helping to enforce plant patent rights.However,they are currently available for only a few breeders’ crop species since molecular marker libraries are expensive to develop.Furthermore,molecular markers represent a sample of the deoxyribose nucleic acid(DNA)from an organism rather than its entire genetic composition.Thus,molecular markers can easily demonstrate that two plants are different but hard to prove two plants are the same.For example,it may be difficult to find markers that differentiate a sport from the original cultivar,for the sport only differs from the original cultivar in a few genes.

    Data hiding provide another efficient way for authentication and annotation of plant patents.Digital watermarking techniques have been proposed for extensive applications,such as ownership protection,copy control,annotation,and authentication.Most past work is designed for digital images where the pixels take on a wide range of colors or brightness levels.Nowadays,there are many plants are increasingly commonly seen in our life,such as rose,phalaenopsis,and vegetables.Having the capability of hiding data in DNA can facilitate the authentication,annotation,and tracking of these plants.However,hiding data in DNA is much more difficult than in digital images.For DNA sequences,the genetic codes take values from only four bases:adenine(A),guanine(G),cytosine(C),and thymine(T),and they are drastically different in functionalities.As a result,hiding data in DNA without changing the functionalities becomes more difficult.

    Recently,hiding data in DNA becomes an interesting research topic because of biological property.In 2000,Leier et al.[2]proposed a special key sequence,called a primer,to decode an encrypted DNA sequence.They need to send a selected primer and an encrypted sequence to the receiver.Without the primers and the designated sequences,it is not possible to correctly decode the secret.Peterson[3]proposed a method to hide data in DNA sequences by substituting three consecutive bases as a character.However,there are at most 64 characters can be encoded in DNA.Further,high frequency of characters E and I can lead to the reveal of secret.

    Chang et al.[4]proposed two schemes to hide data in DNA sequences with the reversibility.The first scheme compressed the decimal formatted DNA sequence using a lossless compression method and then appended the secret message to the end of the compression stream.Finally,the bit stream was converted back to nucleotides.The second scheme used the difference-expansion(DE)based reversible data hiding technique to conceal a secret bit in two neighboring words.In 2010,Shiu et al.[5]proposed three data hiding methods based upon properties of DNA sequences.These three methods are:the insertion method,the complementary pair method,and the substitution method.

    Unfortunately,the robustness is low for some existing methods,which may result in inauthenticity and un-integrity of plant variety rights.Besides,these methods change not only the functionalities but also the original DNA sequence.Therefore,we propose a high capacity data hiding scheme for DNA without changing the functionalities of DNA sequences.This scheme adaptively varies the embedding process according to the amount of hidden data.

    To make this paper self-contained,in Section 2,we describe the concepts from DNA that will be needed for the rest of the paper.Section 3 contains a detailed exposition of the proposed algorithm.In Section 4,we experimentally investigate the relationship between the capacity & hiding performance and the influence of variant DNA on the capacity.We also compare performance with existing schemes and analyze the robustness and security issues in this section.Finally,we conclude the paper in Section 5.

    2.DNA

    Recent advances and development in biological techniques research become more and more popular.In this section,we describe the DAN to functional protein called the central dogma as shown in Fig.1.The dogma is a framework for understanding the transfer of DNA sequence information.DNA is a molecule polymer of nucleotides that are collectively called the deoxyribose nucleic acid,which controls all biological life.The ribonucleic acid(RNA)is similar to DNA in structure,but in the fact that RNA contains the sugar ribose as opposed to “deoxyribose”.DNA has hydrogen at the second carbon atom on the ring,and RNA has hydrogen linked through an oxygen atom.

    Fig.1.Central dogma of molecular biology.

    In DNA and RNA,there are four nucleotide bases.Three of these bases are the same:A,G,and C.The fourth base for DNA is T,whereas in RNA,the fourth base lacks a methyl group and is called uracil(U).Each base has two points at which it can join covalently to two other bases on either end,forming a linear chain of monomers.

    In general,RNA copies of DNA are made by a process known as “transcription”.Transcription is the conversion of information from DNA to RNA and is straightforward because of the direct correspondence between the four nucleotide bases of DNA and those of RNA.For most purposes,RNA can be regarded as the working copy of the DNA master template.There is usually one or a very small number of examples of DNA in the cell,whereas there are multiple copies of the transcribed RNA.The transcript RNA(tRNA)is referred to message RNA(mRNA)by discarding the intervening sequence of RNA.

    In the protein-coding region of mRNA,three successive nucleotide bases,called triplets or codons,are used to code for each individual amino acid.Three bases are needed because there are 20 different types of amino acids shown in Table 1 but only four nucleotide bases:with one base there are four possible combinations; with two,16(42);with three,64(43),which is more than the number of amino acids.

