• <tr id="yyy80"></tr>
  • <sup id="yyy80"></sup>
  • <tfoot id="yyy80"><noscript id="yyy80"></noscript></tfoot>
  • 99热精品在线国产_美女午夜性视频免费_国产精品国产高清国产av_av欧美777_自拍偷自拍亚洲精品老妇_亚洲熟女精品中文字幕_www日本黄色视频网_国产精品野战在线观看 ?

    GTB-PPI:Predict Protein-protein Interactions Based on L1-regularized Logistic Regression and Gradient Tree Boosting

    2020-09-02 00:04:10BinYuChengChenHongyanZhouBingqiangLiuQinMa
    Genomics,Proteomics & Bioinformatics 2020年5期

    Bin Yu*,Cheng Chen,Hongyan Zhou,Bingqiang Liu,Qin Ma*

    1 School of Life Sciences,University of Science and Technology of China,Hefei 230027,China

    2 College of Mathematics and Physics,Qingdao University of Science and Technology,Qingdao 266061,China

    3 Artificial Intelligence and Biomedical Big Data Research Center,Qingdao University of Science and Technology,Qingdao 266061,China

    4 School of Mathematics,Shandong University,Jinan 250100,China

    5 Department of Biomedical Informatics,College of Medicine,The Ohio State University,Columbus,OH 43210,USA

    KEYWORDS Protein-protein interaction;Feature fusion;L1-regularized logistic regression;Gradient tree boosting;Machine learning

    Abstract Protein-protein interactions (PPIs) are of great importance to understand genetic mechanisms,delineate disease pathogenesis,and guide drug design.With the increase of PPI data and development of machine learning technologies,prediction and identification of PPIs have become a research hotspot in proteomics.In this study,we propose a new prediction pipeline for PPIs based on gradient tree boosting(GTB).First,the initial feature vector is extracted by fusing pseudo amino acid composition(PseAAC),pseudo position-specific scoring matrix(PsePSSM),reduced sequence and index-vectors(RSIV),and autocorrelation descriptor(AD).Second,to remove redundancy and noise,we employ L1-regularized logistic regression (L1-RLR) to select an optimal feature subset.Finally,GTB-PPI model is constructed.Five-fold cross-validation showed that GTB-PPI achieved the accuracies of 95.15%and 90.47%on Saccharomyces cerevisiae and Helicobacter pylori datasets,respectively.In addition,GTB-PPI could be applied to predict the independent test datasets forCaenorhabditis elegans, Escherichia coli, Homo sapiens,and Mus musculus,the one-core PPI network for CD9,and the crossover PPI network for the Wnt-related signaling pathways.The results show that GTB-PPI can significantly improve accuracy of PPI prediction.The code and datasets of GTB-PPI can be downloaded from https://github.com/QUST-AIBBDRC/GTB-PPI/.

    Introduction

    Knowledge of protein-protein interactions (PPIs) can help to probe the mechanisms underlying various biological processes,such as DNA replication,protein modification,and signal transduction [1,2].The accurate understanding and analysis of PPIs can reveal multiple functions at the molecular and proteome levels,which has become a research hotspot[3,4].However,web-lab identification methods suffer from incomplete and false prediction problems [5].Alternatively,employing reliable bioinformatics methods for PPI prediction could provide candidates for subsequent experimental validation in a cost-effective way.

    Compared with structure-based methods,sequence-based methods are straightforward and do not requirea prioriinformation,which have been widely used.Martin et al.[6] proposed the signature kernel method to extract protein sequence feature information,but they did not use physicochemical property information.Subsequently,Guo et al.[7]employed seven physicochemical properties of amino acids to predict PPIs by combining autocovariance and support vector machine (SVM).

    Different feature extraction methods can complement each other,and prediction accuracy can be improved by effective feature fusion [8,9].For instance,Du et al.[8] constructed a PPI prediction framework called DeepPPI,which employed deep neural networks as the classifier.They fused amino acid composition information-based features and physiochemical property-based sequence features.However,presence of information redundancy,noise,and excessively high dimensionalities after feature fusion would affect the classification accuracy.You et al.[10] used the minimum redundancy maximum relevance (mRMR) to determine important and distinguishable features to predict PPIs based on SVM.

    Ensemble learning systems can achieve higher prediction performance than a single classifier.To our knowledge,Jia et al.[11] combined seven random forest (RF) classifiers according to voting principles.As an ensemble learning method,gradient tree boosting(GTB)has been widely applied in miRNA-disease association [12],drug-target interaction[13],and RNA-binding residue prediction [14].GTB outperforms SVM and RF,showing superior model generalization performance.

    Although a large number of algorithms have been proposed and developed,challenges remain for sequenced-based PPI predictors currently available.First,the sequence-only-based information of PPIs is not fully represented and elucidated,and satisfactory results cannot be obtained by merely adjusting individual parameters.Multi-information fusion is a very useful strategy through fusing multiple descriptors,such as pseudo amino acid composition (PseAAC) and pseudo position-specific scoring matrix (PsePSSM),which have been widely applied in PPI prediction [15],Gram-negative protein localization prediction [16],identification of submitochondrial locations [17],and apoptosis protein localization prediction[18].Secondly,there is a severe data imbalance problem in PPI prediction.The number of non-interacting protein pairs is much higher than that of interacting protein pairs.Currently,machine learning methods cannot deal with such problems well and could result in poor overall performance when dealing with imbalanced data [19].

