劉芬,賀振興,徐鵬翱,馬鴻洋
基于自對偶量子低密度校驗碼的量子對話協(xié)議
劉芬1,賀振興2,徐鵬翱1,馬鴻洋2
(1. 青島理工大學(xué)信息與控制工程學(xué)院,山東 青島 266033;2. 青島理工大學(xué)理學(xué)院,山東 青島 266033)
在量子信道中,粒子在傳輸過程中通常會受到噪聲的影響,提出基于自對偶量子低密度校驗碼的量子對話協(xié)議來抵抗噪聲攻擊,使用B構(gòu)造法和U構(gòu)造法相結(jié)合的方法來構(gòu)造自對偶量子低密度奇偶校驗矩陣。所提量子對話協(xié)議能夠抵抗常見的外部攻擊,且不存在信息泄露,提高了編碼和譯碼的效率。從糾錯的角度研究所提量子對話協(xié)議的安全性,安全分析表明,該協(xié)議具有足夠的安全性,能夠有效抵御常見的惡意攻擊。
量子低密度碼;量子對話;自對偶
量子密鑰分發(fā)(QKD,quantum key distribution)利用量子物理定律保證了信息傳輸?shù)陌踩?,在理論上已被證明是無條件安全的。QKD允許兩個遠(yuǎn)程用戶通過量子信道和公共經(jīng)典信道生成共享密鑰。第一種無條件安全QKD協(xié)議由Bennett和Brassard[1]于1984年提出(簡稱BB84協(xié)議)。隨后,兩種量子直接通信協(xié)議被提出,即確定性安全量子通信(DSQC,deterministic secure quantum communication)協(xié)議[2-4]和量子安全直接通信(QSDC,quantum secure direct communication)協(xié)議[5-10]。這兩種量子通信協(xié)議可以在不創(chuàng)建共享密鑰的情況下實現(xiàn)信息的直接傳輸,提高了系統(tǒng)的實時性。對于DSQC協(xié)議,信息可以直接從發(fā)送方傳輸?shù)浇邮辗?,而不需要預(yù)先生成共享密鑰,接收方只能在傳輸額外的經(jīng)典信息后提取信息。然而,QSDC協(xié)議可以實現(xiàn)信息的直接傳輸,而不需要交換經(jīng)典信息。近年來,QSDC在理論研究和實驗實施方面取得了巨大進展。然而,DSQC和QSDC協(xié)議只是單向通信協(xié)議,兩個用戶無法實現(xiàn)信息的相互傳輸。換句話說,在這兩種協(xié)議中,信息只朝一個方向流動。在實際的傳輸環(huán)境中,兩個用戶常常需要同時向?qū)Ψ絺鬏斝畔?,如電話通信。因此,有必要研究同時進行的雙向量子通信。
量子對話(QD)是一種雙向量子通信。QD協(xié)議允許兩個用戶同時向?qū)Ψ絺鬏斝畔ⅰ?004年,Nguyen[11]首先提出了量子對話協(xié)議,這是量子通信領(lǐng)域發(fā)展的一個里程碑。隨后,Gao等[12]指出Nguyen的對話協(xié)議存在信息泄露的問題。針對信息泄露問題,許多QD協(xié)議[13-17]被提出。
大多數(shù)QD協(xié)議是在理想的環(huán)境下提出的,即假設(shè)量子信道中沒有噪聲。在傳輸過程中,光子的偏振受到通道噪聲的影響。由于量子信道中的噪聲是不可避免的,因此如何使量子密碼協(xié)議在噪聲信道下正常工作顯得尤為重要。近年來,針對所有問題,許多量子對話協(xié)議[18-23]陸續(xù)被提出。本文采用量子糾錯碼提出了基于自對偶量子低密度奇偶校驗糾錯的量子對話協(xié)議。本協(xié)議可以提供更高的通信保真度,在一定程度上提高了信息傳輸?shù)陌踩?。安全分析表明,所提方法是可行的,并且可以抵抗常見的外部攻擊而不存在信息泄露?/p>
本文所提協(xié)議依賴于自對偶量子低密度校驗碼,量子信息的傳輸過程依賴于量子信道,而誤碼率的計算依賴于經(jīng)典信道。
表1 循環(huán)稀疏序列L的不同行重下對應(yīng)H0的2N、2k取值
8) 量子對話完成。
本文提出基于自對偶量子低密度校驗碼的量子對話協(xié)議,用自對偶量子低密度校驗碼對通信雙方的信息進行編碼,并相互傳輸,以便實現(xiàn)量子比特的正確傳輸。安全分析表明,該協(xié)議具有足夠的安全性,能夠有效抵御常見的惡意攻擊。本文從糾錯的角度研究所提量子對話協(xié)議的安全性。
[1] BENNETT C H. Quantum cryptography : public key distribution and coin tossing[C]//Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing. 1984: 175-179.
[2] CAI Q Y , LI B W. Deterministic secure communication without using entanglement[J]. Chinese Physics Letters, 2004, 21(4): 601-603.
[3] LI X H, DENG F G, LI C Y, et al. Quantum secure direct communication without maximally entangled states[J]. Journal of the Korean Physical Society, 2006, (49): 1354-1359.
[4] BOSTR?M K, FELBINGER T. Deterministic secure direct communication using entanglement[J]. Physical Review Letters, 2002, 89(18): 187902.
[5] LONG G L, LIU X S. Theoretically efficient high-capacity quantum-key-distribution scheme[J]. Physical Review A, 2002, 65(3): 032302.
[6] DENG F G, LONG G L. Secure direct communication with a quantum one-time pad[J]. Physical Review A, 2004, 69(5): 052319.