    The RNA transcription is used by a complex molecular machine called the ribosome to translate the order of successive codons into the corresponding order of amino acids.Special “stop” codons,such as UAA,UAG,and UGA,induce the ribosome to terminate the elongation of the polypeptide chain at a particular point.Similarly,the codon for the amino acid methionine is often used as the start signal for translation.

    For plant variety rights,in the US the Plant Patent Act of 1930 initially allowed seed developers to take out patents on seeds they had developed by artificial selection.Now,the Act extends to the patenting of genetically modified(GM)crops by large multinational companies.It has succeeded in implementing similar patent laws in other countries.

    Genetically modified crops have been around for over 20 years and have met with variable successes across the globe.Essentially,genetic modification involves inserting a section of DNA carrying a desirable gene of one species into the DNA of another.In crop plants,some of the beneficial features are achieved by using this method,including insect resistance,herbicide resistance(bar[6],aroA[7],bxn[8],sul,and tfdA[9]),nutritional value(OsNAS1,OsNAS2,and OsNAS3[10]),pest resistance,allergy resistance,higher yields,longer shelf life,and improved flavour.Therefore,in order to avoid altering DNA functionally,we propose a watermarking scheme based on mRNA sequences for copyright protection.

    3.Proposed Scheme

    An ideal watermarking system protects the data without altering it functionally.However,how can change DNA and still make the protein product come out the same? The only way is redundancy.Thus,we use the codon redundancy to hide data in mRNA sequence.A mRNA sequence is 3 bases long.There are 4 possible bases,U,C,A,and G.Clearly,64 unique codes can be generated.However,only 20 amino acids are encoded.There is redundancy in the mRNA to amino acid mapping.The redundancy can be used to hide data into the sequence without altering its function or length.

    As shown in Table 1,there can be sets of 1,2,3,4 or 6 codons representing the same amino acid.Thus,we first take a binary secret sequence and convert it to a decimal number.Then we take the amino acid sequence that would be generated by the original mRNA,and generate a list of all possible codons that lead to the same sequence.The number of codon combinations for each amino acid is used to hide data.Having explained our background logic,we now outline the principle of the proposed data hiding algorithm.

    3.1 Embedding Process

    Input:a mRNA sequence with four possible bases,U,C,A,G,and a secret bit stream S={s1,s2,··,sn} where si∈{0,1} and 1≤i≤n.

    Output:a watermarked mRNA sequence W={W'1,W'2,··,W'n} with the secret message S hidden.

    Step 1.Translate the mRNA sequence into the amino acid sequence A={A1,A2,··,Am},which represents where Aiis a mRNA codon.

    Step 2.Transform the secret bit stream to an unsigned integer B:

    Step 3.Generate P={P1,P2,··,Pm} where Piis the number of codon combinations for each amino acid Aiin the sequence.

    Step 4.Calculate the number T of all possible assignments for the input mRNA sequence based on the codon combinations until T>B:

    where 1≤k≤m.

    Step 5.According to the value of B,find the corresponding assignment of codons W'ifor all amino acids Ai,1≤i≤k,and output their codons:

    Note that the number k should be used as a secret key for secure transmission.To show how this works,we take a sample message and embed it into a short sequence.Assume that the secret bit stream S={10011011} and the given mRNA sequence is “GCG CAG UUA GUA”.We first translate the mRNA sequence into the amino acid sequence A={Ala,Gln,Leu,Val}.The secret bit stream is transformed to an unsigned integer B=155.Then,we generate the number of codon combinations for each amino acid Aiin the sequence,P={4,2,6,4}.As shown in Step 4,we can obtain the number T=192 and k=4.Finally,as illustrated in Fig.2,we find the corresponding assignment of codons for all amino acids Ai,1≤i≤k,and output their codons.

    Table 1:Genetic code

    Fig.2.Embedding example.

    This process has generated the new mRNA sequence“GCU CAA CUC GUU”.Therefore,following the highlighted path we get “GCU CAA CUC GUU”,which codes for the same amino acid sequence as the original mRNA,and also contains the hidden watermark.Note that there is adequate space to encrypt and embed a strong and repetitive watermark into living sequences since they consist of many thousands of base pairs.As a result,we use this technique in a retrovirus vector,that is,the message will transfer through the reverse transcription pathway and will be embedded in the DNA of the target cell in a complementary form.

    3.2 Extraction Process

    Input:a watermarked mRNA sequence and number k.

    Output:secret message S.

    Step 1.Calculate the series number B from the selected k codons.

    Step 2.Transform the unsigned integer B to the secret bit stream si=(B/2n-i)mod 2,and output the bit stream.

    The DNA sequence is deemed authentic only if the embedded authentication code matches the extracted information.