    To overcome the aforementioned limitation of machine learning methods,this study proposes a new PPI prediction pipeline called GTB-PPI.First,we fuse PseAAC,PsePSSM,reduced sequence and index-vectors (RSIV),and autocorrelation descriptor (AD) to extract amino acid compositionbased information,evolutionary information,and physicochemical information.To retrieve effective details representing PPIs without losing important and reliable characteristic information,L1-regularized logistic regression(L1-RLR)is first utilized for PPI prediction to eliminate redundant features.At the same time,we employ GTB as a classifier to bridge the gap between the extracted PPI features and class label.Our data show that the PPI prediction performance of GTB is better than that of SVM,RF,Na?¨ve Bayes (NB),andKnearest neighbors (KNN) classifiers.The linear combination of decision trees can fit the PPI data well.When applied to the network prediction,GTB-PPI obtains the accuracy values of 93.75% and 95.83% for the one-core PPI network for CD9 and the crossover PPI network for the Wnt-related signaling pathways,respectively.

    Method

    Data source

    TheSaccharomyces cerevisiaePPI dataset was obtained from the Database of Interacting Proteins (DIP) (DIP:20070219)[7].Protein sequences consisting of <50 amino acid residues or showing sequence identity ≥40% via CD-HIT [20] were removed.Thus,5594 interacting protein pairs are considered as positive samples;5594 protein pairs with different subcellular location information are selected as negative samples,and their location information is obtained from Swiss-Prot.TheHelicobacter pyloriPPI dataset was constructed before [6],which contains 2916 samples (1458 PPI pairs and 1458 non-PPI pairs).

    Four independent PPI datasets [21] were also used to test the performance of GTB-PPI.These datasets are obtained fromCaenorhabditis elegans(4013 interacting pairs),Escherichia coli(6954 interacting pairs),Homo sapiens(1412 interacting pairs),andMus musculus(313 interacting pairs).The number of unique proteins in each dataset is shown in Table S1.

    Feature extraction

    We fuse PseAAC,PsePSSM,RSIV,and AD to extract the PPI feature information,including sequence-based features,evolutionary information features,and physicochemical property features.The detailed descriptions of methods are presented in File S1.

    L1-RLR

    L1-RLR is an embedded feature selection method.Given the sample datasetD={(x1,y1),(x2,y2),···,(xm,ym)},L1-RLR can be transformed into an unconstrained optimization problem.

    where ‖·‖1represents the L1 norm;lis the number of samples;ω represents the weight coefficient;andCrepresents penalty term,which determines the number of selected features.We use the coordinate descent algorithm in LIBLINEAR [22]to solve Equation (1).

    GTB

    GTB can be used to aggregate multiple decision trees [23,24].Different from other ensemble learning algorithms,GTB fits residual of the regression tree at each iteration using negative gradient values of loss.

    GTB can be expressed as the relationship between the labelyand the vector of input variablesx,which are connected via a joint probability distributionp(x,y).The goal of GTB is to obtain the estimated functionthrough minimizingL(y,F(xiàn)(x)):

    Lethm(x)be them-thdecision tree andJmindicates number of its leaves.The tree partitions the input space intoJmdisjoint regionsR1,m,R2,m,···,RJm,mand predicts a numerical valuebjmfor each regionRjm.The output ofhm(x)can be described as:

    GTB can complement the weak learning ability of decision tree,thus improving the ability of representation,optimization,and generalization.GTB can capture higher-order information and is invariant to scaling of sample data.GTB can effectively avoid overfitting condition by weighting combination scheme.GTB-PPI uses the GTB algorithm of Scikit-learn[25].

    Performance evaluation

    In GTB-PPI pipeline,recall,precision,overall prediction accuracy (ACC),and Matthews correlation coefficient (MCC) are used to evaluate the model performance [8].The definitions are as follows:

    TP indicates the number of predicted PPI samples found in PPI dataset;TN indicates the number of non-PPI samples correctly predicted;FP and FN indicate false positive and false negative,respectively.Receiver operating characteristic(ROC) curve [26],precision-recall (PR) curve [27],area under ROC curve (AUROC),and area under PR curve (AUPRC)are also used to evaluate the generalization ability of GTBPPI.

    Results and discussion

    GTB-PPI pipeline

    The pipeline ofGTB-PPIfor predictingPPIsis shown inFigure 1,which can be implemented usingMATLAB2014a and Python 3.6.There are five steps ofGTB-PPIas described below.

    Figure 1 Overall framework of GTB-PPI for PPI prediction

    Figure 2 Prediction results of different parameters λ,ξ,and lag on the S.cerevisiae and H.pylori datasets

    Data input

    The input values of GTB-PPI are PPI samples,non-PPI samples,and the corresponding binary labels.

    Feature extraction

    PseAAC,PsePSSM,RSIV,and AD are fused to transform the protein character signal into numerical signal.1) Amino acid sequence composition and sequence order information are obtained using PseAAC to construct the 20 +λ dimensional vectors.2) PSSM matrix of the protein sequence is obtained and 20 +20×ξ features are extracted based on PsePSSM.3)Feature information is extracted using RSIV according to the six physicochemical properties.Each protein sequence is constructed as 120+77=197 dimensional vectors.4)Protein sequence is transformed into 3×7×lagdimensional vectors by Morean-Broto autocorrelation(MBA),Moran autocorrelation (MA),and Geary autocorrelation (GA).λ,ξ,andlagare the hyperparameters of GTB-PPI,and their detailed meaning can be seen in File S1.

    Dimensionality reduction

    L1-RLR is first employed to remove redundant features by adjusting the penalty parameters in logistic regression.The performance of L1-RLR is then compared with that of semisupervised dimension reduction (SSDR),principal component analysis (PCA),kernel principal component analysis (KPCA),factor analysis (FA),mRMR,and conditional mutual information maximization (CMIM) onS.cerevisiaeandH.pyloridatasets.

    PPI prediction based on GTB

    According to step 2 for feature extraction and step 3 for dimensionality reduction,L1-RLR is used to better capture the sequence representation details.In this way,GTB-PPI model can be constructed using GTB as the classifier.

