蔣建蘭,單瀟瀟,孫?露,張凱旋
基于QbD理念優(yōu)化苦參生物堿的分離工藝
蔣建蘭1, 2,單瀟瀟1, 2,孫?露1, 2,張凱旋1, 2
(1. 天津大學(xué)系統(tǒng)生物工程教育部重點(diǎn)實(shí)驗(yàn)室,天津 300350;2. 天津大學(xué)化工學(xué)院,天津 300350)
質(zhì)量源于設(shè)計(jì);苦參;純化過程;優(yōu)化
近年來,質(zhì)量源于設(shè)計(jì)(quality by design,QbD)原則廣泛應(yīng)用于生產(chǎn)操作當(dāng)中,以確保產(chǎn)品質(zhì)量可?控[1].這一理念是將質(zhì)量風(fēng)險(xiǎn)管理理念引入到制藥工業(yè)當(dāng)中,常被用來評(píng)估藥品質(zhì)量[2-4]和優(yōu)化生產(chǎn)過?程[5-7].QbD原則是在確定關(guān)鍵工藝參數(shù)的前提下,得出工藝指標(biāo)與關(guān)鍵質(zhì)量屬性之間的數(shù)學(xué)模型,通過對(duì)模型參數(shù)的設(shè)定,建立穩(wěn)定可控的設(shè)計(jì)空間[8],使工藝操作更加靈活.
QbD理念常用于中藥提取[9-10]以及劑型優(yōu)化[11-13]等生產(chǎn)當(dāng)中,而在中藥分離純化過程的相關(guān)研究較少.筆者以苦參甘草提取液中生物堿的分離純化工藝為例,論述將QbD理念引入到中藥分離純化工藝的實(shí)驗(yàn)方法.苦參甘草配伍是一類常見的復(fù)方,其中苦參為主藥,有清熱利尿之功效,對(duì)人類的心臟、大腦、肝臟等有益[14].苦參中的主要抗菌物質(zhì)是生物堿,包括苦參堿、氧化苦參堿、槐果堿等[15],其中苦參堿和氧化苦參堿的含量最高且應(yīng)用最廣,因而使用這兩種生物堿以及苦參總堿的解吸量作為工藝評(píng)價(jià)指標(biāo)來優(yōu)化分離工藝.
樹脂AB-8(批號(hào)20140618)、樹脂D-101(批號(hào)20150316)、樹脂D3520(批號(hào)20130409)、樹脂NK-109(批號(hào)20160217),購自南開合成科技有限公司;樹脂XDA-5(批號(hào)20150703)、樹脂S-8(批號(hào)20140505)、樹脂NKA-9(批號(hào)20140607),購自鄭州勤實(shí)科技有限公司;以上樹脂均用5.0% HCl和 0.2moL/L NaOH分別處理,乙醇和蒸餾水反復(fù)洗滌,最后將它們浸泡在蒸餾水中待用.
玻璃層析柱(10.0mm×350.0mm),天津市鵬翔天達(dá)玻璃儀器經(jīng)營(yíng)部;高效液相色譜儀(Waters 1525,Waters 2489 紫外檢測(cè)器)、Unitary C18色譜柱(4.6mm×250mm,5μm)、紫外-可見分光光度計(jì)(UV6000),上海元析儀器有限公司.
將苦參和甘草放置于45℃的恒溫干燥箱里干燥至恒重,然后將7.50g苦參和10.00g甘草用70.0%的乙醇溶液回流提取2h,提取液以12000r/min的轉(zhuǎn)速離心,收集上清液作為柱分離試驗(yàn)的上樣液.
溴甲酚綠紫外分光光度法用來測(cè)定TASF的含量,紫外檢測(cè)波長(zhǎng)為420nm.MT和OMT的含量采用外標(biāo)法檢測(cè),液相檢測(cè)系統(tǒng)為:Waters 1525,Waters 2489紫外檢測(cè)器,色譜柱為Unitary C18(4.6mm×250mm,5μm),在檢測(cè)波長(zhǎng)220nm、柱溫30℃、流動(dòng)相為水(0.1%磷酸,A)-乙腈(B)的條件下,對(duì)樣品進(jìn)行梯度洗脫(0~4min,95%~87%A;4~7min,87%~80%A;7~20min,80%~95%A),進(jìn)樣量為20μL,流速1.0mL/min[16].
1.4.1?靜態(tài)試驗(yàn)
分別稱取7種樹脂8.00g和40mL提取液混合放置于搖床當(dāng)中,30℃、120r/min的條件下吸附24h.當(dāng)吸附完成后,將吸附完成的樹脂用10mL的蒸餾水洗滌兩次,置換出樹脂層中殘留的提取液,然后再用45mL、70.0%的乙醇靜態(tài)洗脫,解吸條件與吸附過程相同.各物質(zhì)吸附量a與解吸量d計(jì)算式分別為
1.4.2?數(shù)據(jù)處理
使用“歸一值”法對(duì)多量綱的數(shù)據(jù)進(jìn)行處理.