    4.Experimental Results

    To obtain a better understanding of how different host DNA sequences affect the performance of the proposed watermarking scheme,we present some results in a table form.All experiments were performed with eight significantly used genes:bar,aroA,BXN,sul,TfdA,OsNAS1,OsNAS2,and,OsNAS3,as shown in Table 2.These genes are commonly used for genetic modification in crop plants.Some of the beneficial features include insect resistance,herbicide resistance(bar[6],aroA[7],bxn[8],sul,and tfdA[9]),nutritional value(OsNAS1,OsNAS2,and OsNAS3[10]),pest resistance,allergy resistance,higher yields,longer shelf life,and improved flavour.The investment plants should be protected from any other acts that may be prescribed by the provisions of the Plant Varieties Act 1997.

    Table 2:Eight test DNA sequences

    Table 3:Hiding performance of the proposed scheme

    4.1 Capacity versus Distortion Performance

    Table 3 gives an example of how different DNA sequences influence the payload Cap and the hiding performance bpn(bit per nucleotide),which is defined as

    The real capacity that can be achieved depends on the nature of the DNA sequence itself.We notice that the average hiding performance is bpn=0.57.As a result,different DNA sequences do not influence the hiding performance.Our proposed scheme provides a stable hiding performance for authentication of plant variety rights.

    4.2 Comparison with Other Schemes

    Table 4 compares the hiding performance delivered by the proposed scheme and other existing schemes[4],[5].Note that the proposed scheme does not change the functionalities of DNA sequences,whereas schemes in [4]and [5]destroyed DNA sequences,which induces morphological changes in biological patterns.As Table 4 shows,the insertion method in [5]derived better performance.However,they did not preserve original characteristics of living organisms,which is unable to protect the copyright due to the functionalities change of genes.The evaluation results show that the proposed scheme achieves relatively high hiding performance than existing schemes.Further,our proposed scheme preserves the functionalities of genes,which ensure the copyright protection.

    Table 4:Performance comparison with schemes[4],[5]

    Fig.3.More robust variation in embedding process.

    4.3 Robustness and Security

    Security issues need to be handled by top layers in authentication applications.The major objective of an adversary is to forge authentication data so that an altered DNA can still pass authentication tests.Hence,it is important to study the following two problems for authentication applications:1)the probability of making DNA alterations while preserving the m-bit embedded authentication data,and 2)the possibility for an adversary to hide specific data in a DNA sequence.

    In the mRNA sequence,there are 64 unique codes that can be generated in which there can be sets of 1,2,3,4 or 6 codons representing the same amino acid.In the proposed scheme,if a single codon is changed,the probability of getting a correctly decoded bit is

    For the first issue,if the altered codons number is large,the probability of getting the decoded data to be exactly the same as the originally embedded one is approximately 2-3m,where m is the embedded payload size,which is very small as long as m is large.Therefore,the threat of making DNA alterations while preserving the m-bit embedded authentication data is very low.

    The second issue depends on whether adversaries can derive information regarding the correspondence of codons and the carried bit by studying the difference between those copies,hence creating a new DNA sequence embedded with data when they will.Hence,assuming adversaries collect sufficient copies and know what data is embedded in each copy,they will be able to identify the correspondence of codons and the carried bit,and to hide their desired data by manipulating the corresponding codons.To prevent the above mentioned attack,we have to introduce more uncertainty.A good solution for dealing with this is to arrange the nucleotide randomly by using a secret key.As shown in Fig.3,instead of starting from the first codon chosen alphabetically as presented earlier,we can randomly number the codon before the watermark.This would result in a completely different sequence,but the information conveyed would be the same.This step keeps the process unambiguous,and at the same time ensures that it is difficult for an adversary to identify the congruent relationships of codons and the carried bits.

    5.Conclusions

    Hiding data in DNA can be applied to protecting the intellectual property in the gene therapy,transgenic crops,tissue cloning,and DNA computing.Data can also be hidden to verify the integrity of DNA sequences,authentication,and annotation for copyrights.Nowadays,molecular markers provide a method for helping to enforce copyrights.However,molecular markers can easily demonstrate that two plants are different but hard to prove two plants are the same.Therefore,we propose a watermarking scheme for authentication of DNA rights.To avoid changing the functionalities of genes,we embed data in the mRNA sequence by exploring the codon redundancy.We also address the robust and security issues and offer several additional steps to strengthen the watermark.As a result,the proposed scheme can actually be used to embed data directly into active genetic segments for copyright protection.In the other direction,one can generate an appropriate DNA sequence,when transcribed,which can create the mRNA strand with the embedded message.The practical usefulness of such a technique can be enormous.

    [1]J.Chen,“The parable of the seeds:interpreting the plant variety protection act in furtherance of innovation policy,”Notre Dame Law Review,vol.81,no.4,pp.105-166,2006.