    PPI prediction on independent test datasets and network datasets

    The optimal feature set representing PPIs can be obtained through feature encoding,fusion,and selection.GTB is employed to predict the binary labels on four independent test datasets and two network datasets.

    Parameter optimization of PseAAC,PsePSSM,and AD

    It is essential to optimize parameters of PseAAC,PsePSSM,and AD for GTB-PPI predictor construction.We implement the hyperparameter optimization through five-fold crossvalidation.

    To extract features from the sequence,the values for λ of PseAAC,ξ of PsePSSM,andlagof AD should be determined.We set the values of λ as 1,3,5,7,9,and 11;similarly,values for ξ andlagare also set as 1,3,5,7,9,and 11 in order.GTB is then used to predict the binary labels(Tables S2-S4).As shown inFigure 2,the prediction performance onS.cerevisiaeandH.pyloridatasets changed with the alteration in the values of the respective parameters.For the parameter λ in PseAAC,the highest prediction performance for these two datasets was obtained at different λ values:the optimal λ value forS.cerevisiaeis 9,while the optimal λ value ofH.pyloriis 11.Considering that PseAAC generates fewer dimensional vectors than the other three feature extraction methods (PsePSSM,RSIV,and AD),we choose the optimal parameter λ=11 to mine more PseAAC information.The parameter selection of ξ andlagcan be found in File S2.In summary,for each protein sequence,PseAAC extracts 20 +11=31 features,PsePSSM obtains 20 +20×9=200 features,the dimension of RSIV is 197,and AD encodes 3×7×11=231 features.We can obtain 659-dimensional vectors by fusing all four coding methods.Then the 1318-dimensional feature vectors are constructed by concatenating two sequences of protein pairs.

    Effect of dimensionality reduction

    L1-RLR can effectively improve prediction performance with higher computational efficiency.The process of parameter selection is described in File S3.To evaluate the performance of L1-RLR (C=1),we compared its prediction performance with SSDR [28],PCA [29] (setting of contribution rate is shown in Table S5),KPCA [30] (adjustment of contribution rate is shown in Table S6),FA [31],mRMR [32],and CMIM[33] (Table S7).ROC and PR curves of different dimensionality reduction methods are shown inFigure 3.The AUROC and AUPRC are shown in Table S8.The numbers of raw features and optimal features can be obtained in Figures S1 and S2.

    As shown in Figure 3A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the L1-RLR has superior model performance.For theS.cerevisiaedataset,the AUROC value of L1-RLR is 0.9875,which is 4.55%,4.83%,6.13%,3.21%,1.07%,and 1.09% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).For theH.pyloridataset,the AUROC value of L1-RLR is 0.9559,which is 3.47%,9.80%,8.59%,8.33%,1.04%,and 9.55% higher than that of SSDR,PCA,KPCA,FA,mRMR,and CMIM,respectively(Table S8).As shown in Figure 3C and D,in PR curves,L1-RLR almost obtains the highest precision value at corresponding recall value.The AUPRC values of L1-RLR are 1.22%-6.21% and 0.36%-11.94%higher than the other six dimensionality reduction methods on theS.cerevisiaeandH.pyloridatasets,respectively(Table S8).These results indicate that L1-RLR can effectively remove the redundant features without losing important information.The effective features related to PPIs could be fed into a GTB classifier,generating a reliable GTB-PPI prediction model.

    Selection of classifier algorithms

    GTB is used as a classifier with the number of iterations set to 1000 and loss function set as ‘‘deviance”.The prediction results of other four classifiers are also provided via five-fold cross-validation,including KNN [34] (number of neighbors=3) (Table S9),NB [35],SVM [36] (recursive feature elimination as the kernel function),and RF [37] (number of the base decision trees=1000) (Table S10).The prediction results of KNN,SVM,NB,RF,and GTB on theS.cerevisiaeandH.pyloridatasets are shown in Table S11 and Figures S3 and S4.We also obtain the ROC and PR curves(Figure 4)and AUROC and AUPRC values for different classifiers(Table S12).

    Figure 4 Comparison of GTB with KNN,NB,SVM,and RF classifiers

    As shown in Figure 4A and B,ROC curves for both theS.cerevisiaeandH.pyloridatasets show that the GTB classifier outperforms than KNN,NB,SVM,and RF.The AUROC values of GTB are 1.16%-24.65% and 0.53%-22.95% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).As shown in Figure 4C and D,the prediction performance of GTB is superior to KNN,NB,SVM,and RF.The AUPRC values of GTB are 1.42%-24.32% and 0.22%-24.56% higher than the other four classifier methods on theS.cerevisiaeandH.pyloridatasets,respectively (Table S12).These results demonstrate that GTB-PPI can accurately indicate whether a pair of proteins interact with each other within theS.cerevisiaeorH.polyridataset.GTB is an ensemble method using boosting algorithm that can achieve superior generalization performance over a single learner.Specially,RF achieves worse performance than GTB,because all the base decision trees of RF are treated equally.If the base classifier’s prediction performance is biased,the final ensemble classifier may get the unreliable and biased predicted results.GTB can utilize steepest descent step algorithm to bridge the gap between the sequence and PPI label information.

    Figure 5 Prediction results of one-core and crossover networks using GTB-PPIA

    Table 1 Performance comparison of GTB-PPI with other state-of-the-art predictors on the S.cerevisiae dataset

    Comparison of GTB-PPI with other PPI prediction methods

    To verify the validity of the GTB-PPI model,we compare GTB-PPI with ACC+SVM [7],DeepPPI [8],and other state-of-the-art methods on theS.cerevisiaeandH.pyloridatasets.