[7] GUERRA A G D A H, RIOS F F S, RAMOS R V. Quantum secure direct communication of digital and analog signals using continuum coherent states[J]. Quantum Information Processing, 2016, 15(11): 4747-4758.
[8] WANG C, DENG F G , LI Y S , et al. Quantum secure direct communication with high-dimension quantum superdense coding[J]. Physical Review A, 2005, 71(4): 044305.
[9] ZHU F, ZHANG W, SHENG Y B, et al. Experimental long-distance quantum secure direct communication[J]. Science Bulletin, 2017, 62(22): 1519-1524.
[10] WU F Z, YANG G J, WANG H B, et al. High-capacity quantum secure direct communication with two-photon six-qubit hyperentangled states[J]. Science China(Physics,Mechanics & Astronomy), 2017, 60(12): 24-30.
[11] NGUYEN B A. Quantum dialogue[J]. Physics Letters A, 2004, 328(1): 6-10.
[12] GAO F, GUO F Z, WEN Q Y, et al. Revisiting the security of quantum dialogue and bidirectional quantum secure direct communication[J]. Science in China, 2008(5): 111-118.
[13] SUN Y, WEN Q Y, GAO F, et al. Improving the security of secure quantum telephone against an attack with fake particles and local operations[J]. Optics Communications, 2009, 282(11): 2278-2280.
[14] WANG H, ZHANG Y Q, LIU X F, et al. Efficient quantum dialogue using entangled states and entanglement swapping without information leakage[J]. Quantum Information Processing, 2016, 15(6): 2593-2603.
[15] GAO G. Two quantum dialogue protocols without information leakage[J]. Optics Communications, 2010, 283(10): 2288-2293.
[16] YE T Y. Quantum dialogue without information leakage using a single quantum entangled state[J]. International Journal of Theoretical Physics, 2014, 53(11): 3719-3727.
[17] ZHENG C, LONG G F. Quantum secure direct dialogue using Einstein-Podolsky-Rosen pairs[J]. Science China Physics Mechanics & Astronomy, 2014, 57(7): 1238-1243.
[18] QI J M, XU G, CHEN X B, et al. Two authenticated quantum dialogue protocols based on three-particle entangled states[J]. Quantum Information Processing, 2018, 17(9): 247.
[19] ZHANG L, DONG S, ZHANG K J, et al. A controller-independent quantum dialogue protocol with four-particle states[J]. International Journal of Theoretical Physics, 2019, 58(6): 1927-1936.
[20] LIU Z H, CHEN H W. Security loopholes in the controlled quantum dialogue robust against conspiring users protocol[J]. Quantum Information Processing, 2019, 18(7): 228
[21] ZHANG M H, CAO Z W, PENG J Y, et al. Fault tolerant quantum dialogue protocol over a collective noise channel[J]. The European Physical Journal D, 2019, 73(3): 57.
[22] YANG Y, GAO S, ZHOU Y, et al. New secure quantum dialogue protocols over collective noisy channels[J]. International Journal of Theoretical Physics, 2019, 58(9): 2810-2822.
[23] 齊佳敏. 基于糾纏態(tài)和身份認(rèn)證的量子對話協(xié)議的設(shè)計與研究[D]. 北京: 北京郵電大學(xué), 2019.
QI J M. Design and research of quantum dialogue protocol based on entangled state and identity authentication[D]. Beijing: Beijing University of Posts and Telecommunications, 2019.
Quantum dialogue protocol based on self-dual quantum low density parity check codes
LIU Fen1, HE Zhenxing2, XU Pengao1, MA Hongyang2
1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China 2. School of Sciences, Qingdao University of Technology, Qingdao 266033, China
In quantum channels, particles are usually affected by noise during transmission. A quantum dialogue protocol based on self-dual quantum low density parity check codes was proposed to resist noise attacks. A combination of B construction method and U construction method was used to construct a self-dual quantum low density parity check matrix. The proposed quantum dialogue protocol can resist common external attacks, and there was no information leakage, which improved the efficiency of encoding and decoding. The security of quantum dialogue protocol was studied from the perspective of error correction. Security analysis shows that the protocol has sufficient security and can effectively resist common malicious attacks.
quantum low-density parity code, quantum dialogue, self-dual
s: TheNational Natural Science Foundation of China(61772295, 11975132), The University Scientific Research Project of Shandong Province, China (J18KZ012), The Natural Science Foundation of Shandong Province , China (ZR2019YQ01)
TN918
A
10.11959/j.issn.2096?109x.2020051
劉芬(1996-),女,山東濰坊人,青島理工大學(xué)碩士生,主要研究方向為量子通信。
賀振興(1995-),男,山東淄博人,青島理工大學(xué)碩士生,主要研究方向為應(yīng)用數(shù)學(xué)。
徐鵬翱(1995-),男,山東菏澤人,青島理工學(xué)碩士生,主要研究方向為量子通信。
馬鴻洋(1976-),男,山東即墨人,博士,青島理工大學(xué)教授,主要研究方向為網(wǎng)絡(luò)空間安全、量子信息、量子保密通信。
論文引用格式:劉芬, 賀振興, 徐鵬翱, 等. 基于自對偶量子低密度校驗碼的量子對話協(xié)議[J]. 網(wǎng)絡(luò)與信息安全學(xué)報, 2020, 6(4): 148-152.
LIU F, HE Z X, XU P A, et al. Quantum dialogue protocol based on self-dual quantum low density parity check codes[J]. Chinese Journal of Network and Information Security, 2020, 6(4): 148-152.
2019-09-18;
2019-10-15
馬鴻洋,hongyang_ma@aliyun.com
國家自然科學(xué)基金(61772295,11975132);山東省高等學(xué)??萍加媱濏椖浚↗18KZ012);山東省自然科學(xué)基金(ZR2019YQ01)