    [2]A.Leier,C.Richter,W.Banzhaf,and H.Rauhe,“Cryptography with DNA binary strands,” BioSystems,vol.57,no.1,pp.13-22,2000.

    [3]I.Peterson.Hiding in DNA.[Online].Available:http://www.maa.org/mathland/mathtrek_4_10_00.html

    [4]C.-C.Chang,T.-C.Lu,Y.-F.Chang,and R.C.T.Lee,“Reversible data hiding schemes for deoxyribonucleic acid(DNA)medium,” Int.Journal of Innovative Computing,Information and Control,vol.3,no.5,pp.1-16,Oct.2007.

    [5]H.-J.Shiu,K.-L.Ng,J.-F.Fang,R.C.T.Lee,and C.-H.Huang,“Data hiding methods based upon DNA sequences,”Information Sciences,vol.180,no.11,pp.2196-2208,Jun.2010.

    [6]K.S.Rathore,V.K.Chowdhury,and T.K.Hodges,“Use of bar as a selectable marker gene and for the production of herbicide-resistant rice plants from protoplasts,” Plant Molecular Biology,vol.21,no.5,pp.871-884,Mar.1993.

    [7]L.Comai,L.C.Sen,and D.M.Stalker,“An altered aroA gene product confers resistance to the herbicide glyphosate,”Science,vol.221,no.4608,pp.370-371,Jul.1983.

    [8]D.M.Stalker,K.E.McBride,and L.D.Malyj,“Herbicide resistance in transgenic plants expressing a bacterial detoxification gene,” Science,vol.242,no.4877,pp.419-423,Oct.1988.

    [9]J.F.Rice,F.M.Menn,A.G.Hay,J.Sanseverino,and G.S.Sayler,“Natural selection for 2,4,5-trichlorophenoxyacetic acid mineralizing bacteria in agent orange contaminated soil,” Biodegradation,vol.16,no.6,pp.501-512,Dec.2005.

    [10]H.Inoue,K.Higuchi,M.Takahashi,H.Nakanishi,S.Mori,and H.K.Nishizawa,“Three rice nicotianamine synthase genes,OsNAS1,OsNAS2,and OsNAS3 are expressed in cells involved in long-distance transport of iron and differentially regulated by iron,” Plant Journal,vol.36,no.3,pp.366-381,Nov.2003.