根據(jù)7種樹脂的靜態(tài)吸附和靜態(tài)洗脫過程中的OD值大小,選擇最優(yōu)的樹脂作為柱層析動(dòng)態(tài)洗脫試驗(yàn)中的吸附劑.
1.5.1?單因素試驗(yàn)設(shè)計(jì)
根據(jù)實(shí)際工作中的經(jīng)驗(yàn),選取合適的因素,采用單一變量法來研究各參數(shù)對(duì)NK-109樹脂動(dòng)態(tài)吸附與洗脫提取工藝的影響,每組試驗(yàn)進(jìn)行3次.
1.5.2?多因素顯著試驗(yàn)設(shè)計(jì)
多因素顯著試驗(yàn)(Plackeet-Burmann design,PBD)由design-expert 8.0軟件完成.根據(jù)單因素試驗(yàn)結(jié)果,綜合考量各因素對(duì)3種工藝評(píng)價(jià)指標(biāo)的影響,在單因素試驗(yàn)結(jié)果中呈上升趨勢(shì)的區(qū)間內(nèi),選擇各因素的高低水平(高:1,低:-1),根據(jù)試驗(yàn)指導(dǎo)原則[17],在Plackeet-Burmann中設(shè)計(jì)12組5因素2水平的試驗(yàn),得出相應(yīng)工藝下的工藝評(píng)價(jià)指標(biāo)值,然后對(duì)5種因素進(jìn)行顯著性分析,篩選出關(guān)鍵工藝參數(shù).
中心點(diǎn)復(fù)合試驗(yàn)(central composite designed,CCD)由design-expert 8.0軟件完成.根據(jù)PBD試驗(yàn)結(jié)果確定顯著因素,即為關(guān)鍵工藝參數(shù)(critical process parameters,CPPs).試驗(yàn)選取上樣液pH值、洗脫劑乙醇濃度和洗脫流速為關(guān)鍵影響因素進(jìn)一步優(yōu)化.在Central-Composite中設(shè)計(jì)20組3因素5水平的中心點(diǎn)復(fù)合試驗(yàn),得到相應(yīng)工藝下的3種工藝評(píng)價(jià)指標(biāo)值,進(jìn)行回歸分析.
吸附是一種物理過程,吸附效果與吸附劑性能和吸附劑與被吸附物質(zhì)之間的分子相互作用有關(guān).試驗(yàn)考察了7種樹脂靜態(tài)吸附和解吸的效果,試驗(yàn)結(jié)果如表1、表2所示.比較OD值,NK-109型大孔樹脂對(duì)于此次優(yōu)化試驗(yàn)來說性能最優(yōu),因此選其為分離過程中的吸附劑.
2.2.1?單因素試驗(yàn)結(jié)果
由圖1和圖2可知各因素對(duì)TASF、MT和OMT 吸附量和解吸量的影響差別較大,且同一因素對(duì)3種工藝評(píng)價(jià)指標(biāo)的影響也不盡相同.隨著上樣流速增大,提取液中的生物堿類物質(zhì)不能與吸附劑充分接觸,導(dǎo)致物質(zhì)不能很好地被吸附,吸附量降低.在提取液呈酸性時(shí),隨著pH值增大,苦參中的生物堿由離子態(tài)轉(zhuǎn)變?yōu)橛坞x態(tài),增強(qiáng)了物質(zhì)與樹脂間的作用力,使吸附量增大,但當(dāng)提取液pH值呈堿性時(shí),部分生物堿與甘草中的酸性物質(zhì)發(fā)生反應(yīng),降低了提取液中的生物堿總量,導(dǎo)致吸附量減少.稀釋倍數(shù)越大,相同體積的提取液中生物堿含量越少,導(dǎo)致各生物堿的吸附量也因此減少.隨著洗脫液體積增大,更多的生物堿類物質(zhì)被洗脫,導(dǎo)致解吸量升高.與上樣流速相似,當(dāng)洗脫流速增大時(shí),洗脫劑與物質(zhì)之間的接觸時(shí)間較短,導(dǎo)致解吸量降低.隨著乙醇濃度升高,各生物堿的解吸量呈現(xiàn)不同的趨勢(shì),TASF和MT的解吸量隨著乙醇濃度的升高而增大,而OMT為弱極性物質(zhì),在高濃度乙醇溶液中的溶解度逐漸降低,因此其解吸量呈現(xiàn)先增大后減小的趨勢(shì).根據(jù)圖1和圖2中數(shù)據(jù)結(jié)果,結(jié)合生產(chǎn)成本,選定洗脫劑體積用量為60mL,在此基礎(chǔ)上確定其他參數(shù)的高低水平為上樣流速:20.0mL/h、40.0mL/h;上樣液pH值:4.5、6.5;上樣液稀釋濃度:不稀釋、稀釋2倍;洗脫劑乙醇體積分?jǐn)?shù):70.0%、90.0%;洗脫流速:20.0mL/h、40.0mL/h;設(shè)計(jì)PBD試驗(yàn),篩選出關(guān)鍵工藝參數(shù)見表3.