    As shown inTable 1,for theS.cerevisiaedataset,compared with other existing methods,the ACC of GTB-PPI increases by 0.14%-9.00%;the recall of GTB-PPI is 0.15%higher than DeepPPI[8]and 1.54%higher than MCD+SVM[10];the precision of GTB-PPI is 1.32% higher than DeepPPI [8] and 0.81% higher than MIMI+NMBAC+RF [41].

    As shown inTable 2,for theH.pyloridataset,the performance of GTB-PPI is better than other tested predictors.In terms of ACC,GTB-PPI is 2.88%-7.07% higher than other methods (7.07% higher than SVM [6],4.24% higher than DeepPPI [8],and 3.73% higher than DCT+WSRC [45]).At the same time,the recall of GTB-PPI is 1.71%-12.15%higher than other methods (4.72% higher than DCT+WSRC [45]and 7.91% higher than MCD+SVM [10]).The precision of GTB-PPI is 1.76%-5.67% higher than other methods(4.29% higher than SVM [6] and 5.67% higher than DeepPPI[8]).

    PPI prediction on independent test datasets

    The performance of GTB-PPI can also be evaluated using cross-species datasets.After the feature extraction,fusion,and selection,theS.cerevisiaedataset is used as a training set to predict PPIs of four independent test datasets.

    As shown inTable 3,for theC.elegansdataset,the ACC of GTB-PPI is 0.26% higher than MIMI+NMBAC+RF[41],4.71% higher than MLD+RF [39],and 11.23% higher than DCT+WSRC [45],but 2.42% lower than DeepPPI [8].For theE.colidataset,the ACC of GTB-PPI (94.06%) is 1.26%-27.98% higher than DeepPPI (92.19%) [8],MIMI+NMBAC+RF (92.80%) [41],MLD+RF (89.30%) [39],and DCT+WSRC (66.08%) [45].For theH.sapiensdataset,the ACC of GTB-PPI (97.38%) is 3.05%-15.16% higher than DeepPPI (93.77%) [8],MIMI+NMBAC+RF(94.33%) [41],MLD+RF (94.19%) [39],and DCT+WSRC(82.22%) [45].For theM.musculusdataset,the ACC of GTB-PPI (98.08%) is 2.23%-18.21% higher than DeepPPI(91.37%) [8],MIMI+NMBAC+RF (95.85%) [41],MLD+RF (91.96%) [39],and DCT+WSRC (79.87%) [45].The findings indicate that the hypothesis of mapping PPIs from one species to another species is reasonable.We can conclude that PPIs in one organism might have ‘‘co-evolve”with other organisms [41].

    Table 2 Performance comparison of GTB-PPI with other state-of-the-art predictors on the H.pylori dataset

    Table 3 Performance comparison of GTB-PPI with other state-of-the-art predictors on independent datasets

    PPI network prediction

    The graph visualization of the PPI network can provide a broad and informative idea to understand the proteome and analyze the protein functions.We employ GTB-PPI to predict the simple one-core PPI network for CD9 [46] and crossover PPI network for the Wnt-related signaling pathways[47]using theS.cerevisiaedataset as a training set.

    As shown inFigure 5A,only the interaction between CD9 and Collagen-binding protein 2 is not predicted successfully based on GTB-PPI,which was not predited by Shen et al.[48] either.Compared with Shen et al.[48] and Ding et al.[41],GTB-PPI achieves the superior prediction performance.The ACC is 93.75%,which is 12.50% higher than Shen et al.(81.25%) [48] and 6.25% higher than Ding et al.(87.50%) [41].As shown in Figure 5B,92 of the 96 PPI pairs are identified based on GTB-PPI.The ACC is 95.83%,which is 19.79% higher than Shen et al.(76.04%) [48] and 1.04%higher than Ding et al.(94.79%) [41].

    The palmitoylation of CD9 could support CD9 to interact with CD53 [49].In the one-core network for CD9,we can see that the interaction between CD9 and CD53 is predicted successfully based on GTB-PPI.In the crossover PPI network for the Wnt-related signaling pathways,ANP32A,CRMP1,and KIAA1377 are linked to the Wnt signaling pathway via PPIs.The ANP32A has been demonstrated as a potential tumor suppressor[50],and GTB-PPI could predict its interactions with the corresponding proteins.However,the interaction between ROCK1 and CRMP1 is not predicted.It is likely because we use theS.cerevisiaedataset as a training set,and ROCK1 and CRMP1 are different organism genes fromS.cerevisiae.At the same time,ROCK1 is part of the noncanonical Wnt signaling pathway [47],GTB-PPI may not be very effective in this case.A previous study has reported that AXIN1 could interact with multiple proteins [51].Here,we find that GTB-PPI can predict the interactions between AXIN1 and its satellite proteins,which provides new insights to elucidate the biological mechanism of PPI network.

    Conclusion

    The knowledge and analysis of PPIs can help us to reveal the structure and function of protein at the molecular level,including growth,development,metabolism,signal transduction,differentiation,and apoptosis.In this study,a new PPI prediction pipeline called GTB-PPI is presented.First,PseAAC,PsePSSM,RSIV,and AD are concatenated as the initial feature information for predicting PPIs.PseAAC obtains not only the amino acid composition information but also the sequence order information.PsePSSM can mine the evolutionary information and local order information.RSIV can obtain the frequency feature information using the reduced sequence.AD reflects the physicochemical property features on global amino acid sequence.Second,L1-RLR can obtain effective information features related to PPIs without losing accuracy and generalization.Simultaneously,the performance of L1-RLR is superior to SSDR,PCA,KPCA,FA,mRMR,and CMIMs (Figure 3).Finally,the PPIs are predicted based on GTB whose base classifier is a decision tree,which can bridge the gap between amino acid sequence information features and class label.Experimental results show that the PPI prediction performance of GTB is better than that of SVM,RF,NB,and KNN.Especially,in the field of binary PPI prediction,the L1-RLR is used for dimensionality reduction for the first time.The GTB is also first employed as a classifier.In a word,GTB-PPI shows good performance,representation ability,and generalization ability.