    黄片小视频在线播放| 中国国产av一级| 999久久久精品免费观看国产| 少妇的丰满在线观看| 国产黄色免费在线视频| 另类亚洲欧美激情| 又紧又爽又黄一区二区| 精品国产乱码久久久久久小说| 久久久国产精品麻豆| 亚洲精品国产色婷婷电影| 交换朋友夫妻互换小说| 亚洲成人免费电影在线观看| 国产精品 欧美亚洲| 如日韩欧美国产精品一区二区三区| 美女午夜性视频免费| 久久国产精品人妻蜜桃| 伊人亚洲综合成人网| 亚洲精品久久成人aⅴ小说| av在线app专区| 老司机影院成人| 免费av中文字幕在线| 欧美亚洲 丝袜 人妻 在线| 另类亚洲欧美激情| 亚洲成人免费电影在线观看| 国产97色在线日韩免费| 日韩熟女老妇一区二区性免费视频| 久热爱精品视频在线9| 天堂8中文在线网| 俄罗斯特黄特色一大片| 国产xxxxx性猛交| 老汉色∧v一级毛片| 手机成人av网站| 欧美另类一区| 亚洲欧美精品自产自拍| 精品视频人人做人人爽| 丰满迷人的少妇在线观看| 中文字幕人妻熟女乱码| 成年人免费黄色播放视频| 久久久国产欧美日韩av| 国产亚洲欧美精品永久| 欧美日韩视频精品一区| 亚洲欧美精品自产自拍| 久久人妻福利社区极品人妻图片| 日韩欧美一区二区三区在线观看 | videosex国产| 动漫黄色视频在线观看| 老司机午夜福利在线观看视频 | 久久午夜综合久久蜜桃| 欧美精品人与动牲交sv欧美| 亚洲第一av免费看| 秋霞在线观看毛片| 久久久久精品国产欧美久久久 | 麻豆av在线久日| av欧美777| 欧美亚洲日本最大视频资源| 色视频在线一区二区三区| 后天国语完整版免费观看| 老司机影院毛片| 亚洲伊人色综图| 国产精品一区二区在线不卡| 亚洲五月婷婷丁香| 1024香蕉在线观看| 建设人人有责人人尽责人人享有的| 久久国产精品人妻蜜桃| 菩萨蛮人人尽说江南好唐韦庄| 亚洲激情五月婷婷啪啪| 免费观看av网站的网址| 这个男人来自地球电影免费观看| 男女免费视频国产| 日韩熟女老妇一区二区性免费视频| 成年人免费黄色播放视频| 国产不卡av网站在线观看| 国产亚洲av片在线观看秒播厂| 纯流量卡能插随身wifi吗| 女人爽到高潮嗷嗷叫在线视频| 搡老乐熟女国产| 亚洲精品国产一区二区精华液| 国产成人影院久久av| 91精品三级在线观看| 日本91视频免费播放| 在线十欧美十亚洲十日本专区| 日日爽夜夜爽网站| www.精华液| 欧美激情高清一区二区三区| 欧美日本中文国产一区发布| 午夜精品国产一区二区电影| 亚洲中文字幕日韩| 亚洲自偷自拍图片 自拍| 欧美人与性动交α欧美软件| 国产亚洲精品一区二区www | 亚洲熟女精品中文字幕| 岛国毛片在线播放| 两个人免费观看高清视频| 欧美日韩黄片免| 国产免费视频播放在线视频| 男女国产视频网站| 亚洲精品乱久久久久久| 久久香蕉激情| 国产成人精品久久二区二区91| 捣出白浆h1v1| 男人添女人高潮全过程视频| 嫩草影视91久久| 久久久久网色| 黄色视频在线播放观看不卡| 五月天丁香电影| 99国产精品99久久久久| av天堂久久9| 国产成人影院久久av| 人人妻人人澡人人爽人人夜夜| 国产一卡二卡三卡精品| 妹子高潮喷水视频| 精品国内亚洲2022精品成人 | 欧美大码av| 日本一区二区免费在线视频| 亚洲精华国产精华精| 日韩熟女老妇一区二区性免费视频| 蜜桃在线观看..| 女人高潮潮喷娇喘18禁视频| 久久久久久久大尺度免费视频| 国产亚洲精品一区二区www | 午夜福利在线观看吧| 一个人免费在线观看的高清视频 | 搡老熟女国产l中国老女人| 中文字幕最新亚洲高清| 最近最新免费中文字幕在线| 国产精品九九99| 青春草视频在线免费观看| 久久精品国产a三级三级三级| 久久久久久人人人人人| 韩国高清视频一区二区三区| 五月天丁香电影| 99九九在线精品视频| 久久久久久久精品精品| 亚洲国产精品一区三区| 亚洲欧美日韩高清在线视频 | 成年av动漫网址| 亚洲精品国产av蜜桃| 啦啦啦啦在线视频资源| 咕卡用的链子| 搡老乐熟女国产| 午夜老司机福利片| 日韩视频一区二区在线观看| 国产av一区二区精品久久| 欧美精品高潮呻吟av久久| 三上悠亚av全集在线观看| 一边摸一边抽搐一进一出视频| 在线观看舔阴道视频| 老司机在亚洲福利影院| 激情视频va一区二区三区| 涩涩av久久男人的天堂| 欧美在线黄色| 亚洲精品一二三| 国产亚洲精品久久久久5区| 国产成人精品无人区| 