表1?7種樹脂的吸附量
Tab.1?Absorption capacities of seven resins
表2?7種樹脂的解吸量
Tab.2?Desorption capacities of seven resins
圖1?吸附過程中各因素對(duì)生物堿吸附量的影響
圖2?洗脫過程中各因素對(duì)生物堿解吸量的影響
表3?PBD試驗(yàn)設(shè)計(jì)結(jié)果
Tab.3?PBD experimental design results
2.2.2?PBD試驗(yàn)結(jié)果
對(duì)各因素進(jìn)行回歸分析,試驗(yàn)結(jié)果見表4.表中數(shù)據(jù)給出了各因素對(duì)工藝評(píng)價(jià)指標(biāo)的影響順序,值越低,影響越顯著.綜合考察各因素影響的顯著水平,選取上樣液pH值、洗脫劑乙醇體積分?jǐn)?shù)和洗脫流速為優(yōu)化過程中CPPs,在洗脫液體積60mL、上樣流速30.0mL/h、上樣液不稀釋的基礎(chǔ)上進(jìn)行后續(xù)試驗(yàn).
表4?PBD試驗(yàn)結(jié)果分析
Tab.4?Analysis of PBD experiment results
注:TASF、MT和OMT的2分別為0.9381、0.9235和0.8874;上標(biāo)“*”表示顯著.
利用design-expert軟件設(shè)計(jì)CCD試驗(yàn)并進(jìn)行回歸分析,試驗(yàn)結(jié)果如表5所示,CPPs與工藝評(píng)價(jià)指標(biāo)間的最佳模型為二次多項(xiàng)式函數(shù),d1、d2、d3分別表示TASF、MT和OMT解吸量對(duì)上樣液pH值(1)、洗脫劑乙醇體積分?jǐn)?shù)(2)和洗脫流速(3)的響應(yīng)值,回歸方程如下:
表5?CCD試驗(yàn)結(jié)果分析
Tab.5?Analysis of CCD experiment results
對(duì)3個(gè)回歸方程進(jìn)行方差分析,方程的2值分別為0.8957、0.9271、0.8874,值分別為0.0008、0.0001、0.0011,均小于0.05(顯著),失擬項(xiàng)值分別為0.0726、0.0734、0.1104,均大于0.05(不顯著),表明回歸方程顯著,模型擬合度高,且隨機(jī)誤差對(duì)試驗(yàn)結(jié)果影響較小,CPPs與3種工藝評(píng)價(jià)指標(biāo)之間可用此模型函數(shù)化.
圖3?分離純化過程中的設(shè)計(jì)空間
黃色區(qū)域表示相應(yīng)參數(shù)條件下,工藝指標(biāo)值滿足要求
表6?設(shè)計(jì)空間的驗(yàn)證
Tab.6?Verification of design space
注:上標(biāo)“*”表示預(yù)測(cè)值.
[1] Orlandini S,Pinzauti S,F(xiàn)urlanetto S. Application of quality by design to the development of analytical separation methods[J]. Analytical and Bioanalytical Chemistry,2013,405(2/3):443-450.
[2] Rathore A S. Quality by design(QbD)-based process development for purification of a biotherapeutic[J]. Trends in Biotechnology,2016,34(5):358-370.
[3] Sangshetti J N. Quality by design approach:Regulatory need[J]. Arabian Journal of Chemistry,2017,10(2):3412-3425.
[4] Peterson J J. A Bayesian approach to the ICH Q8 defini-tion of design space[J]. Journal of Biopharmaceutical Statistics,2008,18(5):959.
[5] Lawrence X Y,Pharmaceutical quality by design:Product and process development,understanding,and control[J]. Pharmaceutical Research,2008,25(10):781-791.
[6] Zhang Lan,Mao Shirui.Application of quality by design in the current drug development[J]. Asian Journal of Pharmaceutical Sciences,2017,12(1):1-8.
[7] 徐?冰,史新元,吳志生,等. 論中藥質(zhì)量源于設(shè)計(jì)[J]. 中國(guó)中藥雜志,2017,42(6):1015-1024.