    Availability

    All datasets and code of GTB-PPI can be obtained on https://github.com/QUST-AIBBDRC/GTB-PPI/.

    CRediT author statement

    Bin Yu:Conceptualization,Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Writing -review & editing.Cheng Chen:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Validation,Visualization.Hongyan Zhou:Formal analysis,Investigation,Methodology,Validation,Visualization.Bingqiang Liu:Formal analysis,Investigation,Methodology,Writing -original draft.Qin Ma:Data curation,Formal analysis,Investigation,Methodology,Writing -original draft,Writing-review& editing.All authors read and approved the final manuscript.

    Competing interests

    The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

    Acknowledgments

    This work was supported by the National Natural Science Foundation of China (Grant No.61863010),the Key Research and Development Program of Shandong Province of China(Grant No.2019GGX101001),and the Natural Science Foundation of Shandong Province of China(Grant No.ZR2018MC007).

    Supplementary material

    Supplementary data to this article can be found online at https://doi.org/10.1016/j.gpb.2021.01.001.

    ORCID

    0000-0002-2453-7852 (Bin Yu)

    0000-0002-4354-5508 (Cheng Chen)

    0000-0003-4093-2585 (Hongyan Zhou)

    0000-0002-5734-1135 (Bingqiang Liu)

    0000-0002-3264-8392 (Qin Ma)