男女下面插进去视频免费观看| 亚洲精品中文字幕一二三四区 | 男女午夜视频在线观看| 女人被躁到高潮嗷嗷叫费观| 一区二区三区激情视频| 久热爱精品视频在线9| 亚洲五月色婷婷综合| 五月天丁香电影| 老司机靠b影院| 黑人巨大精品欧美一区二区蜜桃| 啦啦啦免费观看视频1| 在线看a的网站| 国产欧美日韩一区二区精品| 日本猛色少妇xxxxx猛交久久| 日日夜夜操网爽| 曰老女人黄片| 另类精品久久| 在线亚洲精品国产二区图片欧美| 少妇 在线观看| 热99国产精品久久久久久7| 精品少妇内射三级| 黄色a级毛片大全视频| 日日摸夜夜添夜夜添小说| 亚洲av片天天在线观看| 搡老熟女国产l中国老女人| 女性被躁到高潮视频| 欧美日韩国产mv在线观看视频| 欧美乱码精品一区二区三区| 精品少妇一区二区三区视频日本电影| 亚洲精品国产av蜜桃| 一区二区日韩欧美中文字幕| 丝袜美腿诱惑在线| 亚洲av欧美aⅴ国产| 国产福利在线免费观看视频| 久久久国产成人免费| 人人妻人人澡人人看| 亚洲欧洲日产国产| 国精品久久久久久国模美| 精品久久久精品久久久| 超碰成人久久| 色老头精品视频在线观看| 国产精品熟女久久久久浪| 久久久久国产精品人妻一区二区| 午夜视频精品福利| 99久久人妻综合| avwww免费| 人人妻人人澡人人爽人人夜夜| 电影成人av| av片东京热男人的天堂| 人人澡人人妻人| 不卡av一区二区三区| 丝瓜视频免费看黄片| 欧美老熟妇乱子伦牲交| 51午夜福利影视在线观看| 久久精品亚洲av国产电影网| 老司机午夜福利在线观看视频 | 午夜福利一区二区在线看| 国产日韩欧美亚洲二区| 精品一区二区三卡| a级片在线免费高清观看视频| 亚洲精品一二三| 19禁男女啪啪无遮挡网站| 午夜福利在线免费观看网站| 性色av乱码一区二区三区2| 别揉我奶头~嗯~啊~动态视频 | 国产xxxxx性猛交| 国产精品自产拍在线观看55亚洲 | 亚洲欧美一区二区三区久久| 不卡av一区二区三区| 天堂俺去俺来也www色官网| 黑人巨大精品欧美一区二区mp4| tube8黄色片| 亚洲精品美女久久av网站| 肉色欧美久久久久久久蜜桃| 欧美精品一区二区大全| 麻豆av在线久日| 午夜老司机福利片| 久久影院123| 91精品伊人久久大香线蕉| 亚洲欧美精品综合一区二区三区| 亚洲精品第二区| 日韩制服丝袜自拍偷拍| 人妻一区二区av| 最近最新免费中文字幕在线| 少妇的丰满在线观看| 老司机影院成人| 国产亚洲精品第一综合不卡| 国产主播在线观看一区二区| 亚洲精品美女久久av网站| 天天添夜夜摸| 又大又爽又粗| 69精品国产乱码久久久| 国产精品亚洲av一区麻豆| 亚洲av男天堂| 看免费av毛片| 国产精品熟女久久久久浪| 秋霞在线观看毛片| 亚洲精品国产区一区二| 99国产极品粉嫩在线观看| 在线永久观看黄色视频| 高清黄色对白视频在线免费看| 国产成人一区二区三区免费视频网站| 黄片播放在线免费| 侵犯人妻中文字幕一二三四区| 91成人精品电影| 日韩三级视频一区二区三区| 少妇裸体淫交视频免费看高清 | 亚洲五月婷婷丁香| 如日韩欧美国产精品一区二区三区| 久久精品久久久久久噜噜老黄| 中文字幕最新亚洲高清| 午夜福利影视在线免费观看| 蜜桃国产av成人99| 久久久精品免费免费高清| 啪啪无遮挡十八禁网站| 最近最新免费中文字幕在线| 亚洲第一欧美日韩一区二区三区 | 久久久精品国产亚洲av高清涩受| 亚洲精品久久午夜乱码| 纯流量卡能插随身wifi吗| 亚洲第一青青草原| 国产亚洲精品久久久久5区| 国产成人av教育| 国产一区二区 视频在线| 九色亚洲精品在线播放| 国产精品影院久久| 午夜福利乱码中文字幕| 美女高潮喷水抽搐中文字幕| 精品人妻熟女毛片av久久网站| 欧美在线一区亚洲| 国产区一区二久久| 国产成人a∨麻豆精品| 999久久久精品免费观看国产| 久久精品熟女亚洲av麻豆精品| 久久久水蜜桃国产精品网| 男女下面插进去视频免费观看| 亚洲av男天堂| 国产成人a∨麻豆精品| 国产日韩欧美亚洲二区| 日韩,欧美,国产一区二区三区| 美女主播在线视频| 日本av手机在线免费观看| 日韩 亚洲 欧美在线| 少妇精品久久久久久久| 国产精品九九99| 国产色视频综合| 高清在线国产一区| 精品少妇内射三级| 久久人人爽人人片av| 丝瓜视频免费看黄片| 亚洲男人天堂网一区| 最近中文字幕2019免费版| 日韩一卡2卡3卡4卡2021年| 亚洲 欧美一区二区三区| 午夜激情av网站| 波多野结衣av一区二区av| 国产精品一区二区在线观看99| 99久久国产精品久久久| 王馨瑶露胸无遮挡在线观看| 黑人巨大精品欧美一区二区蜜桃| 亚洲av电影在线进入| 在线av久久热| 欧美日韩av久久| 日韩精品免费视频一区二区三区| 欧美黑人欧美精品刺激| 欧美精品一区二区大全| 熟女少妇亚洲综合色aaa.