Xu Bing,Shi Xinyuan,Wu Zhisheng,et al. Quality by design approaches for pharmaceutical development and manufacturing of Chinese medicine[J]. Chinese Journal of Chinese Materia Medica,2017,42(6):1015-1024(in Chinese).
[8] 丁瑞雪,何?雁,田?香,等. 基于質(zhì)量源于設(shè)計(jì)理念的地格達(dá)-4味湯提取工藝研究[J]. 中國(guó)中藥雜志,2019,44(13):2799-2805.
Ding Ruixue,He Yan,Tian Xiang,et al. Research on extraction process of Digeda-4 flavored decoction based on QbD concept[J]. Chinese Journal of New Drugs,2019,44(13):2799-2805(in Chinese).
[9] Wang Yaqi,Yang Yuanzhen,Jiao Jiaojiao,et al. Support vector regression approach to predict the design space for the extraction process of pueraria lobata[J]. Molecules,2018,23(10):2405.
[10] 蔡淑潔,呂華偉,蔣靚萍,等. 基于QbD理念的雷公藤總?cè)莆⒉ㄌ崛」に囇芯縖J]. 發(fā)酵科技通訊,2018,47(1):16-20.
Cai Shujie,Lü Huawei,Jiang Liangping,et al. Study on the microwave extraction process of Tripterygium wilfordii total triterpenoids based on QbD concept[J]. Bulletin of Fermentation Science and Technology,2018,47(1):16-20(in Chinese).
[11] Djuris J,Medarevic D,Krstic M,et al. Application of quality by design concepts in the development of fl-uidized bed granulation and tableting processes[J]. Jo-urnal of Pharmaceutical Sciences,2013,102(6):1869-1882.
[12] Troiano G,Nolan J,Parsons D,et al. A quality by design approach to developing and manufacturing polymeric nanoparticle drug products[J]. AAPS Journal,2016,18(6):1354-1363.
[13] Pallagi E,Karimi K,Ambrus R,et al. New aspects of developing a dry powder inhalation formulation ap-plying the quality-by-design approach[J]. International Journal of Pharmaceutics,2016,511(1):151.
[14] 張明發(fā),沈雅琴. 苦參堿類生物堿抗粒細(xì)胞和單核細(xì)胞性白血病的藥理作用研究進(jìn)展[J]. 抗感染藥學(xué),2019,16(4):559-563.
Zhang Mingfa,Shen Yaqin. Research advances on pharmacological action of matrine-type alkaloids in patients with granulocytic and monocytic leukemia[J]. Anti Infect Pharm,2019,16(4):559-563(in Chinese).
[15] Liu Xiujin,Cao Meiai,Li Wenhai,et al. Alkaloids from Sophora flavescens Aition[J]. Fitoterapia,2010,81(6):524-527.
[16] 趙?洋,張?濤,賈紅梅,等. 苦參-甘草藥對(duì)提取工藝的優(yōu)化及其化學(xué)成分分析[J]. 中國(guó)實(shí)驗(yàn)方劑學(xué)雜志,2017,23(3):18-24.
Zhao Yang,Zhang Tao,Jia Hongmei,et al. Optimization of extraction process for couplet medicines of sophorae flavescentis radix-glycyrrhizae radix et rhizoma and identification of its chemical constituents[J]. Chinese Journal of Experimental Traditional Medical Formulae,2017,23(3):18-24(in Chinese).
[17] 張潤(rùn)楚,劉民千,楊建峰,等. 試驗(yàn)應(yīng)用統(tǒng)計(jì)[M]. 北京:機(jī)械工業(yè)出版社,2010.
Zhang Runchu,Liu Minqian,Yang Jianfeng,et al. Test Application Statistics[M]. Beijing:Mechanical Industry Press,2010(in Chinese).
Application of a Quality by Design Approach to Optimize Separation of Alkaloids in
Jiang Jianlan1, 2,Shan Xiaoxiao1, 2,Sun Lu1, 2,Zhang Kaixuan1, 2
(1. Key Laboratory of Systems Bioengineering of Ministry of Education,Tianjin University,Tianjin 300350,China;2. School of Chemical Engineering and Technology,Tianjin University,Tianjin 300350,China)
quality by design;;purification process;optimization
R932
A
0493-2137(2020)11-1204-07
10.11784/tdxbz201910032
2019-10-21;
2020-01-02.
蔣建蘭(1972—??),女,博士,研究員.
蔣建蘭,jljiang@tju.edu.cn.
國(guó)家自然科學(xué)基金青年科學(xué)基金資助項(xiàng)目(81102900).
Supported by the Young Scientists Fund in the National Natural Science Foundation of China(No. 81102900).
(責(zé)任編輯:田?軍)