    韩国精品一区二区三区| 久久久a久久爽久久v久久| 曰老女人黄片| 一区福利在线观看| 欧美激情 高清一区二区三区| 一二三四中文在线观看免费高清| 国产精品一区二区在线不卡| 建设人人有责人人尽责人人享有的| 精品久久久精品久久久| 精品国产超薄肉色丝袜足j| 两个人免费观看高清视频| 免费看不卡的av| 亚洲久久久国产精品| 最新的欧美精品一区二区| 中文精品一卡2卡3卡4更新| 国产精品久久久久久av不卡| 久久人人爽人人片av| 日韩视频在线欧美| 国产女主播在线喷水免费视频网站| 少妇被粗大猛烈的视频| 免费观看无遮挡的男女| 日日啪夜夜爽| 宅男免费午夜| 午夜av观看不卡| 欧美精品av麻豆av| 亚洲精品第二区| 成年动漫av网址| 亚洲欧美一区二区三区黑人 | 啦啦啦啦在线视频资源| 欧美人与善性xxx| 汤姆久久久久久久影院中文字幕| 国产激情久久老熟女| 中文字幕精品免费在线观看视频| 日韩制服丝袜自拍偷拍| 午夜福利在线免费观看网站| 最近最新中文字幕免费大全7| 观看美女的网站| 青春草国产在线视频| h视频一区二区三区| 交换朋友夫妻互换小说| 色哟哟·www| 中文字幕精品免费在线观看视频| 在线观看人妻少妇| 国产av码专区亚洲av| 极品人妻少妇av视频| 午夜福利视频精品| 国产日韩欧美亚洲二区| 制服丝袜香蕉在线| 欧美精品国产亚洲| www日本在线高清视频| 欧美av亚洲av综合av国产av | 国产一区二区在线观看av| 91精品国产国语对白视频| 欧美日韩亚洲高清精品| 精品国产一区二区三区久久久樱花| 久久精品久久久久久噜噜老黄| 国产精品人妻久久久影院| 自线自在国产av| 久久精品熟女亚洲av麻豆精品| 国产一区二区三区综合在线观看| 婷婷色麻豆天堂久久| 在线观看三级黄色| 丝袜脚勾引网站| 国产xxxxx性猛交| 国产成人精品久久久久久| 色婷婷av一区二区三区视频| 免费在线观看视频国产中文字幕亚洲 | 另类精品久久| 久久久久国产网址| 成人国产麻豆网| 王馨瑶露胸无遮挡在线观看| 国产精品久久久av美女十八| 国产成人精品无人区| av网站在线播放免费| 免费在线观看视频国产中文字幕亚洲 | 久久久久久久久久久久大奶| av一本久久久久| 亚洲欧美一区二区三区国产| 深夜精品福利| 观看av在线不卡| 成年女人毛片免费观看观看9 | 中文字幕人妻熟女乱码| 少妇被粗大的猛进出69影院| 自线自在国产av| 黄色 视频免费看| 国产精品国产三级国产专区5o| 精品第一国产精品| 久久久久久久久免费视频了| 校园人妻丝袜中文字幕| 校园人妻丝袜中文字幕| 啦啦啦在线免费观看视频4| 日日爽夜夜爽网站| 日韩欧美精品免费久久| 日韩免费高清中文字幕av| 精品卡一卡二卡四卡免费| 日韩一区二区三区影片| 五月开心婷婷网| 搡女人真爽免费视频火全软件| 最近中文字幕高清免费大全6| 亚洲精品第二区| 午夜福利一区二区在线看| 91午夜精品亚洲一区二区三区| 一级毛片 在线播放| 午夜福利影视在线免费观看| 久久这里有精品视频免费| 边亲边吃奶的免费视频| 人人澡人人妻人| 国产成人欧美| 精品国产露脸久久av麻豆| 一级毛片 在线播放| 2021少妇久久久久久久久久久| 国产乱人偷精品视频| 99精国产麻豆久久婷婷| 色哟哟·www| 久久人人爽人人片av| 国产伦理片在线播放av一区| av福利片在线| 国产精品嫩草影院av在线观看| 久久久国产欧美日韩av| 电影成人av| 国产亚洲午夜精品一区二区久久| 亚洲精品成人av观看孕妇| 宅男免费午夜| 极品人妻少妇av视频| 久久国内精品自在自线图片| 欧美变态另类bdsm刘玥| 国产熟女午夜一区二区三区| 欧美人与性动交α欧美软件| 亚洲视频免费观看视频| 免费在线观看黄色视频的| 国精品久久久久久国模美| 日韩制服丝袜自拍偷拍| 天天操日日干夜夜撸| 亚洲欧洲日产国产| 亚洲国产欧美日韩在线播放| 中文字幕人妻丝袜制服| 欧美中文综合在线视频| 一区二区三区激情视频| 夫妻性生交免费视频一级片| 欧美中文综合在线视频| 999久久久国产精品视频| 人人妻人人澡人人爽人人夜夜| 日韩精品有码人妻一区| www日本在线高清视频| 日韩一区二区视频免费看| 麻豆av在线久日| 国产精品女同一区二区软件| 精品亚洲乱码少妇综合久久| 欧美精品人与动牲交sv欧美| 校园人妻丝袜中文字幕| 国产又爽黄色视频| 欧美亚洲 丝袜 人妻 在线| 天美传媒精品一区二区| 国产成人精品一,二区| 成人毛片a级毛片在线播放| 日韩一区二区三区影片| 久久精品熟女亚洲av麻豆精品| 亚洲一码二码三码区别大吗| 久久99热这里只频精品6学生| 亚洲av综合色区一区| 成年人免费黄色播放视频| 日韩精品有码人妻一区| 不卡av一区二区三区| 欧美变态另类bdsm刘玥| 久久久久精品久久久久真实原创| 王馨瑶露胸无遮挡在线观看| 亚洲视频免费观看视频| 国产97色在线日韩免费| 久久精品久久久久久久性| 五月开心婷婷网| 日韩中文字幕视频在线看片| 亚洲精品在线美女| 肉色欧美久久久久久久蜜桃| 亚洲情色 制服丝袜| 国产一级毛片在线| 男女下面插进去视频免费观看| 黑人猛操日本美女一级片| 啦啦啦啦在线视频资源| 制服丝袜香蕉在线| 免费观看无遮挡的男女| 考比视频在线观看| 极品人妻少妇av视频| 丝袜脚勾引网站| 亚洲在久久综合| 日本wwww免费看| 老司机影院成人| 免费在线观看完整版高清| 亚洲欧美成人综合另类久久久| 欧美日韩国产mv在线观看视频| 亚洲国产毛片av蜜桃av| 亚洲天堂av无毛| 亚洲精品国产av成人精品| 人妻 亚洲 视频| 一区在线观看完整版| 午夜老司机福利剧场| 久久婷婷青草| av片东京热男人的天堂| 性色av一级| 99国产综合亚洲精品| 男女边吃奶边做爰视频| videos熟女内射| 久久久久久久久久久久大奶| av国产久精品久网站免费入址| 女的被弄到高潮叫床怎么办| 亚洲av日韩在线播放| 观看美女的网站| 国产精品久久久av美女十八| 日韩伦理黄色片| 在现免费观看毛片| 18+在线观看网站| 久久久精品国产亚洲av高清涩受| 成年人午夜在线观看视频| 亚洲成av片中文字幕在线观看 | 在现免费观看毛片| 国产探花极品一区二区| 午夜久久久在线观看| 久久久久久久大尺度免费视频| 熟女电影av网| 在线观看免费高清a一片| 国产精品香港三级国产av潘金莲 | 亚洲第一区二区三区不卡| 免费久久久久久久精品成人欧美视频| 欧美 日韩 精品 国产| 亚洲欧美一区二区三区黑人 | 亚洲第一青青草原| 国产一区二区在线观看av| 欧美成人午夜精品| 成人毛片60女人毛片免费| 亚洲 欧美一区二区三区| 日韩精品免费视频一区二区三区| 青草久久国产| 亚洲欧美精品综合一区二区三区 | 日韩中文字幕视频在线看片| www.