| 下体分泌物呈黄色| 精品人妻1区二区| 亚洲精品美女久久久久99蜜臀| 国产精品久久久久久人妻精品电影 | 精品国产超薄肉色丝袜足j| 日韩精品免费视频一区二区三区| 国产av精品麻豆| 国产国语露脸激情在线看| 亚洲国产欧美网| 老熟女久久久| 俄罗斯特黄特色一大片| 大码成人一级视频| 9热在线视频观看99| 欧美黄色片欧美黄色片| 亚洲色图 男人天堂 中文字幕| 青青草视频在线视频观看| 女人被躁到高潮嗷嗷叫费观| 日本黄色日本黄色录像| 国产黄频视频在线观看| 久久久国产一区二区| 中文字幕av电影在线播放| 天天躁夜夜躁狠狠躁躁| 人人妻人人爽人人添夜夜欢视频| 国产福利在线免费观看视频| 亚洲国产av影院在线观看| 国产免费视频播放在线视频| 人人妻,人人澡人人爽秒播| 在线天堂中文资源库| 国产成人一区二区三区免费视频网站| 亚洲成人手机| 少妇粗大呻吟视频| 十八禁网站网址无遮挡| 99精国产麻豆久久婷婷| 成人黄色视频免费在线看| 多毛熟女@视频| 欧美人与性动交α欧美软件| 久久精品国产亚洲av香蕉五月 | 一边摸一边抽搐一进一出视频| 日本精品一区二区三区蜜桃| 久久久精品国产亚洲av高清涩受| av国产精品久久久久影院| 亚洲欧美日韩另类电影网站| 欧美黑人精品巨大| 日韩欧美免费精品| 日韩一卡2卡3卡4卡2021年| 亚洲五月色婷婷综合| 在线精品无人区一区二区三| 中国美女看黄片| 亚洲av男天堂| 丝袜美足系列| 婷婷成人精品国产| 亚洲国产精品999| 国产一区二区三区av在线| 啦啦啦在线免费观看视频4| 999精品在线视频| a级片在线免费高清观看视频| 大香蕉久久成人网| 午夜福利视频精品| 男女午夜视频在线观看| 亚洲av欧美aⅴ国产| 欧美久久黑人一区二区| 国产深夜福利视频在线观看| 99国产精品一区二区蜜桃av | 免费少妇av软件| 亚洲av日韩在线播放| 亚洲avbb在线观看| 老司机亚洲免费影院| 91成人精品电影| 欧美变态另类bdsm刘玥| 捣出白浆h1v1| 亚洲人成电影观看| 久久久国产一区二区| 精品久久久精品久久久| 久久精品国产a三级三级三级| 亚洲七黄色美女视频| www.精华液| 亚洲精品国产av蜜桃| 90打野战视频偷拍视频| 女人精品久久久久毛片| 高清欧美精品videossex| 少妇被粗大的猛进出69影院| 欧美日韩福利视频一区二区| 岛国在线观看网站| www.999成人在线观看| 国产成人欧美在线观看 | 黄色片一级片一级黄色片| 欧美人与性动交α欧美软件| 黄片小视频在线播放| 亚洲av男天堂| 亚洲五月色婷婷综合| 精品少妇黑人巨大在线播放| 欧美另类一区| av天堂在线播放| 汤姆久久久久久久影院中文字幕| 窝窝影院91人妻| 午夜精品国产一区二区电影| 亚洲性夜色夜夜综合| 99久久精品国产亚洲精品| 侵犯人妻中文字幕一二三四区| 亚洲精品一二三| 男人操女人黄网站| 亚洲精品av麻豆狂野| 在线亚洲精品国产二区图片欧美| 亚洲精品美女久久久久99蜜臀| tocl精华| 亚洲专区字幕在线| 国产av一区二区精品久久| 大型av网站在线播放| av一本久久久久| 纯流量卡能插随身wifi吗| 亚洲九九香蕉| 日本猛色少妇xxxxx猛交久久| 天堂俺去俺来也www色官网| 日韩视频一区二区在线观看| svipshipincom国产片| 亚洲 国产 在线| 国产精品 国内视频| 黄色a级毛片大全视频| 亚洲国产欧美日韩在线播放| 在线看a的网站| 亚洲精品av麻豆狂野| 韩国精品一区二区三区| 欧美精品人与动牲交sv欧美| 乱人伦中国视频| 在线观看人妻少妇| 亚洲熟女精品中文字幕| 精品高清国产在线一区| 亚洲成人免费av在线播放| 人成视频在线观看免费观看| www.熟女人妻精品国产| 飞空精品影院首页| 欧美日韩亚洲综合一区二区三区_| 精品一区在线观看国产| 悠悠久久av| 少妇裸体淫交视频免费看高清 | av免费在线观看网站| 90打野战视频偷拍视频| 多毛熟女@视频| 乱人伦中国视频| 欧美亚洲 丝袜 人妻 在线| 女人爽到高潮嗷嗷叫在线视频| 免费在线观看完整版高清| 法律面前人人平等表现在哪些方面 | 日韩一区二区三区影片| 久久久水蜜桃国产精品网| 正在播放国产对白刺激| 在线观看人妻少妇| 制服诱惑二区| 中文字幕精品免费在线观看视频| 久久亚洲国产成人精品v| 一本—道久久a久久精品蜜桃钙片| 激情视频va一区二区三区| 国产伦人伦偷精品视频| 精品一区在线观看国产| 国产精品国产三级国产专区5o| 免费高清在线观看日韩| 男女国产视频网站| 乱人伦中国视频| 亚洲熟女精品中文字幕| 老司机深夜福利视频在线观看 | 一区在线观看完整版| 99国产精品99久久久久| 国产91精品成人一区二区三区 | 精品一区二区三区四区五区乱码| 亚洲熟女毛片儿| cao死你这个sao货| 无限看片的www在线观看| 久久av网站| 国产亚洲欧美精品永久| www.自偷自拍.com| 91国产中文字幕| 老司机影院成人| 亚洲成av片中文字幕在线观看| 亚洲精品国产一区二区精华液| 乱人伦中国视频| 久久久久国内视频| 国产免费一区二区三区四区乱码| 国产精品久久久av美女十八| 国产精品成人在线| 老司机影院成人| 国产精品一区二区在线观看99| √禁漫天堂资源中文www| videos熟女内射| 别揉我奶头~嗯~啊~动态视频 | 日本wwww免费看| 欧美人与性动交α欧美软件| 91麻豆精品激情在线观看国产 | 91老司机精品| 高清视频免费观看一区二区| 欧美少妇被猛烈插入视频| 少妇精品久久久久久久| 日本一区二区免费在线视频| 侵犯人妻中文字幕一二三四区| 51午夜福利影视在线观看| av在线播放精品| 国产又爽黄色视频| 国产黄频视频在线观看| 两性午夜刺激爽爽歪歪视频在线观看 | 777久久人妻少妇嫩草av网站| 国产在线免费精品| www.熟女人妻精品国产| 午夜影院在线不卡| 欧美黄色淫秽网站| 999精品在线视频| 老鸭窝网址在线观看| 亚洲色图综合在线观看| 一区二区日韩欧美中文字幕| 亚洲伊人久久精品综合| 精品少妇一区二区三区视频日本电影| 国产成人精品在线电影| 日日夜夜操网爽| 国产在线视频一区二区| 人人澡人人妻人| 欧美黑人欧美精品刺激| av网站在线播放免费| 97在线人人人人妻| 亚洲伊人久久精品综合| 午夜视频精品福利| 中亚洲国语对白在线视频| 99九九在线精品视频| 亚洲精品美女久久久久99蜜臀| 午夜久久久在线观看| 国产亚洲精品第一综合不卡| 十八禁人妻一区二区| 不卡av一区二区三区| 亚洲成av片中文字幕在线观看| 国产片内射在线| 国产真人三级小视频在线观看| 免费不卡黄色视频| 在线亚洲精品国产二区图片欧美| 欧美人与性动交α欧美精品济南到| 国产精品一二三区在线看| 伊人亚洲综合成人网| 久久久久网色| 国产精品自产拍在线观看55亚洲 | 亚洲精品一二三| 欧美大码av| 免费在线观看完整版高清| 亚洲情色 制服丝袜| 亚洲久久久国产精品| 国产一区二区 视频在线| 亚洲av美国av| 国产日韩一区二区三区精品不卡| 一本一本久久a久久精品综合妖精| 丰满人妻熟妇乱又伦精品不卡| av欧美777| 日本猛色少妇xxxxx猛交久久| 男女无遮挡免费网站观看| 老司机福利观看| 精品一品国产午夜福利视频| 日本猛色少妇xxxxx猛交久久| 国产xxxxx性猛交| 可以免费在线观看a视频的电影网站| 日本五十路高清| 两人在一起打扑克的视频| 悠悠久久av| 一进一出抽搐动态| tube8黄色片| 国产男女内射视频| av欧美777| 伦理电影免费视频| 80岁老熟妇乱子伦牲交| 日本猛色少妇xxxxx猛交久久| 午夜影院在线不卡| 一区二区av电影网| 老熟妇仑乱视频hdxx| a在线观看视频网站| 国产精品国产三级国产专区5o| 久久精品成人免费网站| 亚洲成人免费电影在线观看| 一区在线观看完整版| 久久人人97超碰香蕉20202| 黄色片一级片一级黄色片| 91成人精品电影| 狂野欧美激情性xxxx| 日韩 欧美 亚洲 中文字幕| 一级毛片电影观看| 欧美黑人欧美精品刺激| 亚洲精品av麻豆狂野| 大陆偷拍与自拍| www日本在线高清视频| 亚洲国产欧美一区二区综合| 亚洲熟女毛片儿| 国产精品偷伦视频观看了| 久久久久久久大尺度免费视频| 99久久国产精品久久久| 亚洲成人免费av在线播放| 午夜激情久久久久久久| 91麻豆精品激情在线观看国产 | 高清av免费在线| 一区福利在线观看| 丰满人妻熟妇乱又伦精品不卡| 国产91精品成人一区二区三区 | 精品国产一区二区久久|