自偷自拍.com| 哪个播放器可以免费观看大片| 王馨瑶露胸无遮挡在线观看| 99re6热这里在线精品视频| 国产精品亚洲av一区麻豆 | 午夜福利一区二区在线看| 欧美日韩一级在线毛片| 国产精品一二三区在线看| 老司机影院毛片| 国产男女内射视频| 丝袜喷水一区| 国产精品成人在线| 高清欧美精品videossex| 久久久欧美国产精品| 日韩精品有码人妻一区| 欧美日韩av久久| 国产高清不卡午夜福利| 中文字幕av电影在线播放| 欧美变态另类bdsm刘玥| 亚洲精品国产一区二区精华液| www日本在线高清视频| 日韩熟女老妇一区二区性免费视频| 啦啦啦在线观看免费高清www| 久久久久久免费高清国产稀缺| 国产男女超爽视频在线观看| 日日摸夜夜添夜夜爱| 国产淫语在线视频| 久久这里只有精品19| 久久精品久久久久久久性| 边亲边吃奶的免费视频| 不卡av一区二区三区| 看十八女毛片水多多多| 天美传媒精品一区二区| 一本一本久久a久久精品综合妖精 国产伦在线观看视频一区 | 水蜜桃什么品种好| 国产高清不卡午夜福利| 在线观看免费高清a一片| 黄片小视频在线播放| 一级片'在线观看视频| 久久精品国产亚洲av天美| 亚洲精品,欧美精品| 曰老女人黄片| 在线看a的网站| 色播在线永久视频| 欧美激情极品国产一区二区三区| 成人18禁高潮啪啪吃奶动态图| 女人高潮潮喷娇喘18禁视频| 亚洲av成人精品一二三区| 久久久精品区二区三区| 免费人妻精品一区二区三区视频| 一级毛片我不卡| 亚洲,欧美,日韩| √禁漫天堂资源中文www| 国产亚洲av片在线观看秒播厂| 一区二区三区精品91| 男人爽女人下面视频在线观看| 黄色配什么色好看| 日韩成人av中文字幕在线观看| 欧美97在线视频| 69精品国产乱码久久久| 99久国产av精品国产电影| videos熟女内射| 国产亚洲一区二区精品| 黄色一级大片看看| 哪个播放器可以免费观看大片| 搡老乐熟女国产| 国产欧美日韩一区二区三区在线| 黑人巨大精品欧美一区二区蜜桃| 欧美最新免费一区二区三区| 亚洲内射少妇av| 国产无遮挡羞羞视频在线观看| 人人妻人人爽人人添夜夜欢视频| 色婷婷久久久亚洲欧美| 国产成人免费无遮挡视频| 男女午夜视频在线观看| 交换朋友夫妻互换小说| 国产精品一国产av| 波多野结衣一区麻豆| 亚洲av欧美aⅴ国产| 一二三四中文在线观看免费高清| 午夜精品国产一区二区电影| 免费观看av网站的网址| 观看美女的网站| 人妻 亚洲 视频| 女人精品久久久久毛片| 亚洲欧美精品综合一区二区三区 | 亚洲成人av在线免费| 国产成人精品婷婷| 亚洲国产成人一精品久久久| 这个男人来自地球电影免费观看 | 亚洲一区中文字幕在线| 国产成人午夜福利电影在线观看| av免费观看日本| 欧美日韩精品网址| 日韩熟女老妇一区二区性免费视频| 亚洲成国产人片在线观看| 少妇人妻精品综合一区二区| 精品少妇黑人巨大在线播放| 观看av在线不卡| 亚洲精品日本国产第一区| 国产欧美亚洲国产| 婷婷色综合大香蕉| 国产精品一国产av| 成年人午夜在线观看视频| 欧美人与善性xxx| 国产极品粉嫩免费观看在线| 一区二区三区四区激情视频| 9热在线视频观看99| 国产日韩欧美在线精品| 99re6热这里在线精品视频| 91午夜精品亚洲一区二区三区| 巨乳人妻的诱惑在线观看| 欧美激情高清一区二区三区 | 久久免费观看电影| 免费观看无遮挡的男女| 亚洲男人天堂网一区| 观看av在线不卡| 一本大道久久a久久精品| 午夜免费男女啪啪视频观看| 国产成人精品久久二区二区91 | 中文字幕另类日韩欧美亚洲嫩草| 亚洲精品乱久久久久久| a级毛片黄视频| 国产精品二区激情视频| 桃花免费在线播放| 在线免费观看不下载黄p国产| 午夜福利乱码中文字幕| 久久精品亚洲av国产电影网| 一二三四中文在线观看免费高清| 久久精品国产亚洲av天美| 国产福利在线免费观看视频| 啦啦啦在线免费观看视频4| 国产免费又黄又爽又色| 国产熟女午夜一区二区三区| 色婷婷久久久亚洲欧美| 久久亚洲国产成人精品v| 极品人妻少妇av视频| 秋霞在线观看毛片| 国产男女超爽视频在线观看| 久久午夜综合久久蜜桃| 精品亚洲成国产av| 满18在线观看网站| 久久鲁丝午夜福利片| 视频区图区小说| 人人妻人人添人人爽欧美一区卜| 熟妇人妻不卡中文字幕| 伦理电影大哥的女人| 亚洲欧洲日产国产| 狠狠精品人妻久久久久久综合| 亚洲国产日韩一区二区| 亚洲一级一片aⅴ在线观看| 韩国av在线不卡| 亚洲人成77777在线视频| 国产视频首页在线观看| 日日啪夜夜爽| 2022亚洲国产成人精品| 久久国内精品自在自线图片| 欧美+日韩+精品| 日本vs欧美在线观看视频| 青春草国产在线视频| 肉色欧美久久久久久久蜜桃| 国产精品女同一区二区软件| 日本欧美视频一区| 91aial.com中文字幕在线观看| 少妇猛男粗大的猛烈进出视频| 日本欧美视频一区| 又大又黄又爽视频免费| 免费黄色在线免费观看| 人体艺术视频欧美日本| 色哟哟·www| 99久久人妻综合| 国产精品无大码| 亚洲欧美日韩另类电影网站| 色网站视频免费| 一二三四中文在线观看免费高清| 午夜免费男女啪啪视频观看| 国产精品成人在线| 亚洲精品成人av观看孕妇| 伊人亚洲综合成人网| 亚洲五月色婷婷综合| 久久99精品国语久久久| 18禁动态无遮挡网站| 人人妻人人澡人人看| 人妻系列 视频| 亚洲av中文av极速乱| 久久久精品区二区三区| 免费人妻精品一区二区三区视频| 免费黄色在线免费观看| 五月伊人婷婷丁香| 高清在线视频一区二区三区| 中文精品一卡2卡3卡4更新| 男女无遮挡免费网站观看| 国产精品三级大全| 国产伦理片在线播放av一区| 久久韩国三级中文字幕| 制服丝袜香蕉在线| 人妻系列 视频| 中文字幕人妻熟女乱码| 久久久国产欧美日韩av| 欧美少妇被猛烈插入视频| 国产不卡av网站在线观看| 久久久久久久久免费视频了| 久久久国产精品麻豆| 精品国产国语对白av| 中文字幕人妻丝袜制服| 亚洲四区av| 亚洲精品自拍成人| 久久久久久人人人人人| 亚洲成国产人片在线观看| 精品亚洲乱码少妇综合久久| 亚洲成国产人片在线观看| 在线观看免费视频网站a站| 久久久久久免费高清国产稀缺| 欧美日韩综合久久久久久| av不卡在线播放| 1024视频免费在线观看| 中文字幕亚洲精品专区| 18禁裸乳无遮挡动漫免费视频| 国产日韩欧美亚洲二区| 黑人猛操日本美女一级片| 亚洲,欧美,日韩| 毛片一级片免费看久久久久| 永久网站在线| 一边摸一边做爽爽视频免费| 欧美日韩一级在线毛片| 一级爰片在线观看| 久久久久人妻精品一区果冻| 国产精品.久久久| 亚洲综合精品二区| 视频在线观看一区二区三区| 国产欧美日韩一区二区三区在线| 亚洲av.av天堂| 日韩精品免费视频一区二区三区| 成人18禁高潮啪啪吃奶动态图| 欧美人与善性xxx| 午夜日韩欧美国产| 伊人亚洲综合成人网| 亚洲成人一二三区av| 亚洲美女视频黄频| 亚洲欧美色中文字幕在线| 精品午夜福利在线看| kizo精华| 精品卡一卡二卡四卡免费| 永久免费av网站大全| 最近的中文字幕免费完整| 一区在线观看完整版| 97在线人人人人妻| 自拍欧美九色日韩亚洲蝌蚪91| 日韩视频在线欧美| 青春草亚洲视频在线观看| 精品酒店卫生间| 日本欧美国产在线视频| 两性夫妻黄色片| 精品人妻一区二区三区麻豆| 中文字幕色久视频| 男女无遮挡免费网站观看| 国产激情久久老熟女| 青春草视频在线免费观看| av又黄又爽大尺度在线免费看| 精品亚洲乱码少妇综合久久| av片东京热男人的天堂| 两个人免费观看高清视频| xxxhd国产人妻xxx| 中文字幕另类日韩欧美亚洲嫩草| 九色亚洲精品在线播放| 精品国产乱码久久久久久小说| 99久久人妻综合| 色哟哟·www| 黄色配什么色好看| a级毛片黄视频| 欧美人与性动交α欧美精品济南到 | 亚洲av在线观看美女高潮| 国产精品三级大全| 国产精品.久久久| 欧美 亚洲 国产 日韩一| 欧美激情高清一区二区三区 | 另类亚洲欧美激情| 色婷婷av一区二区三区视频| 丰满饥渴人妻一区二区三| 国产福利在线免费观看视频| 成年女人毛片免费观看观看9 | 亚洲少妇的诱惑av| 菩萨蛮人人尽说江南好唐韦庄| 如何舔出高潮| 日韩中字成人| 免费黄网站久久成人精品| 成人国产麻豆网| 新久久久久国产一级毛片| 成人国语在线视频| 国产精品香港三级国产av潘金莲 | 香蕉丝袜av| 高清欧美精品videossex| 在线看a的网站| 日韩 亚洲 欧美在线| 亚洲精品日韩在线中文字幕| 国产精品国产三级国产专区5o| 日韩av不卡免费在线播放| 久久人人爽人人片av| 91aial.com中文字幕在线观看| 亚洲国产成人一精品久久久| 亚洲精品aⅴ在线观看| 人妻少妇偷人精品九色| 日产精品乱码卡一卡2卡三| 免费看av在线观看网站| av免费观看日本| 欧美成人午夜免费资源| 激情五月婷婷亚洲| 90打野战视频偷拍视频| 一二三四在线观看免费中文在| 99香蕉大伊视频| 久久久国产欧美日韩av| 黄色怎么调成土黄色| 黄频高清免费视频| 欧美成人精品欧美一级黄| 亚洲av福利一区| 岛国毛片在线播放| 国产 精品1| 视频区图区小说| 热99久久久久精品小说推荐| av国产久精品久网站免费入址| 母亲3免费完整高清在线观看 | 人成视频在线观看免费观看| 久久久久久久大尺度免费视频| 成人国语在线视频| 捣出白浆h1v1| 国产成人aa在线观看| 少妇人妻久久综合中文| 人人妻人人爽人人添夜夜欢视频| 亚洲欧美一区二区三区久久| 青草久久国产| 美女中出高潮动态图| 91在线精品国自产拍蜜月| 国产有黄有色有爽视频| 黄色 视频免费看| 国产精品三级大全| 亚洲成人av在线免费| 99热全是精品| 成年女人毛片免费观看观看9 | 老汉色∧v一级毛片| 又粗又硬又长又爽又黄的视频| 亚洲精华国产精华液的使用体验| av国产精品久久久久影院| 久久99一区二区三区| 在线亚洲精品国产二区图片欧美| 国产亚洲欧美精品永久| 欧美激情极品国产一区二区三区| 免费在线观看视频国产中文字幕亚洲 | 亚洲综合精品二区| 男人操女人黄网站| 久热这里只有精品99| 色播在线永久视频| 黄片无遮挡物在线观看| 在线观看一区二区三区激情| 日日爽夜夜爽网站| 亚洲精品久久久久久婷婷小说| av线在线观看网站| 亚洲av电影在线观看一区二区三区| 免费看不卡的av| 亚洲四区av| 久久久久精品久久久久真实原创| 人妻 亚洲 视频| 午夜福利影视在线免费观看| 99香蕉大伊视频| 18+在线观看网站| 热99国产精品久久久久久7| 日韩精品有码人妻一区| 欧美老熟妇乱子伦牲交| 在现免费观看毛片| 亚洲国产av新网站| 亚洲在久久综合| 一二三四在线观看免费中文在| 菩萨蛮人人尽说江南好唐韦庄| 18+在线观看网站| www日本在线高清视频| 亚洲国产av新网站| 91精品三级在线观看| 一二三四在线观看免费中文在| 日韩中字成人| 久热这里只有精品99| 欧美人与性动交α欧美软件| 视频区图区小说| 欧美人与善性xxx|